JPH05301701A - Device for reforming fuel - Google Patents
Device for reforming fuelInfo
- Publication number
- JPH05301701A JPH05301701A JP40710290A JP40710290A JPH05301701A JP H05301701 A JPH05301701 A JP H05301701A JP 40710290 A JP40710290 A JP 40710290A JP 40710290 A JP40710290 A JP 40710290A JP H05301701 A JPH05301701 A JP H05301701A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst layer
- reforming
- catalyst
- tube
- reaction tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
(57)【要約】
【目的】内管とこれを囲む外管との間に改質触媒が充填
されてなる触媒層を有する反応管へのバーナでの燃焼量
の変化やバーナからの熱媒体による内管と外管とへの不
均一加熱による触媒層の半径方向温度分布の不均一によ
って生じる改質ガス組成の半径方向の不均一を均一化す
る。
【構成】バーナからの熱媒体が反応管の内管内側を流下
した後外管の外周域部を流上し、一方改質原料ガスが反
応管の触媒層を下方から上方に向って流れてバーナから
の熱媒体により水素に富むガスに改質する燃料改質器に
おいて、反応管内の触媒層を二分し、改質ガス出口側を
改質原料ガス入口側より熱容量の大きい触媒層にする。
なお、熱容量の大きい触媒層は触媒を担持する担体の比
重を大きくした改質触媒から構成する。
(57) [Abstract] [Purpose] Changes in the amount of combustion in the burner and the heat medium from the burner to the reaction tube having the catalyst layer in which the reforming catalyst is filled between the inner tube and the outer tube surrounding it. The uniform non-uniformity of the reformed gas composition in the radial direction caused by the non-uniform heating of the inner layer and the outer tube due to the non-uniform temperature distribution in the catalyst layer. [Composition] The heat medium from the burner flows down inside the inner tube of the reaction tube and then up the outer peripheral area of the outer tube, while the reforming raw material gas flows from the lower part to the upper part of the catalyst layer of the reaction tube. In a fuel reformer that reforms into a hydrogen-rich gas by a heat medium from a burner, the catalyst layer in the reaction tube is divided into two parts, and the reformed gas outlet side is made a catalyst layer having a larger heat capacity than the reforming raw material gas inlet side.
The catalyst layer having a large heat capacity is composed of a reforming catalyst in which the carrier supporting the catalyst has a large specific gravity.
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭化水素系やアルコー
ル系等の原燃料を改質触媒の下に水素に富むガスに改質
する燃料改質器、特に起動、停止を頻繁に行なうオンサ
イト型燃料電池発電装置に組込まれる燃料改質器に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel reformer for reforming a raw fuel such as a hydrocarbon-based or alcohol-based fuel into a hydrogen-rich gas under a reforming catalyst, and more particularly, an on-state which is frequently started and stopped. The present invention relates to a fuel reformer incorporated in a site type fuel cell power generator.
【0002】[0002]
【従来の技術】燃料電池発電装置は、燃料改質器、燃料
電池本体、及び各補機によって構成され、燃料改質器で
生成された水素に富む改質ガスが燃料として燃料電池に
供給され、別に供給される空気とともに電池反応を起こ
させて発電する。2. Description of the Related Art A fuel cell power generator is composed of a fuel reformer, a fuel cell main body, and auxiliary devices, and the hydrogen-rich reformed gas produced in the fuel reformer is supplied to the fuel cell as fuel. , Generates power by causing a battery reaction with the air supplied separately.
【0003】上記の燃料改質器にて生成される改質ガス
は炭化水素系の天然ガスやアルコール系のメタノール等
を原燃料とする改質原料ガスを改質触媒の下に改質して
得られる。この改質反応は燃料改質器において粒状の改
質触媒が充填されてなる触媒層を有する反応管に原燃料
を通流させて行なわれ、原燃料がメタンの場合には下記
の化学式1、2、3の反応がNi系触媒の下で反応温度
約700℃にて行なわれる。The reformed gas generated in the above fuel reformer is obtained by reforming a reforming raw material gas using hydrocarbon-based natural gas or alcohol-based methanol as a raw fuel under a reforming catalyst. can get. This reforming reaction is carried out by passing the raw fuel through a reaction tube having a catalyst layer filled with granular reforming catalyst in the fuel reformer, and when the raw fuel is methane, the following chemical formula 1, A few reactions are performed under a Ni-based catalyst at a reaction temperature of about 700 ° C.
【0004】[0004]
【化学式1】 CH4 +H2 O → CO+3H2 H=−49.3 Kcal[Chemical Formula 1] CH 4 + H 2 O → CO + 3H 2 H = -49.3 Kcal
【化学式2】 CO+H2 O → CO2 +H2 H=9.8 Kcal[Chemical Formula 2] CO + H 2 O → CO 2 + H 2 H = 9.8 Kcal
【化学式3】 CH4 +2H2 O → CO2 +4H2 H=−39.5 Kcal[Chemical Formula 3] CH 4 + 2H 2 O → CO 2 + 4H 2 H = -39.5 Kcal
【0005】また、原燃料がメタノールの場合には下記
の化学式4、5、6の反応がCu系触媒を用いて反応温
度約200〜300℃にて行なわれている。When the raw fuel is methanol, the reactions of the following chemical formulas 4, 5, and 6 are carried out at a reaction temperature of about 200 to 300 ° C. using a Cu-based catalyst.
【0006】[0006]
【化学式4】 CH3 OH → 2H2 O+CO H=−21.7 Kcal[Chemical Formula 4] CH 3 OH → 2H 2 O + CO H = -21.7 Kcal
【化学式5】 CO+H2 O → CO2 +H2 H=9.8 Kcal[Chemical Formula 5] CO + H 2 O → CO 2 + H 2 H = 9.8 Kcal
【化学式6】 CH3 OH+H2 O → 3H2 +CO2 H=−11.9 Kcal[Chemical Formula 6] CH 3 OH + H 2 O → 3H 2 + CO 2 H = -11.9 Kcal
【0007】上記のメタン、メタノール等の改質原料ガ
スを改質する燃料改質器の触媒層における水蒸気改質反
応は、いずれも吸熱反応であり外部からの熱の供給が必
要となる。The steam reforming reaction in the catalyst layer of the fuel reformer for reforming the reforming raw material gas such as methane or methanol is an endothermic reaction and requires the supply of heat from the outside.
【0008】また、燃料電池で発電に利用されなかった
水素はオフガスとして燃料改質器のバーナにリサイクル
されて再び燃焼させ、その触媒層を加熱するための熱源
として利用される。Further, hydrogen that has not been used for power generation in the fuel cell is recycled as off-gas to the burner of the fuel reformer and burned again, and is used as a heat source for heating the catalyst layer.
【0009】このような水蒸気改質反応を行なわせる燃
料改質器として図3に示すものが知られている。図3に
おいて炉容器1は上部中央にバーナ2と、側壁上部にバ
ーナ2での燃焼による燃焼ガスを排出する排ガス出口3
を備え、さらに反応管11を有する改質管4を内蔵して
いる。As a fuel reformer for carrying out such a steam reforming reaction, one shown in FIG. 3 is known. In FIG. 3, the furnace vessel 1 has a burner 2 in the center of the upper part and an exhaust gas outlet 3 for discharging combustion gas from combustion in the burner 2 to the upper part of the side wall.
And further includes a reforming tube 4 having a reaction tube 11.
【0010】改質管4はバーナ2がその内側に臨む内管
5と、これを囲む外囲管6と、この下部開口部を閉鎖す
る底板7と、内管5と外囲管6との間に底板7から離し
て介挿される外管8とから構成され、内管5と外管8と
の間の環状空間には改質触媒9が充填されてなる触媒層
10を内蔵して反応管11が形成されている。なお外管
8と外囲管6との間は改質原料ガス通路12となってい
る。The reforming tube 4 includes an inner tube 5 facing the burner 2 inside, an outer envelope 6 surrounding the burner 2, a bottom plate 7 closing the lower opening, an inner tube 5 and an outer envelope 6. The outer tube 8 is interposed between the outer tube 8 and the bottom plate 7. The annular space between the inner tube 5 and the outer tube 8 has a catalyst layer 10 filled with a reforming catalyst 9 therein, and the reaction is carried out. A tube 11 is formed. A reforming raw material gas passage 12 is provided between the outer tube 8 and the outer tube 6.
【0011】改質管4の外管8と外囲管6との上部開口
は炉容器1の上部に設けられた改質原料ガスマニホール
ド13に連通し、改質原料ガスマニホールド13は改質
原料ガスが流入する改質原料ガス入口14を備えてい
る。また内管5と外管8との上部開口は炉容器1の上部
に設けられた改質ガスマニホールド15に連通し、改質
ガスマニホールド15は改質ガスを外部に送る改質ガス
出口16を備えている。The upper openings of the outer tube 8 and the outer tube 6 of the reforming pipe 4 communicate with a reforming raw material gas manifold 13 provided in the upper part of the furnace vessel 1, and the reforming raw material gas manifold 13 is used as the reforming raw material. The reforming raw material gas inlet 14 into which the gas flows is provided. Further, the upper openings of the inner pipe 5 and the outer pipe 8 communicate with a reformed gas manifold 15 provided in the upper portion of the furnace vessel 1, and the reformed gas manifold 15 has a reformed gas outlet 16 for sending the reformed gas to the outside. I have it.
【0012】なお、内管5の内側は燃焼室17を形成
し、外囲管6とを炉容器1の側壁との間は燃焼ガス通路
18を形成している。A combustion chamber 17 is formed inside the inner pipe 5, and a combustion gas passage 18 is formed between the outer pipe 6 and the side wall of the furnace vessel 1.
【0013】このような構成により、バーナ2で燃焼を
行なうと、燃焼ガスは矢印のように燃焼室17内を下方
に流れ、改質管4の下端部で折返して燃焼ガス通路18
を流れて反応管11を加熱した後、排ガス出口3から外
部に排出される。With this structure, when combustion is performed in the burner 2, the combustion gas flows downward in the combustion chamber 17 as indicated by the arrow, and returns at the lower end of the reforming pipe 4 to return to the combustion gas passage 18
And the reaction tube 11 is heated and then discharged from the exhaust gas outlet 3 to the outside.
【0014】一方、改質原料ガスは、改質原料ガス入口
14から改質原料ガスマニホールド13を経て改質原料
ガス通路12を下方に流れ、その下端部で触媒層10に
流入する。そして改質原料ガスは燃焼ガスにより加熱さ
れた触媒層10を下方から上方に向って通流し、触媒作
用により水蒸気改質されて水素に富むガスに改質され
て、改質ガスマニホールド15を経て改質ガス出口16
から燃料電池に送出される。On the other hand, the reforming raw material gas flows downward from the reforming raw material gas inlet 13 through the reforming raw material gas manifold 13 and into the catalyst layer 10 at the lower end thereof. Then, the reforming raw material gas flows from the lower part to the upper part through the catalyst layer 10 heated by the combustion gas, is steam-reformed by the catalytic action and is reformed into a hydrogen-rich gas, and passes through the reformed gas manifold 15. Reformed gas outlet 16
To the fuel cell.
【0015】[0015]
【発明が解決しようとする課題】上記の燃料改質器は、
オンサイト型燃料電池発電装置に使用される。この場
合、燃料改質器は起動、停止を頻繁に繰り返すヒートサ
イクルの結果、燃料改質器のバーナの燃焼量が変化し、
反応管に伝える熱量が変わり、反応管内の触媒層に伝え
る熱量が頻繁に変化する。特に、燃焼室17内を流れる
燃焼ガスと燃焼ガス通路18を通るガスの温度では燃焼
室17内を流れる燃焼ガスの温度のほうが高く、このた
めに反応管内における触媒層内では、燃焼室17側にお
いて温度が高く、燃焼ガス通路18側において温度が低
くなり触媒層内に温度分布がつきやすく、半径方向に温
度差の大きい温度分布が生じている。SUMMARY OF THE INVENTION The above fuel reformer is
Used for on-site fuel cell power generators. In this case, as a result of the heat cycle in which the fuel reformer is repeatedly started and stopped, the combustion amount of the burner of the fuel reformer changes,
The amount of heat transferred to the reaction tube changes, and the amount of heat transferred to the catalyst layer in the reaction tube changes frequently. In particular, the temperature of the combustion gas flowing in the combustion chamber 17 and the temperature of the gas passing through the combustion gas passage 18 are higher than the temperature of the combustion gas flowing in the combustion chamber 17. Therefore, in the catalyst layer in the reaction tube, the combustion chamber 17 side The temperature is high, the temperature is low on the combustion gas passage 18 side, and the temperature distribution is likely to occur in the catalyst layer, and the temperature distribution having a large temperature difference occurs in the radial direction.
【0016】このため触媒層内に均一に熱を伝えること
ができず改質反応が良好におこなわれなくなる。このた
めに反応管内の触媒層改質ガス組成が温度分布と同様に
不安定になりがちであった。特に燃料電池の負荷変動の
スピードによっては、負荷に応じた改質ガス量を供給で
きても、望まれる改質ガス組成のガスを得る事が困難で
あった。For this reason, heat cannot be evenly transferred to the catalyst layer, and the reforming reaction cannot be performed well. For this reason, the composition of the reformed gas in the catalyst layer in the reaction tube tends to be unstable, like the temperature distribution. In particular, depending on the load fluctuation speed of the fuel cell, it is difficult to obtain a gas having a desired reformed gas composition even if the reformed gas amount can be supplied according to the load.
【0017】本発明の目的は、反応管内の触媒層へのバ
ーナでの燃焼量の変化や燃焼ガスによる内管と外管との
不均一加熱があっても触媒層の半径方向の温度分布の温
度差を小さくして均一化された組成の改質ガスが得られ
る燃料改質器を提供することである。The object of the present invention is to improve the temperature distribution in the radial direction of the catalyst layer even if there is a change in the amount of combustion in the burner to the catalyst layer in the reaction tube or non-uniform heating of the inner and outer tubes by the combustion gas. It is an object of the present invention to provide a fuel reformer capable of obtaining a reformed gas having a uniform composition by reducing the temperature difference.
【0018】[0018]
【課題を解決するための手段】上記課題を解決するため
に、本発明によれば直立する内管と、これを囲む外管と
からなり、内管と外管との間の環状空間に改質触媒が充
填されてなる触媒層を有し、下端部に改質原料ガスの入
口を、また上端部に改質ガスの出口を有する反応管と、
この反応管を内蔵し、反応管の内管の内側の上部に臨む
バーナを備える炉容器とを備え、内管の内側を流れた
後、反応管の下端部で折返して外管の外周域部を流れる
バーナからの燃焼による熱媒体により反応管を加熱して
触媒層を入口から出口に向って流れる改質原料ガスを水
素に富むガスに改質する燃料改質器において、触媒層を
二分し、改質ガスの出口側を改質原料ガスの入口側より
触媒層の熱容量を大きくするものとする。In order to solve the above-mentioned problems, according to the present invention, an upright inner pipe and an outer pipe surrounding the upright inner pipe are provided, and an annular space between the inner pipe and the outer pipe is modified. A reaction tube having a catalyst layer filled with a high-quality catalyst, having a reforming source gas inlet at the lower end and a reforming gas outlet at the upper end,
A reactor vessel that has this reaction tube built-in and a burner that faces the upper inside of the inner tube of the reaction tube is provided.After flowing inside the inner tube, it is folded back at the lower end of the reaction tube and the outer peripheral area of the outer tube is provided. In the fuel reformer that heats the reaction tube with the heat medium generated by the combustion from the burner flowing through the reactor to reform the reforming raw material gas flowing from the inlet to the outlet into the hydrogen-rich gas, the catalyst layer is divided into two parts. The heat capacity of the catalyst layer on the outlet side of the reformed gas is larger than that on the inlet side of the reforming raw material gas.
【0019】また、熱容量の大きい触媒層は、触媒を担
持する担体の比重を大きくした改質触媒から構成するも
のとする。The catalyst layer having a large heat capacity is composed of a reforming catalyst in which the carrier carrying the catalyst has a large specific gravity.
【0020】[0020]
【作用】直立する反応管内の粒状の改質触媒からなる触
媒層は二分され、改質ガスの出口側の触媒層を改質原料
ガスの入口側より触媒層の熱容量を大きくしたこと、こ
の手段として触媒を担持する担体の比重を大きくして熱
容量を大きくしたことにより、燃料改質器の起動、停止
に伴うバーナの燃焼量の変化や、反応管の内管と外管と
を経る熱媒体から伝熱される熱量の差異により触媒層内
へ伝わる熱量が変化しても、一度起動を行なって十分な
熱量が触媒層に与えれば、改質ガスの出口側の触媒層は
熱容量が入口側の触媒層より大きいので、触媒層の温度
変化に大きな影響を与えずにすむ。The catalyst layer composed of the granular reforming catalyst in the upright reaction tube is divided into two, and the heat capacity of the catalyst layer on the outlet side of the reformed gas is made larger than that on the inlet side of the reforming raw material gas. As the specific gravity of the carrier supporting the catalyst is increased to increase the heat capacity, the change in the burner combustion amount due to the start and stop of the fuel reformer and the heat medium passing through the inner and outer tubes of the reaction tube Even if the amount of heat transferred into the catalyst layer changes due to the difference in the amount of heat transferred from the catalyst layer, if the catalyst layer on the outlet side of the reformed gas has a heat capacity of Since it is larger than the catalyst layer, it does not have a great influence on the temperature change of the catalyst layer.
【0021】したがって改質原料ガスの入口側の通常の
粒状の改質触媒からなる触媒層を通流して改質される改
質ガス組成が半径方向に不均一であっても、改質ガス出
口側の触媒層の熱容量が大きいため、半径方向の温度分
布の温度差が小さくなる触媒層に流入して改質に十分な
温度を保持することができるため、改質反応がさらに進
んで反応が平衡に到達し、反応管出口部における改質ガ
スの組成は半径方向に均一化される。Therefore, even if the composition of the reformed gas that is reformed by flowing through the catalyst layer composed of the ordinary granular reforming catalyst on the inlet side of the reforming raw material gas is not uniform in the radial direction, the reformed gas outlet Since the heat capacity of the catalyst layer on the side is large, the temperature difference in the temperature distribution in the radial direction becomes small, and the catalyst layer can maintain a sufficient temperature for reforming, so that the reforming reaction proceeds further and the reaction proceeds. When equilibrium is reached, the composition of the reformed gas at the outlet of the reaction tube is made uniform in the radial direction.
【0022】[0022]
【実施例】以下図面に基づいて本発明の実施例について
説明する。なお、図1において図3の従来例と同一部品
には同じ符号を付し、その説明を省略する。図1におい
て従来例と異なるのは、内管5と外管8との間の環状空
間に形成される触媒層を二分し、上方にある改質ガスの
出口側の第2触媒層21の熱容量を下方にある改質原料
ガスの入口側の第1触媒層20のそれより大きくしたこ
とである。Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as those of the conventional example of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. 1 is different from the conventional example in that the catalyst layer formed in the annular space between the inner pipe 5 and the outer pipe 8 is divided into two, and the heat capacity of the second catalyst layer 21 on the outlet side of the reformed gas above is divided. Is larger than that of the first catalyst layer 20 on the inlet side of the reforming raw material gas located below.
【0023】熱容量の大きい触媒層の形成は次記のよう
にして行なわれる。改質触媒の担体を形成するα−アル
ミナの粉末を造粒機にかけて造粒し、焼き固めることに
よって比重の大きい触媒担体を形成する。この担体表面
に、さらにα−アルミナ粉末を造粒させ、多孔質体から
なる触媒担体を形成し、この多孔質体表面にNiを担持
させて熱容量の大きい改質触媒を製作し、この改質触媒
を充填して第2触媒層21を形成する。The formation of the catalyst layer having a large heat capacity is performed as follows. The α-alumina powder forming the carrier of the reforming catalyst is granulated by a granulator and baked to solidify to form a catalyst carrier having a large specific gravity. Α-Alumina powder was further granulated on the surface of the carrier to form a catalyst carrier composed of a porous body, and Ni was supported on the surface of the porous body to produce a reforming catalyst having a large heat capacity. The catalyst is filled to form the second catalyst layer 21.
【0024】このような構成により改質原料ガス通路1
2を経た改質原料ガスは反応管11の下端部の入口から
第1触媒層20に通流し、さらに熱容量の大きい第2触
媒層21を通流する。この際バーナ2からの燃焼ガスは
前述のように燃焼室17を下方に流れた後燃焼ガス通路
18を流れ、この燃焼ガスにより第1、第2触媒層2
0、21は加熱されて改質原料ガスは水蒸気改質反応を
起こして水素に富むガスに改質される。この際、改質原
料ガス入口側の第1触媒層20の出口における改質ガス
の組成は、燃料改質器の起動停止に伴うバーナ2での燃
焼量の変化や燃焼ガスの温度は燃焼室17の方が燃焼ガ
ス通路18の方より高いため生じる内管と外管とを経る
燃焼ガスからの伝熱量の差異により半径方向に不均一の
温度分布を有しているので、改質ガス組成は不均一であ
る。しかし、この不均一な組成の改質ガスは改質ガス出
口側の第2触媒層21に流入すると、第2触媒層21は
高熱容量なので、半径方向の温度分布の温度差が小さく
なり、このため第2触媒層21内で水蒸気改質反応がさ
らに進み、反応が平衡に到達する。With this structure, the reforming source gas passage 1
The reforming raw material gas passing through 2 flows from the inlet at the lower end of the reaction tube 11 into the first catalyst layer 20, and further flows into the second catalyst layer 21 having a large heat capacity. At this time, the combustion gas from the burner 2 flows downward in the combustion chamber 17 and then in the combustion gas passage 18 as described above, and the combustion gas causes the first and second catalyst layers 2 to
0 and 21 are heated and the reforming raw material gas undergoes a steam reforming reaction to be reformed into a hydrogen-rich gas. At this time, the composition of the reformed gas at the outlet of the first catalyst layer 20 on the inlet side of the reforming raw material gas is such that the change in the combustion amount in the burner 2 accompanying the start and stop of the fuel reformer and the temperature of the combustion gas are Since 17 is higher than the combustion gas passage 18, there is a non-uniform temperature distribution in the radial direction due to the difference in the amount of heat transfer from the combustion gas passing through the inner pipe and the outer pipe caused by the reformed gas composition. Is non-uniform. However, when the reformed gas having the non-uniform composition flows into the second catalyst layer 21 on the reformed gas outlet side, the second catalyst layer 21 has a high heat capacity, so that the temperature difference in the radial temperature distribution becomes small. Therefore, the steam reforming reaction further progresses in the second catalyst layer 21, and the reaction reaches equilibrium.
【0025】図2は反応管内の触媒層の形成を本発明に
よるものと従来によるものとの触媒層出口における改質
ガス中の水素ガス濃度の半径方向における濃度分布を、
横軸に反応管の半径方向位置、縦軸に水素ガス濃度をと
って示している。図において25は本発明による高熱容
量の触媒層を有するときの、また24は従来の触媒層を
有するときの反応管半径方向の水素濃度分布を示す。図
から本発明によるものが従来のものより半径方向の水素
濃度分布の濃度差が小さいことが理解される。FIG. 2 shows the concentration distribution in the radial direction of the hydrogen gas concentration in the reformed gas at the catalyst layer outlet between the catalyst layer formation in the reaction tube according to the present invention and the conventional one.
The horizontal axis represents the radial position of the reaction tube, and the vertical axis represents the hydrogen gas concentration. In the figure, 25 shows the hydrogen concentration distribution in the radial direction of the reaction tube when the catalyst layer having a high heat capacity according to the present invention is provided and 24 is the conventional catalyst layer. From the figure, it is understood that the one according to the present invention has a smaller concentration difference in the hydrogen concentration distribution in the radial direction than the conventional one.
【0026】なお、本実施例では反応管11の外管8と
外囲管6とで形成される改質原料ガス通路12を備えて
いるが、外囲管6を設けずに改質原料ガスを直接内管5
と外管8からなる反応管11の下端部から上端部に向っ
て通流させる構造のものでも同じ効果が得られる。Although the reforming raw material gas passage 12 formed by the outer tube 8 of the reaction tube 11 and the outer envelope tube 6 is provided in this embodiment, the reforming raw material gas is not provided. Directly into the inner tube 5
The same effect can be obtained with a structure in which the reaction tube 11 including the outer tube 8 and the outer tube 8 is made to flow from the lower end to the upper end.
【0027】[0027]
【発明の効果】以上の説明から明らかなように、本発明
によれば反応管の触媒層を二分し、改質ガス出口側の触
媒層の熱容量を改質原料ガス入口側の触媒層のそれより
大きくしたこと、この手段として改質触媒の触媒を担持
する担体の比重を大きくして熱容量を大きくしたことに
より、バーナでの燃焼量の変化や反応管の内管と外管と
を経る熱媒体からの伝熱量の差異があっても、改質原料
ガス入口側の触媒層を出た半径方向に不均一な組成を有
する改質ガスは改質ガス出口側の高熱容量の触媒層にて
水蒸気改質反応がさらに進んで平衡に到達し、触媒層出
口では半径方向の水素ガス濃度が均一化された改質ガス
を得ることができる。As is apparent from the above description, according to the present invention, the catalyst layer of the reaction tube is divided into two parts, and the heat capacity of the catalyst layer on the reformed gas outlet side is made equal to that of the catalyst layer on the reformed raw material gas inlet side. By increasing the specific gravity of the carrier that supports the catalyst of the reforming catalyst and increasing the heat capacity as this means, the combustion amount changes in the burner and the heat passing through the inner and outer tubes of the reaction tube is increased. Even if there is a difference in the amount of heat transfer from the medium, the reformed gas exiting the catalyst layer on the inlet side of the reforming raw material gas and having a non-uniform composition in the radial direction will be generated in the catalyst layer with a high heat capacity on the outlet side of the reformed gas. The steam reforming reaction further proceeds to reach equilibrium, and a reformed gas having a uniform hydrogen gas concentration in the radial direction can be obtained at the catalyst layer outlet.
【図1】本発明の実施例による反応管を備えた燃料改質
器の部分断面図1 is a partial cross-sectional view of a fuel reformer having a reaction tube according to an embodiment of the present invention.
【図2】本発明によるものと従来のものとの反応管内の
触媒層出口部の半径方向の水素濃度分布図FIG. 2 is a radial hydrogen concentration distribution map of the catalyst layer outlet in the reaction tube of the present invention and the conventional one.
【図3】従来の燃料改質器の断面図FIG. 3 is a sectional view of a conventional fuel reformer.
1 炉容器 2 バーナ 5 内管 8 外管 9 改質触媒 10 触媒層 11 反応管 17 燃焼室 18 燃焼ガス通路 20 第1触媒層 21 第2触媒層 1 Furnace Vessel 2 Burner 5 Inner Tube 8 Outer Tube 9 Reforming Catalyst 10 Catalyst Layer 11 Reaction Tube 17 Combustion Chamber 18 Combustion Gas Passage 20 First Catalyst Layer 21 Second Catalyst Layer
Claims (2)
り、内管と外管との間の環状空間に改質触媒が充填され
てなる触媒層を有し、下端部に改質原料ガスの入口を、
また上端部に改質ガスの出口を有する反応管と、この反
応管を内蔵し、反応管の内管の内側の上部に臨むバーナ
を備える炉容器とを備え、内管の内側を流れた後、反応
管の下端部で折返して外管の外周域部を流れるバーナか
らの燃焼による熱媒体により反応管を加熱して触媒層を
入口から出口に向って流れる改質原料ガスを水素に富む
ガスに改質する燃料改質器において、触媒層を二分し、
改質ガスの出口側を改質原料ガスの入口側より触媒層の
熱容量を大きくしたことを特徴とする燃料改質器。1. A catalyst layer comprising an upright inner pipe and an outer pipe surrounding the upright inner pipe, the annular space between the inner pipe and the outer pipe being filled with a reforming catalyst, and the lower end portion being modified. The inlet of the quality source gas,
Further, provided with a reaction tube having an outlet for the reformed gas at the upper end and a reactor vessel having the burner facing the inner upper part of the inner tube of the reaction tube, after flowing inside the inner tube. , A hydrogen-rich reforming raw material gas that flows from the inlet to the outlet of the catalyst layer by heating the reaction tube with the heat medium generated by combustion from the burner that flows back at the lower end of the reaction tube and flows in the outer peripheral area of the outer tube In a fuel reformer that reforms into
A fuel reformer characterized in that the heat capacity of the catalyst layer on the outlet side of the reformed gas is larger than that on the inlet side of the reforming raw material gas.
熱容量の大きい触媒層は、触媒を担持する担体の比重を
大きくした改質触媒からなることを特徴とする燃料改質
器。2. The fuel reformer according to claim 1, wherein the catalyst layer having a large heat capacity comprises a reforming catalyst in which a carrier carrying the catalyst has a large specific gravity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40710290A JPH05301701A (en) | 1990-12-27 | 1990-12-27 | Device for reforming fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40710290A JPH05301701A (en) | 1990-12-27 | 1990-12-27 | Device for reforming fuel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05301701A true JPH05301701A (en) | 1993-11-16 |
Family
ID=18516716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40710290A Pending JPH05301701A (en) | 1990-12-27 | 1990-12-27 | Device for reforming fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05301701A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002531363A (en) * | 1998-11-10 | 2002-09-24 | インターナショナル フュエル セルズ,エルエルシー | Suppression of carbon deposition on the wall of a fuel gas steam reformer |
CN100427196C (en) * | 2005-08-16 | 2008-10-22 | 北京理工大学 | Method for growing nanostructured zinc oxide by combustion-oxidation method |
JP2008273795A (en) * | 2007-05-01 | 2008-11-13 | Toshiba Corp | Hydrogen production apparatus and hydrogen production method |
CN113574010A (en) * | 2019-03-26 | 2021-10-29 | 大阪瓦斯株式会社 | Reforming furnace |
-
1990
- 1990-12-27 JP JP40710290A patent/JPH05301701A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002531363A (en) * | 1998-11-10 | 2002-09-24 | インターナショナル フュエル セルズ,エルエルシー | Suppression of carbon deposition on the wall of a fuel gas steam reformer |
CN100427196C (en) * | 2005-08-16 | 2008-10-22 | 北京理工大学 | Method for growing nanostructured zinc oxide by combustion-oxidation method |
JP2008273795A (en) * | 2007-05-01 | 2008-11-13 | Toshiba Corp | Hydrogen production apparatus and hydrogen production method |
CN113574010A (en) * | 2019-03-26 | 2021-10-29 | 大阪瓦斯株式会社 | Reforming furnace |
KR20210143787A (en) | 2019-03-26 | 2021-11-29 | 오사까 가스 가부시키가이샤 | reforming furnace |
CN113574010B (en) * | 2019-03-26 | 2024-03-01 | 大阪瓦斯株式会社 | Reforming furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3625770B2 (en) | Single tube cylindrical reformer and its operating method | |
EP0600621B1 (en) | A combined reformer and shift reactor | |
JP4045564B2 (en) | Self-oxidation internal heating type reformer and method | |
JP2002187705A (en) | Single tube cylindrical reformer | |
JP2001155756A (en) | Steam reforming reactor for fuel cells | |
JP4469335B2 (en) | Hydrogen generator and fuel cell power generation system | |
JP2000203802A (en) | Reformer | |
JP2004323353A (en) | Single-tube cylindrical reformer and method of operating the same | |
JP2003321206A (en) | Single tubular cylinder type reforming apparatus | |
JPH10106606A (en) | Hydrogen manufacturing device, and manufacture thereof | |
JPH05301701A (en) | Device for reforming fuel | |
JP3405839B2 (en) | Converter | |
JP4147521B2 (en) | Self-oxidation internal heating type reforming method and apparatus | |
JPH06325783A (en) | Internal reforming type fused carbonate type fuel cell system | |
JP2998217B2 (en) | Fuel reformer | |
JP2005231968A (en) | Steam reforming system | |
JP2003112904A (en) | Single tube cylindrical reformer | |
JPS63248702A (en) | fuel reformer | |
KR20030045965A (en) | Fuel reformer for fuel cell | |
JPH07223801A (en) | Fuel reformer | |
JP4431455B2 (en) | Reformer | |
JPH0611641B2 (en) | Methanol reformer | |
JPH01320201A (en) | Fuel reformer | |
JPS62246802A (en) | Methanol reformer | |
JPH08225301A (en) | Device for reforming methanol |