JPS63228052A - Detecting method for impure gas - Google Patents
Detecting method for impure gasInfo
- Publication number
- JPS63228052A JPS63228052A JP5996887A JP5996887A JPS63228052A JP S63228052 A JPS63228052 A JP S63228052A JP 5996887 A JP5996887 A JP 5996887A JP 5996887 A JP5996887 A JP 5996887A JP S63228052 A JPS63228052 A JP S63228052A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorption
- impure
- thermal conductivity
- side pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 140
- 238000001179 sorption measurement Methods 0.000 claims abstract description 67
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000005259 measurement Methods 0.000 claims abstract description 29
- 238000000746 purification Methods 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims description 20
- 239000003463 adsorbent Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000003507 refrigerant Substances 0.000 abstract description 8
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000002808 molecular sieve Substances 0.000 abstract description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は不純ガスの検知方法および装置に関し、さらに
詳細には深冷吸着法によって精製中の水素ガスに含有さ
れる不純ガスの検知方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for detecting impure gas, and more particularly to a method for detecting impure gas contained in hydrogen gas being purified by cryogenic adsorption. .
半導体産業、原子力産業などの発展に伴い、水素、ヘリ
ウムなど各種のガスの需要が増大しているが、これらの
分野で使用されるガスは極めて高紳度であることが要求
される。しかしながら通常市販されているこれらのガス
中には窒素、−酸化炭素、メタンなどの不純ガスが含有
されているため、これらの不純ガスを除去する必要があ
り、種々のガス精製装置が紹介されている。これらの代
表的なものの一つとして、吸着剤が充填された吸着筒を
用い極低温下に不純ガスを吸着除去する深冷吸着ガス精
製装置が知られており、例えば特開昭55−7565号
および特開昭6l−I8616号公報などがある。With the development of the semiconductor industry, nuclear power industry, etc., the demand for various gases such as hydrogen and helium is increasing, and the gases used in these fields are required to be extremely gentle. However, these commercially available gases usually contain impure gases such as nitrogen, carbon oxide, and methane, so it is necessary to remove these impure gases, and various gas purification devices have been introduced. There is. One of the representative examples of these is a cryogenic adsorption gas purification device that adsorbs and removes impurity gas at extremely low temperatures using an adsorption cylinder filled with an adsorbent. and Japanese Unexamined Patent Publication No. 61-18616.
これらの装置は基本的には吸着筒、冷媒槽、熱交換器お
よび加熱装置などで構成され、冷媒として液体窒素を用
いての極低温下におけるガスの吸着精製と、加熱による
吸着剤の再生とが交互におこなわれるものである。この
ような深冷吸着ガス精製装置においては、ガスの精製時
に、不純ガスの吸着が進むにつれて不純ガスの吸着帯は
吸着筒の上流側から下流側へと順次移動して行き、遂に
は吸着層が破過され吸着筒出口から排出される精製ガス
中に不純ガスが混入する。These devices basically consist of an adsorption cylinder, a refrigerant tank, a heat exchanger, a heating device, etc., and are capable of adsorption purification of gas at extremely low temperatures using liquid nitrogen as a refrigerant, and regeneration of adsorbents by heating. are performed alternately. In such cryogenic adsorption gas purification equipment, during gas purification, as the adsorption of impure gas progresses, the adsorption zone of impure gas sequentially moves from the upstream side to the downstream side of the adsorption column, and finally the adsorption layer impure gas is mixed into the purified gas discharged from the outlet of the adsorption column.
このため、吸着層の破過を予知し、破過が生ずる前に別
の吸着筒に切替えるなどの措置を構する必要があり、従
って不純ガスを検知することは極めて重要である。For this reason, it is necessary to take measures such as predicting the breakthrough of the adsorption layer and switching to another adsorption column before the breakthrough occurs. Therefore, it is extremely important to detect impure gas.
従来、水素、ヘリウムなどのガス中に含有される不純ガ
スの検知方法としては、吸着筒から所定の時間毎に抜き
出した測定ガスを質量分析計、赤外線分析計、ガスクロ
マトグラフなどで分析するのが一般的であった。しかし
ながらこれらの分析計による分析は間欠的な方法である
ため手数がかかるばかりでなく、結果を得るまでに時間
を要するので、不純ガスを迅速に検知することができな
いという欠点があった。Conventionally, the method for detecting impurity gases contained in gases such as hydrogen and helium is to analyze the sample gas extracted from the adsorption column at predetermined intervals using a mass spectrometer, infrared analyzer, gas chromatograph, etc. It was common. However, analysis using these analyzers is an intermittent method, which is not only time-consuming, but also requires time to obtain results, which has the disadvantage that impure gases cannot be detected quickly.
これに対し、本発明者らは、先に、熱伝導度検出器を用
い、これに精製ガスおよび測定ガスを流し、両者間の熱
伝導度差を検出することによって不純ガスを検知する方
法を提案すると〜もにさらに検討を加え、熱伝導度検出
器の対照側に測定ガス、または精製ガスを流し、試料側
には測定ガスと精製ガスとをそれぞれ交互に切替えて流
すことにより対照側と試料側00点のずれを補正しなが
ら不純ガスの混入を監視し、これによって微量の不純ガ
スをより高感度でしかも迅速に検知する方法を開示した
(特開昭61−130864号公報)。In contrast, the present inventors first developed a method of detecting impure gas by using a thermal conductivity detector, flowing purified gas and measurement gas through it, and detecting the difference in thermal conductivity between the two. After further consideration, we proposed that the measurement gas or purified gas be passed to the control side of the thermal conductivity detector, and the measurement gas and purified gas should be alternately switched to flow to the sample side. A method has been disclosed in which the incorporation of impure gas is monitored while correcting the deviation of the 00 point on the sample side, thereby detecting trace amounts of impure gas with higher sensitivity and more quickly (Japanese Patent Laid-Open Publication No. 130864/1986).
この熱伝導度検出器を用いた方法は水素ガス、ヘリウム
などンこ含有される不純ガスの検知に巾広く適用するこ
とができる。This method using a thermal conductivity detector can be widely applied to detecting impurity gases such as hydrogen gas and helium.
熱伝導度検出器の検出部には己−ターが内蔵されている
が、感度を高めるなどの目的で、加熱温度は通常50〜
100℃の比較的低温に設定して用いられる。The detection part of the thermal conductivity detector has a built-in self-tarder, but the heating temperature is usually set at 50 - 50℃ to increase the sensitivity.
It is used at a relatively low temperature of 100°C.
しかしながら前記の深冷吸着ガス精製法による水素ガス
の精製におい゛て、精製系から導かれたサンプル水素ガ
スについては熱伝導度検出器の50〜100°Cに設定
した場合にはこれらの水素ガス中に不純ガスが含有され
ていないときにも、通常の水素ガスの熱伝導度と異る値
を示すばかりでなく、精製系におけるガスの流量変動や
サンプルガスの抜出位置などによってこの熱伝導度が大
きく変動するという現象が発生する。このため水素ガス
中に不純ガスが混入することによって熱伝導度が変化し
てもそれが不純ガスによるものか否かの識別が困難であ
り、特に不純ガスの濃度が低いときには全く検知できな
いという問題点があった。However, in the purification of hydrogen gas by the cryogenic adsorption gas purification method described above, when the sample hydrogen gas derived from the purification system is set at 50 to 100°C on the thermal conductivity detector, these hydrogen gases are Even when no impure gas is contained, the thermal conductivity not only shows a value different from that of normal hydrogen gas, but also changes in the thermal conductivity due to fluctuations in the gas flow rate in the purification system, the extraction position of the sample gas, etc. A phenomenon occurs in which the temperature fluctuates greatly. For this reason, even if the thermal conductivity changes due to impure gas mixed into hydrogen gas, it is difficult to distinguish whether the change is due to impure gas or not, and especially when the concentration of impure gas is low, it cannot be detected at all. There was a point.
本発明者らはこれらの問題点を解決し、深冷吸着ガス精
製における水素ガスについても他のガスの場合と同様に
不純ガスを確実に検知するべく鋭意研究を重ねた結果、
熱伝導度検出器の検出部の加熱温度を高温に設定した状
態でサンプル水素ガスを流すことにより、前記した熱伝
導度の変化を防止しうろことを見出し本発明を完成した
。The inventors of the present invention have conducted intensive research to solve these problems and reliably detect impurity gases for hydrogen gas in cryogenic adsorption gas purification in the same way as for other gases.
The inventors discovered that the above-mentioned change in thermal conductivity can be prevented by flowing sample hydrogen gas while the heating temperature of the detection part of the thermal conductivity detector is set at a high temperature, and the present invention was completed.
すなわち本発明は、吸着剤が充填された吸着筒を備えた
深冷吸着ガス精製装置を用いて精製中の水素ガスに含有
される不純ガスを熱伝導度検出器によって検知する不純
ガスの検知方法において、
該熱伝導度検出器に、検出部の加熱温度を200℃以上
とした状態で、精製ガスおよび吸着筒から導かれた測定
ガスを流し、両者間の熱伝導度差を検出することによっ
て測定ガス中の不純ガスを検知することを特徴とする不
純ガスの検知方法である。That is, the present invention provides a method for detecting impure gas, in which impurity gas contained in hydrogen gas being purified is detected by a thermal conductivity detector using a cryogenic adsorption gas purification apparatus equipped with an adsorption column filled with an adsorbent. By flowing the purified gas and the measurement gas led from the adsorption column through the thermal conductivity detector with the heating temperature of the detection part set to 200°C or higher, and detecting the difference in thermal conductivity between the two. This is an impure gas detection method characterized by detecting impure gas in a measurement gas.
本発明は深冷吸着ガス精製装置で精製中の水素ガスに含
有される窒素、酸素、−酸化炭素、二酸化炭素およびメ
タンなどの不純ガスの検知に適用され、熱伝導度検出器
が使用される。The present invention is applied to the detection of impurity gases such as nitrogen, oxygen, carbon oxide, carbon dioxide, and methane contained in hydrogen gas being purified by a cryogenic adsorption gas purification device, and a thermal conductivity detector is used. .
本発明が適用される深冷吸着ガス精製装置は吸着筒、冷
媒槽、熱交換器および加熱装置などを備えたものであり
、通常は2系列の吸着筒を有し、一方で吸着精製がおこ
なわれている間に他方では吸着剤の加熱による再生がお
こなわれる。吸着筒は1乃至複数本の筒によって構成さ
れ、内部には活性炭、モレキエラーシーブなどの吸着剤
が充填されている。水素ガスの精製時には液体窒素によ
って冷却され、約−196℃の極低温下に原料水素ガス
を流すことにより不純ガスが吸着除去され精製ガスが得
られるが、不純ガスの吸着が進むにつれて吸着帯は吸着
筒の上流側から下流側へと順次移動し、遂には吸着層が
破過し、精製ガス中に不純ガスが混入する。このため、
破過前に吸着剤の再生が終った他の吸着筒に切替えるな
どの操作が必要である。The cryogenic adsorption gas purification device to which the present invention is applied is equipped with an adsorption cylinder, a refrigerant tank, a heat exchanger, a heating device, etc., and usually has two series of adsorption cylinders, one in which adsorption purification is performed. On the other hand, the adsorbent is regenerated by heating. The adsorption cylinder is composed of one or more cylinders, and the inside thereof is filled with an adsorbent such as activated carbon or molecular sieve. When refining hydrogen gas, it is cooled with liquid nitrogen, and impurity gas is adsorbed and removed by flowing the raw hydrogen gas at an extremely low temperature of about -196°C to obtain purified gas, but as the adsorption of impure gas progresses, the adsorption zone The gas sequentially moves from the upstream side to the downstream side of the adsorption cylinder, and finally the adsorption layer is broken and impure gas is mixed into the purified gas. For this reason,
It is necessary to perform operations such as switching to another adsorption column whose adsorbent has been regenerated before breakthrough.
本発明において吸着筒には測定ガスを抜き出すための測
定点が設けられる。通常、測定点は吸着筒の出口より上
流で、不純ガスを検知することによって吸着層の破過前
に他の吸着筒への切替操作などに必要な時間的余裕を取
りうる位置に設けられる。また、多数の筒が接続管で直
列に連結されたような吸着筒の場合には測定点は最下流
側の筒とその上流側の筒とを接続した接続管などに設け
ることもできる。In the present invention, the adsorption cylinder is provided with a measurement point for extracting the measurement gas. Usually, the measuring point is located upstream from the outlet of the adsorption cylinder, at a position where impurity gas detection can provide enough time for switching to another adsorption cylinder before the adsorption layer breaks through. Furthermore, in the case of an adsorption cylinder in which a large number of cylinders are connected in series through connecting pipes, the measurement point can be provided at the connecting pipe connecting the most downstream cylinder and its upstream cylinder.
本発明で使用される熱伝導度検出器は基本的には金属線
抵抗でブリッジ回路が構成され2つのガス流路を有し、
その一方が対照側、他方が試料側とされたものであって
、対照側には不純ガスを含有しないガス、試料側には被
検ガスがそれぞれ流され、両者の熱伝導度差を白金線の
電気抵抗の違いによる電位差として取り出すことによっ
て被検ガス中の不純ガスを検出するものである。The thermal conductivity detector used in the present invention basically has a bridge circuit made of metal wire resistance and has two gas flow paths.
One side is the control side, and the other side is the sample side, and a gas containing no impurity gas is passed through the control side, and a test gas is passed through the sample side, and the difference in thermal conductivity between the two is measured using a platinum wire. The impure gas in the sample gas is detected by extracting the potential difference due to the difference in electrical resistance.
本発明では通常は精製水素ガスが対照側に、また吸着筒
の測定点から導かれた測定ガスが試料側に流され、両者
間の熱伝導度差の変化によって不純ガスが検知される。In the present invention, purified hydrogen gas is normally flowed to the control side, and measurement gas led from the measurement point of the adsorption cylinder is flowed to the sample side, and impure gas is detected by a change in the thermal conductivity difference between the two.
なお精製水素ガスは通常は吸着筒の出口から導かれるが
、他の精製装置やボンベなどがら導くこともできる。ま
た、測定ガスはガスクロマトグラフのようにキャリヤー
ガスで稀釈されたり、不純ガスが分離されたりすること
がなく、そのまへ不純ガスを合計した濃度で測定される
ので微量の不純ガスも高感度で検知できるが、特開昭6
1−1308754号公報におけると同様に試料側に測
定ガスと精製水素ガスを交互に切替えて流し、ドリフト
を補正した電位差を検出する方法を用いた場合にはさら
に高感度でより正確に不純ガスを検知することができる
。Note that purified hydrogen gas is usually introduced from the outlet of the adsorption cylinder, but it can also be introduced from other purification equipment or cylinders. In addition, the measurement gas is not diluted with a carrier gas or the impurity gases are separated unlike in a gas chromatograph, and the total concentration of the impurity gases is measured as is, so even trace amounts of impurity gases can be detected with high sensitivity. Although it can be detected,
Similar to the method in Publication No. 1-1308754, if a method is used in which the measurement gas and purified hydrogen gas are alternately passed through the sample side and the potential difference with drift corrected is detected, impurity gas can be detected with even higher sensitivity and accuracy. Can be detected.
本発明において熱伝導度検出器の検出部の温度を200
℃以上、好ましくは230〜400℃の高温に設定した
状態で精製水素ガスおよび測定ガスが流される設定温度
が200°Cよりも低い場合には精製工程における水素
ガスの吸着剤との相互作用、温度および流量変動などに
起因すると推察される。水素ガス自体の熱伝導度変化が
生じ、不純ガスを正確に検知することはできない。In the present invention, the temperature of the detection part of the thermal conductivity detector is set to 200
If the set temperature at which the purified hydrogen gas and measurement gas are flowed is lower than 200°C while being set at a high temperature of 230 to 400°C, the hydrogen gas may interact with the adsorbent in the purification process, It is assumed that this is caused by temperature and flow rate fluctuations. The thermal conductivity of the hydrogen gas itself changes, making it impossible to accurately detect impure gas.
本発明において熱伝導度検出器の対照側および試料側は
それぞれ精製水素ガスおよび測定ガスのサンプル管に接
続される。In the present invention, the control side and sample side of the thermal conductivity detector are connected to sample tubes for purified hydrogen gas and measurement gas, respectively.
次に図面により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to the drawings.
第1図は本発明に用いる熱伝導度検出器およびこれが深
冷吸着ガス精製装置とサンプル管によって接続されたフ
ローシートである。FIG. 1 is a flow sheet in which a thermal conductivity detector used in the present invention is connected to a cryogenic adsorption gas purification device through a sample tube.
第1図において、熱伝導度検出器1は対照側2および試
料側3の2つのサンプルガス流路ならびに温度設定用の
ヒーター4を有する検出部5と記録計6および警報器7
からなっている。In FIG. 1, a thermal conductivity detector 1 includes two sample gas channels on a control side 2 and a sample side 3, a detection section 5 having a heater 4 for temperature setting, a recorder 6, and an alarm 7.
It consists of
熱伝導度検出器1の対照側2および試料側3の流路の入
口にはそれぞれ定流量弁8および9が設けられている。Constant flow valves 8 and 9 are provided at the inlets of the channels on the control side 2 and sample side 3 of the thermal conductivity detector 1, respectively.
一方、深冷吸着ガス精製装置(1系列のみ示した)は吸
着剤が充填された吸着筒1()が収納された冷媒槽11
が熱交換器12とともに真空断熱容器13に収容され、
これに原料ガス供給管14および精製ガス抜出管15が
導かれ、熱交換器12を経由して冷媒槽11内の吸着筒
1()の入口16およ°び出口17にそれぞれ接続され
て精製系の1系列を構成している。吸着筒1()の出口
17からガスの上流側に寄った位置に測定点18が設け
られている。測定点18はサンプル管20によって定流
量弁9に接続され、精製ガス抜出管15から分岐したサ
ンプル管19は定流量弁8に接続され、同時にバイノぐ
ス管21によって定流1弁9へも導かれている。サンプ
ル管19および20ならびにバイパス管21には弁22
aおよび22bならびに22cがそれぞれ介在している
。On the other hand, in a cryogenic adsorption gas purification device (only one series is shown), a refrigerant tank 11 containing an adsorption column 1 ( ) filled with an adsorbent is used.
is housed in a vacuum insulation container 13 together with a heat exchanger 12,
A raw material gas supply pipe 14 and a purified gas withdrawal pipe 15 are guided to this, and are connected via a heat exchanger 12 to an inlet 16 and an outlet 17 of the adsorption cylinder 1 () in the refrigerant tank 11, respectively. It constitutes one line of the purification system. A measurement point 18 is provided at a position closer to the gas upstream side from the outlet 17 of the adsorption cylinder 1 ( ). The measurement point 18 is connected to the constant flow valve 9 by a sample pipe 20, and the sample pipe 19 branched from the purified gas extraction pipe 15 is connected to the constant flow valve 8, and at the same time, the sample pipe 19 is connected to the constant flow valve 9 by a bino gas pipe 21. is also guided. Valve 22 is provided in sample tubes 19 and 20 and bypass tube 21.
a, 22b and 22c, respectively.
水素ガスの精製時には冷媒槽11に液体窒素が満たされ
、吸着筒1()が極低温に冷却された状態で原料ガス供
給管14から水素ガスが供給される。この水素ガスは熱
交換器12で予冷され、冷媒槽11内の入口16から吸
着筒1()に入り、ここで不純ガスが吸着除去されて精
製される。精製された水素ガスは出口17および熱交換
器12を経由し、精製ガス抜出管15から抜き出される
。When refining hydrogen gas, the refrigerant tank 11 is filled with liquid nitrogen, and hydrogen gas is supplied from the raw material gas supply pipe 14 while the adsorption column 1 ( ) is cooled to an extremely low temperature. This hydrogen gas is pre-cooled by a heat exchanger 12, enters the adsorption column 1 () from an inlet 16 in the refrigerant tank 11, and is purified by adsorbing and removing impurity gas there. The purified hydrogen gas passes through the outlet 17 and the heat exchanger 12, and is extracted from the purified gas extraction pipe 15.
一方、不純ガスの検知は次のようにしておこなわれる。On the other hand, detection of impure gas is performed as follows.
最初に検出部5のヒーター4を所定の温度(200℃以
上)に設定した後サンプル管19およびバイパス管21
の弁22aおよび22cを開き定流量弁8および9を経
由し対照側2および試料側3のそれぞれに精製水素ガス
を流し、安定したときの電位差を基準にして0.00m
Vに合せる。次・にバイパス管21の弁22cを閉じ、
サンプル管20の弁22bを開として試料側3を測定ガ
スに切替え、この状態で電位差の監視を続ける。時間経
過とともに吸着筒1()における不純ガスの吸着が進4
、吸着帯が測定点18に達し、測定ガス中に不純ガスが
混入すると、この時点で電位差の顕著な変化が生じ、不
純ガスが検知される。First, after setting the heater 4 of the detection unit 5 to a predetermined temperature (200°C or higher), the sample tube 19 and the bypass tube 21
Open the valves 22a and 22c to flow purified hydrogen gas to the control side 2 and sample side 3, respectively, via the constant flow valves 8 and 9.
Adjust to V. Next, close the valve 22c of the bypass pipe 21,
The valve 22b of the sample tube 20 is opened to switch the sample side 3 to the measurement gas, and the potential difference is continued to be monitored in this state. As time passes, adsorption of impure gas in adsorption column 1 () progresses 4
When the adsorption zone reaches the measurement point 18 and impure gas is mixed into the measurement gas, a significant change in potential difference occurs at this point, and the impure gas is detected.
また、原料ガス中の不純ガス濃度が特に低いときには、
この電位差の感度をあげる必要があるがそのときには熱
伝導度検出画工のドリフトによる僅かな電位差変化が妨
害して識別が困難となる。このような場合には試料側3
に測定ガスと精製水素ガスとを交互に切替えて流すこと
により、ドリフトを補正しながら、僅かな電位差の変化
を検出して微量の不純ガスを検知することができる。In addition, when the impurity gas concentration in the raw material gas is particularly low,
It is necessary to increase the sensitivity of this potential difference, but in this case, slight changes in potential difference due to the drift of the thermal conductivity detector interfere, making identification difficult. In such a case, the sample side 3
By alternately switching the measurement gas and purified hydrogen gas to flow, it is possible to detect a slight change in potential difference and detect a trace amount of impure gas while correcting drift.
電位差の変化は記録計6、警報器7などによって監視さ
れるが、例えば警報器7の信号で切替バルブなどを動作
させることによってガス精製装置の切替操作を自動的に
おこなうこともできる。Changes in the potential difference are monitored by the recorder 6, the alarm 7, etc., but it is also possible to automatically switch the gas purification apparatus by operating a switching valve or the like using a signal from the alarm 7, for example.
本発明によって深冷吸着ガス精製工程における水素ガス
の熱伝導度変化の影響を受けることなく、不純ガスの混
入を正確に検知することができる。また検知装置は小型
で比較的安価であり、精製装置に容易に配設することが
できるので不純ガスの混入の連続的監視が可能であり、
吸着筒の破過が確実に予知できる。さらに警報器よりの
検知信号によって吸着筒の切替バルブなどを動作させる
ことにより、精製装置の運転の自動化も可能である。According to the present invention, contamination of impure gas can be accurately detected without being affected by changes in thermal conductivity of hydrogen gas during the cryogenic adsorption gas purification process. In addition, the detection device is small and relatively inexpensive, and can be easily installed in purification equipment, making it possible to continuously monitor the contamination of impure gases.
Breakthrough of the adsorption tube can be reliably predicted. Furthermore, the operation of the purification apparatus can be automated by operating the switching valve of the adsorption column based on the detection signal from the alarm.
実施例 1
第1図で示されたと同様な構成であるが、1簡の代りに
吸着剤として活性炭 2 、5 Kgがそhソh充填す
jtり筒(89、1gx 84 、9 L;IXloo
omm)7本が接続管によって直列に連結された吸着筒
を有する深冷吸着ガス精製装置により、約二196℃の
極低温下、ガス流量66土2Nm’/hr で精製中の
水素ガスについて不純ガスの検知をおこなった。この原
料水素ガスおよび精製水素ガスの不純物をガスクロマト
グラフで分析した結果は第1表の如くである。Example 1 The structure was similar to that shown in FIG. 1, but instead of one tube, 2.5 kg of activated carbon was filled as an adsorbent.
omm) A cryogenic adsorption gas purification system with seven adsorption cylinders connected in series through connecting pipes removes impurities from the hydrogen gas being purified at a cryogenic temperature of approximately 2196°C and at a gas flow rate of 66 m2/hr. Gas was detected. Table 1 shows the results of gas chromatograph analysis of impurities in the raw hydrogen gas and purified hydrogen gas.
第1表
N2 25 0.01 以
下02 4 0.02 ttCo
10 0.03 ttCOz
2 0.02 pCH490,03tt
測定ガスを抜出すための測定点は吸着筒の上流側から6
筒目と7簡口(最下流側)とを接続した接続管部に設け
た。Table 1 N2 25 0.01 Below 02 4 0.02 ttCo
10 0.03 ttCOz
2 0.02 pCH490,03tt The measurement points for extracting the measurement gas are 6 from the upstream side of the adsorption column.
It was provided in the connecting pipe section that connected the tube opening and the 7th port (most downstream side).
検出部(〔■島津製作所製、TCD−7) 、記録計、
警報器を有する熱伝導度検出器を深冷吸着ガス精製装置
から導かれた→カンプル管に接続した。Detection unit ([■ Shimadzu Corporation, TCD-7), recorder,
A thermal conductivity detector with an alarm was connected to the → Camphor tube led from the cryogenic adsorption gas purification device.
最初に予備実験として検出部のヒーターを通常の加熱温
度である100℃に設定した状態で熱伝導度の測定を試
みた。先ず対照側および試料側のそれぞれに精製水素ガ
スのみを5 Q at /min で流し、両者間の
電位差を0.OOmVに調節した後、試料側を測定ガス
に切替えたところ不純ガスが混入していないにもかかわ
らず約0.24mVの電位差が現われ、この電位差は±
0.04mV程度の巾で振れを生ずるという現象が見ら
れた。この結果を第2図に示す。First, as a preliminary experiment, we attempted to measure thermal conductivity with the heater in the detection section set at 100° C., which is the normal heating temperature. First, purified hydrogen gas alone was flowed at 5 Q at /min to each of the control side and the sample side, and the potential difference between the two was set to 0. After adjusting to OOmV, when the sample side was switched to the measurement gas, a potential difference of about 0.24 mV appeared even though no impurity gas was mixed in, and this potential difference was ±
A phenomenon was observed in which vibration occurred with a width of about 0.04 mV. The results are shown in FIG.
また吸着筒への原料ガス供給速度を意識的に増加させた
り(第2図a点)、減少させたり(第2図す点)すると
、これに応じて電位差も大巾に変化し、測定ガス中に不
純ガスが混入して来ても識別が困難であることを示した
。In addition, when the raw material gas supply rate to the adsorption cylinder is intentionally increased (point a in Figure 2) or decreased (point in Figure 2), the potential difference changes drastically, and the gas to be measured is It has been shown that even if impure gas gets mixed in, it is difficult to identify it.
次に本発明の実施例として検出部の温度を280°Cに
設定した場合について予備実験と同様に熱伝導度差を監
視した。その結果は第2図における実施例の如くであり
、測定ガス中に不純ガスがない限り、電位差は0.OO
mVであり、また予備実験におけると同様に吸着筒への
原料ガス供給速度を増加させたり(第2図a点)減少さ
せたり(第2図す点)しても電位差は生じなかった。さ
らにこの状態で監視を続けたところ754 hr後にそ
れまで0.OOmVであった電位差が0.04mVまで
上昇した(第2図C点)。この時点で測定ガスをガスク
ロマトグラフで分析したところ12 ppm の窒素
が検出され、吸着筒の吸着帯が測定点に達したことが確
認された。Next, as an example of the present invention, the difference in thermal conductivity was monitored in the same way as in the preliminary experiment when the temperature of the detection part was set at 280°C. The result is as in the example shown in FIG. 2, and as long as there is no impurity gas in the measurement gas, the potential difference is 0. OO
mV, and as in the preliminary experiment, no potential difference occurred even if the feed rate of the raw material gas to the adsorption column was increased (point a in Figure 2) or decreased (point in Figure 2). Furthermore, when I continued monitoring in this state, the result was 0.0 after 754 hours. The potential difference, which was OOmV, increased to 0.04mV (point C in Figure 2). At this point, the gas to be measured was analyzed using a gas chromatograph, and 12 ppm of nitrogen was detected, confirming that the adsorption zone of the adsorption cylinder had reached the measurement point.
また設定温を230℃および350℃とした場合につい
てもテストをおこなったところ、いずれも280°Cに
おけると同様に安定した熱伝導度を示し不純ガスの混入
によって初めてそれぞれ0.05mVおよび0.035
mVの電位差が生じた。Tests were also conducted when the set temperature was set to 230°C and 350°C, and both showed stable thermal conductivity similar to that at 280°C.
A potential difference of mV was created.
第1図は熱伝導度検出器が深冷吸着ガス精製装置とサン
プル管で接続されたフローシートであり、第2図は熱伝
導度検出器に現れた電位差曲線を示した図である。
図面の番号は以下の通りである。
1 熱伝導度検出器 2 対照側
3 試料側 4 ヒーター10 吸着筒
18 測定点
19および2() サンプル管
21 バイパス管
特許出願人 日本バイオニクス株式会社代表者 高 崎
文 夫
代 理 人 弁理士 小 堀 貞 文
算/図
時 間 (H7=)FIG. 1 is a flow sheet in which a thermal conductivity detector is connected to a cryogenic adsorption gas purification device through a sample tube, and FIG. 2 is a diagram showing a potential difference curve appearing in the thermal conductivity detector. The drawing numbers are as follows. 1 Thermal conductivity detector 2 Control side 3 Sample side 4 Heater 10 Adsorption tube
18 Measurement points 19 and 2 () Sample tube 21 Bypass tube Patent applicant Nippon Bionics Co., Ltd. Representative Fumi Takasaki, attorney Patent attorney Sada Kobori Calculation/Figure time (H7=)
Claims (1)
置を用いて精製中の水素ガスに含有される不純ガスを熱
伝導度検出器によって検知する不純ガスの検知方法にお
いて、 該熱伝導度検出器に、検出部の加熱温度を200℃以上
とした状態で、精製ガスおよび吸着筒から導かれた測定
ガスを流し、両者間の熱伝導度差を検出することによっ
て測定ガス中の不純ガスを検知することを特徴とする不
純ガスの検知方法。[Claims] Detection of impure gas by detecting impurity gas contained in hydrogen gas being purified using a thermal conductivity detector using a cryogenic adsorption gas purification device equipped with an adsorption column filled with an adsorbent. In the method, the purified gas and the measurement gas guided from the adsorption column are passed through the thermal conductivity detector with the heating temperature of the detection part set to 200° C. or higher, and the difference in thermal conductivity between the two is detected. A method for detecting impure gas, characterized by detecting impure gas in a measurement gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5996887A JPS63228052A (en) | 1987-03-17 | 1987-03-17 | Detecting method for impure gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5996887A JPS63228052A (en) | 1987-03-17 | 1987-03-17 | Detecting method for impure gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63228052A true JPS63228052A (en) | 1988-09-22 |
Family
ID=13128478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5996887A Pending JPS63228052A (en) | 1987-03-17 | 1987-03-17 | Detecting method for impure gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63228052A (en) |
-
1987
- 1987-03-17 JP JP5996887A patent/JPS63228052A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8343262B2 (en) | System for preventing contaminants from reaching a gas purifier | |
EP1595132B1 (en) | Method for analysis of contaminants in a process fluid stream | |
US5055260A (en) | Reactor analysis system | |
CN109115919B (en) | Gas chromatography analysis device and analysis method for trace hydrogen, oxygen and nitrogen in gas | |
US4040789A (en) | Use of the continuous blast furnace gas analysis for supervision and regulation of the blast furnace operation | |
KR19990023535A (en) | Ultra High Purity Gas Analysis Method and Apparatus Using Atmospheric Pressure Ionization Mass Spectroscopy | |
CN103529132B (en) | Gas detection pretreatment device and gas detection method | |
CN105510492A (en) | Analysis device and method of electronic-grade hydrogen chloride | |
JP2858143B2 (en) | Concentration analysis method and apparatus therefor | |
CN219915507U (en) | Chromatographic auxiliary sample injection device | |
JPS63228052A (en) | Detecting method for impure gas | |
JPH0634616A (en) | Analysis of a trace of impurities | |
JPH0311805B2 (en) | ||
JPH0833365B2 (en) | Impurity gas detection method and device | |
JPH04278458A (en) | Method and apparatus for concentration analysis | |
JPS63193055A (en) | Method and apparatus for detecting impurity gas | |
JPS61130864A (en) | Detection of impure gas | |
JP2002250722A (en) | Method and equipment for analyzing extremely low concentration hydrogen sulfide | |
US3167947A (en) | Gas detector and analyzer | |
CN209911312U (en) | On-line analysis system for analyzing trace impurities in liquid chlorine | |
JP2741778B2 (en) | Gas purity measuring method and apparatus | |
CN218766793U (en) | Adsorbent adsorption performance evaluation system | |
JPH04291151A (en) | Analysis method of carbon monoxide and/or carbon dioxide | |
CN208505990U (en) | A kind of equipment for detecting hydrocarbon in electronic grade high-purity carbon dioxide | |
TW201443419A (en) | Gas detection pre-treatment device |