JPS63248702A - Fuel reformer - Google Patents
Fuel reformerInfo
- Publication number
- JPS63248702A JPS63248702A JP62079876A JP7987687A JPS63248702A JP S63248702 A JPS63248702 A JP S63248702A JP 62079876 A JP62079876 A JP 62079876A JP 7987687 A JP7987687 A JP 7987687A JP S63248702 A JPS63248702 A JP S63248702A
- Authority
- JP
- Japan
- Prior art keywords
- reforming
- reactor
- temperature
- heat
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 31
- 238000002407 reforming Methods 0.000 claims abstract description 73
- 239000007789 gas Substances 0.000 claims abstract description 28
- 238000002485 combustion reaction Methods 0.000 claims abstract description 19
- 239000003054 catalyst Substances 0.000 claims abstract description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims description 20
- 238000006057 reforming reaction Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 34
- 230000000694 effects Effects 0.000 abstract description 4
- 239000007858 starting material Substances 0.000 abstract 3
- 238000010992 reflux Methods 0.000 abstract 1
- 238000002791 soaking Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000006200 vaporizer Substances 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、燃料電池発電システムに組み込んでメタノ
ール等の改質原料を水素リッチな改質ガスに改質して燃
料電池へ供給する燃料改質装置に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention is a fuel reformer that is incorporated into a fuel cell power generation system to reform a reformed raw material such as methanol into hydrogen-rich reformed gas and supply it to a fuel cell. related to quality equipment.
(従来の技術)
メタノール等を原料として燃料電池へ燃料ガスを供給す
るには、メタノールを水素リーフチなガスに改質する必
要があり、この手段として発電システムに燃料改質装置
が組み込まれている。(Conventional technology) In order to supply fuel gas to a fuel cell using methanol or the like as a raw material, it is necessary to reform the methanol into a hydrogen-rich gas, and as a means to do this, a fuel reformer is incorporated into the power generation system. .
ここでメタノール等の液体改質原料を改質するには、メ
タノールをガス化し水譲気の存在下で改質触媒と接触的
に反応させて水素を生成するわけであるが、この改質反
応は吸熱反応であることから反応の進行に要する熱エネ
ルギーを外部から与える必要があり、したがって通常の
改質装置では改質熱源となるバーナを装備の炉内に液体
原料をガス化する気化器、および改質触媒を充填した改
質反応器を直列に接続して内蔵配備し、かつバーナにメ
タノール等の補助燃料、燃料電池から還流する水素ガス
を含むオフガスを助燃空気とともにバーナに送り込んで
燃焼させることにより、液体原料の気化、および改質反
応に必要な熱エネルギーを付与するようにしている。To reform a liquid reforming raw material such as methanol, methanol is gasified and reacted catalytically with a reforming catalyst in the presence of water to produce hydrogen. Since it is an endothermic reaction, it is necessary to provide the thermal energy required for the reaction to proceed from the outside. Therefore, in a normal reformer, a vaporizer that gasifies the liquid raw material is installed in a furnace equipped with a burner that serves as the reforming heat source. and a reforming reactor filled with a reforming catalyst are connected in series and built-in, and auxiliary fuel such as methanol and off-gas containing hydrogen gas refluxed from the fuel cell are sent to the burner together with combustion assisting air for combustion. By doing so, the thermal energy necessary for the vaporization of the liquid raw material and the reforming reaction is provided.
ここで上記した燃焼改質装置の一般構造を第5図に示す
と、図中1は改it装置の炉体、2は炉内の頂部に装備
したバーナ、3は気化器、4が内外二重の筒体内に改質
触媒5を充填した改質反応器であり、前記炉体内部の燃
焼室は中仕切壁1aにより下部で連通し合う内外室に仕
切られ、外部室の上端に排気管1bが接続されている。The general structure of the above combustion reformer is shown in Fig. 5. In the figure, 1 is the furnace body of the reformer, 2 is the burner installed at the top of the furnace, 3 is the carburetor, and 4 is the internal and external parts. This is a reforming reactor in which a reforming catalyst 5 is filled in a heavy cylindrical body, and the combustion chamber inside the furnace body is partitioned into an inner and outer chamber communicating at the lower part by a middle partition wall 1a, and an exhaust pipe is installed at the upper end of the outer chamber. 1b is connected.
かかる構成でバーナ2で燃料、オフガスを燃焼させるこ
とにより、燃焼ガスは内外の燃焼室を通流し、この過程
で気化器3.改質反応器4に熱を与えた後に排気管1b
より排気される。一方、改質原料は気化器3に供給され
、ここでガス化された後に改質反応器4に入り、該改質
反応器内を流れる過程で改質触媒5と接触反応して水素
リッチなガスに改質される。なお改質反応器4から出た
改質ガスは図示されてない配管系を通じて後段の燃料電
池へ供給される。By burning the fuel and off-gas in the burner 2 with this configuration, the combustion gas flows through the inner and outer combustion chambers, and in this process, the combustion gas flows through the carburetor 3. After applying heat to the reforming reactor 4, the exhaust pipe 1b
More exhaust. On the other hand, the reforming raw material is supplied to the vaporizer 3, where it is gasified and then enters the reforming reactor 4. During the process of flowing through the reforming reactor, it undergoes a contact reaction with the reforming catalyst 5 and becomes hydrogen-rich. Reformed into gas. The reformed gas discharged from the reforming reactor 4 is supplied to the subsequent fuel cell through a piping system (not shown).
一方、燃料電池側では燃料電極に供給する改質ガス中に
一酸化炭素、ないし未改質のメタノールが含まれている
と、燃料電池の電極触媒を被毒して電池特性を低下させ
ることから、改質ガス組成はできるだけ一酸化炭素濃度
が低く、かつ未改質のメタノールが含まれてないことが
望まれる。ところで改質ガス中に含まれている一酸化炭
素、未改質メタノールの濃度に付いては改質反応器の温
度、つまり改質反応温度が適正温度以上に高まると一酸
化炭素濃度が増す傾向を示し、逆に未改質メタノールは
改質反応温度が適正温度値以下に低下すると改質ガス中
に混在するようになる。この観点から燃料改質装置では
改質反応温度を改質反応器の全域で適正温度に維持する
ことが極めて重要な課題となっている。On the fuel cell side, on the other hand, if the reformed gas supplied to the fuel electrode contains carbon monoxide or unreformed methanol, it will poison the fuel cell's electrode catalyst and reduce cell characteristics. It is desirable that the reformed gas composition has as low a carbon monoxide concentration as possible and does not contain unreformed methanol. By the way, the concentration of carbon monoxide and unreformed methanol contained in the reformed gas tends to increase when the temperature of the reforming reactor, that is, the reforming reaction temperature, rises above the appropriate temperature. On the other hand, unmodified methanol becomes mixed in the reformed gas when the reforming reaction temperature falls below the appropriate temperature value. From this point of view, in fuel reformers, it is extremely important to maintain the reforming reaction temperature at an appropriate temperature throughout the reforming reactor.
しかして上記した従来の燃料改を装置では運転上での改
質反応温度の管理面で次記のような問題点がある。However, the conventional fuel reforming apparatus described above has the following problems in managing the reforming reaction temperature during operation.
すなわち、改質反応は吸熱反応であるために、改質原料
ガスが流入する改質反応器の入口部分。That is, since the reforming reaction is an endothermic reaction, this is the inlet portion of the reforming reactor into which the reforming raw material gas flows.
改質反応が最も盛んに行われる器内中央部分(反応領域
)、改質済みのガスが流れる出口部分く非反応領域)と
の間には温度差が生じ、第5図中の温度分布図で■のよ
うな温度分布を呈するようになる。このような温度分布
は、改質反応器4の入口部分は改質原料の助走区間であ
り、かつ他の部分よりも燃焼ガス流路の上流側に位置あ
ることから温度が最も高くなるのに対し、中央部分では
改質反応の進行する反応領域となるのでその吸熱反応に
より温度が下がり、さらに出口部分では改質済みのガス
が流れて改質反応が低下するために温度は中央部分の反
応領域に比べて再び高まるためである。しかも改質反応
器の内部で前記のような高低温度分布が生じると改質反
応温度の適正維持が困難となり、この結果として一酸化
炭素、未改質メタノールが増えて良質な改質ガスが得ら
れなくなる。There is a temperature difference between the central part of the vessel (reaction area) where the reforming reaction takes place most actively and the exit part (non-reaction area) where the reformed gas flows, and the temperature distribution diagram in Figure 5 Then, the temperature distribution becomes as shown in ■. This temperature distribution is caused by the fact that the temperature is highest at the inlet part of the reforming reactor 4 because it is the run-up section for the reforming raw material and is located upstream of the combustion gas flow path compared to other parts. On the other hand, since the central part becomes a reaction area where the reforming reaction proceeds, the temperature decreases due to the endothermic reaction, and furthermore, the reformed gas flows at the outlet part and the reforming reaction decreases, so the temperature decreases due to the reaction in the central part. This is because it increases again compared to the area. Moreover, if the above-mentioned high-low temperature distribution occurs inside the reforming reactor, it becomes difficult to maintain the reforming reaction temperature appropriately, and as a result, carbon monoxide and unreformed methanol increase, making it difficult to obtain high-quality reformed gas. I won't be able to do it.
一方、このような問題の対策として、バーナの火炎が低
温となる改質反応器の反応領域に向(ようにあらかじめ
バーナノズルを配置したり、あるいは高温となる改質反
応器の両端部を局部的に冷却する等の手段を施す方式が
一部で試みられているが、このような方式では燃料電池
側の負荷変動に伴う改質原料供給流量の変化によって位
置が移動する器内反応領域の変位に追従してバーナの火
炎の向きを制御することが困難である他、冷却系を設け
ることは設備コストが嵩み、その保守管理も厄介になる
等の難点がある。On the other hand, as a countermeasure to this problem, burner nozzles are placed in advance so that the burner flame is directed toward the reaction area of the reforming reactor where the temperature is low, or both ends of the reforming reactor where the temperature is high are locally located. Some attempts have been made to provide methods such as cooling the fuel cell, but such methods reduce the displacement of the reactor region, which moves due to changes in the reforming material supply flow rate due to load fluctuations on the fuel cell side. It is difficult to control the direction of the burner flame in accordance with the flow rate, and providing a cooling system increases equipment costs and makes maintenance management difficult.
この発明の目的は、上記方式のようにバーナノズルの向
きを制御したり、高温部分を局部的に冷却する等の手段
を用いることなく、改質反応器内の温度を簡易な手段で
均温化できるようにして従来装置の問題点を解決するよ
うにした燃料改質装置を提供することにある。The purpose of this invention is to equalize the temperature inside the reforming reactor by a simple means, without using means such as controlling the direction of the burner nozzle or locally cooling high-temperature parts as in the above method. An object of the present invention is to provide a fuel reforming device which solves the problems of conventional devices.
上記問題点を解決するために、この発明によればバーナ
装備の炉内燃焼室に改質触媒を充填した改質反応器を配
備し、バーナ燃焼により改質反応器に熱エネルギーを与
えて改質原料を水素リッチな改質ガスに改質するように
した燃料改質装置において、前記改質反応器の内部に改
質原料の通流方向に沿って均温用のヒートパイプを配し
て構成するものとする。In order to solve the above-mentioned problems, according to the present invention, a reforming reactor filled with a reforming catalyst is provided in a combustion chamber in a furnace equipped with a burner, and thermal energy is given to the reforming reactor by burner combustion. In a fuel reformer for reforming a raw material into hydrogen-rich reformed gas, a heat pipe for equal temperature is arranged inside the reforming reactor along the flow direction of the reformed material. shall be configured.
上記の構成により、改質反応器の内部ではヒートパイプ
の均温作用により器内における高温域と低温域との間で
熱移送、授受が行われる。したがってバーナの燃焼によ
り与えられる熱量を効果的に改質反応器の全域に配分し
て器内温度分布を均一に保ち、改質ガス中の一酸化炭素
濃度の増加。With the above configuration, inside the reforming reactor, heat is transferred and exchanged between the high temperature region and the low temperature region within the reactor due to the temperature equalization effect of the heat pipe. Therefore, the amount of heat given by combustion in the burner is effectively distributed throughout the reforming reactor to maintain a uniform temperature distribution within the reactor, thereby increasing the carbon monoxide concentration in the reformed gas.
未改質原料の混在を未然に防いで質のよい改質ガスが得
られるようになる。By preventing unreformed raw materials from being mixed in, it becomes possible to obtain high-quality reformed gas.
第1図、第2図、および第3図はそれぞれこの発明の異
なる実施例の構成図、第4図は第1図におけるヒートパ
イプの構造図を示すものであり、第5図に対応する同一
部材には同じ符号が付しである。1, 2, and 3 are configuration diagrams of different embodiments of the present invention, and FIG. 4 is a structural diagram of the heat pipe in FIG. 1, and FIG. 5 shows the same structure. The parts are given the same reference numerals.
まず第1図、第2図で示す実施例において、燃料改質器
の基本構造は第5図と同様であり、中仕切壁1aで仕切
られた炉内の外側の燃焼ガス室には内外二重の筒体の間
に改質触媒5を充填して成る改質反応器4が設置されて
いる。かかる改質反応器4に対し、この発明により器内
には入口と出口との間で改質原料の通流方向に沿って周
方向に並置して複数本のヒートバイブロが収容配備され
ている。ここでヒートバイブロの構造の一例を示すと第
4図のごとくであり、ヒートバイブロはパイプ内の中央
で上下に仕切られた室6a、 6bに区分されており、
かつ上方の室6aには少量の作動液体6cを封入すると
ともに室内の壁面にウィンクロdを付設したウィンク付
きヒートパイプ構造と成し、下方の室6bには作動液6
cのみを封入したウィックなしヒートパイプ構造として
構成されている。なお当然のことながら前記したヒート
バイブロを各独立のウィンク付きヒートパイプとウィッ
クなしヒートパイプとを上下直列に並べてもよい、また
がかるヒートバイブロを改質反応温度範囲(300〜4
00℃程度)で動作させるために、パイプ内に封入した
作動液6cとして例えばジフェニール26.5%と酸化
ジフェニール73.5%との混合液が採用される。First, in the embodiment shown in FIGS. 1 and 2, the basic structure of the fuel reformer is the same as that shown in FIG. A reforming reactor 4 filled with a reforming catalyst 5 is installed between heavy cylinders. According to the present invention, in the reforming reactor 4, a plurality of heat vibros are arranged in parallel in the circumferential direction between the inlet and the outlet along the flow direction of the reforming raw material. . An example of the structure of the Heat Vibro is shown in Fig. 4, where the Heat Vibro is divided into upper and lower chambers 6a and 6b at the center of the pipe.
The upper chamber 6a is filled with a small amount of working liquid 6c and has a heat pipe structure with a wink, in which a wink rod d is attached to the wall of the chamber, and the lower chamber 6b is filled with the working liquid 6c.
It is constructed as a wickless heat pipe structure in which only c is enclosed. Of course, the heat vibro described above may be arranged vertically in series with each independent heat pipe with a wink and a heat pipe without a wick.
In order to operate at a temperature of about 0.0° C.), a mixed liquid of, for example, 26.5% diphenyl and 73.5% diphenyl oxide is used as the working fluid 6c sealed in the pipe.
上記構成の燃料改質装置において、運転時には改質原料
が気化器3の入口管へ一定流量で供給され、バーナ2に
は外部からオフガス、補助燃料。In the fuel reformer having the above configuration, during operation, the reforming material is supplied at a constant flow rate to the inlet pipe of the vaporizer 3, and the burner 2 is supplied with off gas and auxiliary fuel from the outside.
および助燃空気を供給して燃焼させる。このバーナ燃焼
により燃焼室内では排気管1bに向けて燃焼ガスが点線
矢印のように通流し、この過程で気化器3および改質反
応器4に改質原料の気化、および改質反応に必′要な熱
エネルギーを与える。一方、気化器3でガス化された改
質原料は下面に開口する入口を通じて改質反応器4に送
り込まれ、器内で改質触媒5との接触反応により水素リ
ッチなガスに改質された後に、上方の出口を通じて燃料
電池に供給される。and combustion by supplying auxiliary combustion air. Due to this burner combustion, combustion gas flows in the combustion chamber toward the exhaust pipe 1b as shown by the dotted arrow, and in this process, the reformed raw material is vaporized in the vaporizer 3 and the reforming reactor 4, and the gas necessary for the reforming reaction is Provides the necessary thermal energy. On the other hand, the reforming raw material gasified in the vaporizer 3 is sent to the reforming reactor 4 through an inlet opening on the bottom surface, and reformed into hydrogen-rich gas by a catalytic reaction with the reforming catalyst 5 inside the reactor. It is later supplied to the fuel cell through the upper outlet.
ここで改質原料は改質反応器4の入口より流入して成る
程度助走した地点から吸熱反応である改質反応が進行す
るようになる。一方、前記のように改質反応器4の内部
にはガス流路に沿ってヒートバイブロが内蔵されており
、このヒートバイブロではパイプ内に封入した作動液が
高温域からの吸熱によって蒸発、拡散し、低温域に放熱
して凝縮する蒸発/凝縮サイクルを繰り返し、改質反応
器内で入口、出口側部分の高温域と中央部分の低温域と
の間で熱移送を行って改質反応器4の温度をその全域で
均温化する。なおヒートバイブロの上室6aでは室内底
部で凝縮した作動液6cはウィンクロdを伝わって上部
の蒸発部に還流する。これに対し下室6bでは室内上部
で凝縮した作動液はそのまま側壁面を重力流下して底部
の蒸発部に還流する。これにより改質反応器4の温度分
布は第5図における温度分布図上に点線で表した■の温
度分布となる。この温度分布■を従来の温度分布■と比
べると入口、出口部分では温度が下がり、逆に中央部分
では温度が高くなり、全体として均温化されるようにな
る。Here, the reforming raw material flows in from the inlet of the reforming reactor 4, and the reforming reaction, which is an endothermic reaction, begins to proceed from the point where the reforming raw material has run up to a certain extent. On the other hand, as mentioned above, a heat vibro is built inside the reforming reactor 4 along the gas flow path, and in this heat vibro, the working fluid sealed in the pipe is evaporated and diffused by absorbing heat from the high temperature range. The evaporation/condensation cycle in which heat is dissipated to a low temperature area and condensed is repeated, and heat is transferred between the high temperature areas at the inlet and outlet sides and the low temperature area at the center within the reforming reactor. The temperature in Step 4 is equalized over the entire area. In the upper chamber 6a of the heat vibro, the working fluid 6c condensed at the bottom of the chamber passes through the winch d and flows back to the evaporation section at the top. On the other hand, in the lower chamber 6b, the working fluid condensed at the upper part of the chamber flows down the side wall surface by gravity and returns to the evaporation section at the bottom. As a result, the temperature distribution in the reforming reactor 4 becomes the temperature distribution indicated by the dotted line (■) on the temperature distribution diagram in FIG. Comparing this temperature distribution (2) with the conventional temperature distribution (2), the temperature decreases at the inlet and outlet portions, while the temperature increases at the central portion, resulting in an even temperature as a whole.
これにより負荷変動の際にもバーナの総発熱量を改質反
応器の検出温度に対応して制御するだけで、従来のよう
に局部的な加熱、冷却手段を講じることなくヒートパイ
プを介して改質反応器4の器内全域を均温化して適正な
改質反応器内に保持することができ、これにより一酸化
炭素、未改質原料の混在を抑えて良質な改質ガスが安定
よく得られるようになる。なお、改質反応器の器内温度
が均一となるので器内温度検出をより一層正確に行うこ
とが可能となり、これにより前記のように燃料電池の負
荷変動に伴って改質原料供給量を制御する際にも制御性
の向上に寄与する利点が得られる。This allows the burner's total calorific value to be controlled in response to the detected temperature of the reforming reactor even when the load fluctuates. The temperature of the entire interior of the reforming reactor 4 can be equalized and maintained within the proper reforming reactor, thereby suppressing the mixture of carbon monoxide and unreformed raw materials and stabilizing high-quality reformed gas. You will get better results. In addition, since the temperature inside the reforming reactor becomes uniform, it becomes possible to detect the temperature inside the reactor more accurately, and as a result, as mentioned above, the amount of reforming raw material supplied can be adjusted according to the load fluctuation of the fuel cell. Also during control, an advantage that contributes to improved controllability can be obtained.
第2図は第1図の実施例を応用した簡易型の実施例を示
すものであり、特に改質反応器4の下半分の領域、つま
り改質反応11域である器内中央部分と人口側部分との
闇にまたってウィックなしのヒートバイブロが配備され
ており、該ヒートバイブを介して最も温度の高い入口側
部分から改質反応領域である器内の中央部分へ熱移送し
て均温化するようにしたものである。これによりウィッ
クなしの簡単な構造のヒートバイブを使用するだけで第
1図の実施例と比べても左程遜色のな(均温化を図るこ
とができる。FIG. 2 shows a simplified embodiment that is an application of the embodiment shown in FIG. A heat vibro without a wick is installed between the side parts, and the heat is transferred from the inlet side part, which has the highest temperature, to the central part of the vessel, which is the reforming reaction area, and is evenly distributed through the heat vibrator. It is made to warm up. As a result, by simply using a heat vibrator with a simple structure without a wick, it is possible to achieve temperature uniformity comparable to that of the embodiment shown in FIG.
【発明の効果1
以北述べたようにこの発明によれば、バーナ装備の炉内
燃焼室に改質触媒を充填した改質反応器を配備し、バー
ナ燃焼により改質反応器に熱エネルギーを与えて改質原
料を水素リッチな改質ガスに改質するようにした燃料改
質装置において、前記改質反応器の内部に改質原料の通
流方向に沿って均温用のヒートパイプを配して構成した
ことにより、バーナ燃焼により改質反応器に与えられる
熱量をヒートパイプを介して高温域から低温域に熱移送
し、吸熱反応である改質反応による器内反応領域の温度
低下を補償して改質反応器内の温度を均一化することが
でき、かくして改質ガス中の一酸化炭素濃度の増加、未
改質原料の混在を未然に防止して良質な改質ガスを安定
よく得ることができる。[Effect of the invention 1] As described above, according to this invention, a reforming reactor filled with a reforming catalyst is provided in the combustion chamber in the furnace equipped with a burner, and thermal energy is supplied to the reforming reactor by burner combustion. In the fuel reformer, a heat pipe for equal temperature is provided inside the reforming reactor along the flow direction of the reformed raw material. This configuration allows the heat given to the reforming reactor by burner combustion to be transferred from the high temperature region to the low temperature region via the heat pipe, reducing the temperature in the reaction region within the reactor due to the endothermic reforming reaction. It is possible to equalize the temperature in the reforming reactor by compensating for It can be obtained stably.
第1図は本発明による燃料改質装置の一実施例の構成断
面図、第2図は第1図の要部横断面図、第3図は第1図
と異なる実施例の構成断面図、第4図は第1図における
ヒートパイプの構造断面図、第5図は改質反応器の温度
分布図とともに示した従来装置の構成図である。各図に
おいて、1:燃料改質装置の炉体、2:バーナ、3:気
化器、4:改質反応器、5:改質触媒、6:ヒートバイ
ブ。
第2図
第3図
第4図
第5図FIG. 1 is a cross-sectional view of the structure of an embodiment of a fuel reformer according to the present invention, FIG. 2 is a cross-sectional view of the main part of FIG. 1, and FIG. FIG. 4 is a cross-sectional view of the structure of the heat pipe in FIG. 1, and FIG. 5 is a configuration diagram of a conventional apparatus shown together with a temperature distribution diagram of a reforming reactor. In each figure, 1: furnace body of the fuel reformer, 2: burner, 3: vaporizer, 4: reforming reactor, 5: reforming catalyst, 6: heat vibrator. Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
器を配備し、バーナ燃焼により改質反応器に熱エネルギ
ーを与えて改質原料を水素リッチな改質ガスに改質する
ようにした燃料改質装置において、前記改質反応器の内
部に改質原料の通流方向に沿って均温用のヒートパイプ
を配したことを特徴とする燃料改質装置。 2)特許請求の範囲第1項記載の燃料改質装置において
、ヒートパイプが改質反応器内における器内中央の改質
反応領域と入口側ないし出口側の端部との間にまたがっ
て配置されていることを特徴とする燃料改質装置。[Claims] A reforming reactor filled with a reforming catalyst is provided in a combustion chamber in a furnace equipped with a burner, and heat energy is given to the reforming reactor through burner combustion to reform the reformed raw material into a hydrogen-rich material. A fuel reformer for reforming into gas, characterized in that a heat pipe for temperature equalization is arranged inside the reforming reactor along the flow direction of the reforming raw material. . 2) In the fuel reformer according to claim 1, the heat pipe is disposed in the reforming reactor so as to straddle between the reforming reaction area at the center of the reactor and the end on the inlet side or the outlet side. A fuel reformer characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62079876A JPS63248702A (en) | 1987-04-01 | 1987-04-01 | Fuel reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62079876A JPS63248702A (en) | 1987-04-01 | 1987-04-01 | Fuel reformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63248702A true JPS63248702A (en) | 1988-10-17 |
Family
ID=13702429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62079876A Pending JPS63248702A (en) | 1987-04-01 | 1987-04-01 | Fuel reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63248702A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01233822A (en) * | 1988-03-14 | 1989-09-19 | Mitsubishi Electric Corp | Magnetostatic wave resonator |
JPH04160002A (en) * | 1990-10-22 | 1992-06-03 | Takuma Sogo Kenkyusho:Kk | Method and device for reforming methanol |
US6165633A (en) * | 1996-03-26 | 2000-12-26 | Toyota Jidosha Kabushiki Kaisha | Method of and apparatus for reforming fuel and fuel cell system with fuel-reforming apparatus incorporated therein |
US7670394B2 (en) | 2005-06-28 | 2010-03-02 | Haldor Topsoe A/S | Compact reforming reactor |
US7670395B2 (en) | 2005-06-28 | 2010-03-02 | Haldor Topsoe A/S | Compact reforming reactor |
-
1987
- 1987-04-01 JP JP62079876A patent/JPS63248702A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01233822A (en) * | 1988-03-14 | 1989-09-19 | Mitsubishi Electric Corp | Magnetostatic wave resonator |
JPH04160002A (en) * | 1990-10-22 | 1992-06-03 | Takuma Sogo Kenkyusho:Kk | Method and device for reforming methanol |
US6165633A (en) * | 1996-03-26 | 2000-12-26 | Toyota Jidosha Kabushiki Kaisha | Method of and apparatus for reforming fuel and fuel cell system with fuel-reforming apparatus incorporated therein |
US7670394B2 (en) | 2005-06-28 | 2010-03-02 | Haldor Topsoe A/S | Compact reforming reactor |
US7670395B2 (en) | 2005-06-28 | 2010-03-02 | Haldor Topsoe A/S | Compact reforming reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6932958B2 (en) | Simplified three-stage fuel processor | |
US4935037A (en) | Fuel reforming apparatus | |
JP3625770B2 (en) | Single tube cylindrical reformer and its operating method | |
WO2010087791A1 (en) | Distributively cooled, integrated water-gas shift reactor and vaporizer | |
JP3440551B2 (en) | Fuel reformer and method of operating fuel reformer | |
KR20050053770A (en) | Autooxidation internal heating type steam reforming system | |
JPH11106204A (en) | Hydrogen production apparatus and hydrogen production process | |
JP3921477B2 (en) | Single tube cylindrical reformer and its operating method | |
JPS62260701A (en) | Raw material reforming apparatus | |
JPS63248702A (en) | Fuel reformer | |
JP2004196600A (en) | Hydrogen generating apparatus to be used for fuel cell and starting method | |
JP2003321206A (en) | Single tubular cylinder type reforming apparatus | |
JP4638693B2 (en) | Liquid fuel vaporizer, liquid fuel processor, and fuel cell power generation system | |
JPH0794322B2 (en) | Methanol reformer | |
JP4641115B2 (en) | CO remover | |
JPH01157402A (en) | Methanol reformer | |
JPS5823168A (en) | Fuel cell power generating system | |
JPH05301701A (en) | Device for reforming fuel | |
KR20030045965A (en) | Fuel reformer for fuel cell | |
JP2003112904A (en) | Single tube type cylindrical reformer | |
JPH01122902A (en) | Fuel reformer for fuel cell | |
JP7118330B1 (en) | fuel processor | |
JPS62108704A (en) | Fuel reforming device for fuel cell | |
JPH06206702A (en) | Reactor for hydrocarbon | |
JPH02129002A (en) | Fuel reformer for fuel cell power generation system |