[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63170543A - Acceleration/deceleration judging device for internal combustion engine - Google Patents

Acceleration/deceleration judging device for internal combustion engine

Info

Publication number
JPS63170543A
JPS63170543A JP58287A JP58287A JPS63170543A JP S63170543 A JPS63170543 A JP S63170543A JP 58287 A JP58287 A JP 58287A JP 58287 A JP58287 A JP 58287A JP S63170543 A JPS63170543 A JP S63170543A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
reference value
determination
load variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58287A
Other languages
Japanese (ja)
Other versions
JPH0733805B2 (en
Inventor
Shinpei Nakaniwa
伸平 中庭
Seiichi Otani
大谷 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP62000582A priority Critical patent/JPH0733805B2/en
Publication of JPS63170543A publication Critical patent/JPS63170543A/en
Publication of JPH0733805B2 publication Critical patent/JPH0733805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To achieve the reduction in false judgement, by providing the first acceleration/deceleration judging means which compares the load variation with the first reference value to judge acceleration/deceleration, and the second acceleration/ deceleration judging means which compares the load variation with the second reference value being smaller than the first reference value to judge acceleration/ deceleration. CONSTITUTION:An engine load is detected by a load detecting means A, and the load variation for each prescribed sampling period is calculated by a load variation calculating means B. On the basis of this load variation, whether or not acceleration/ deceleration operation has been started is judged by an acceleration/deceleration operation start judging means C, and based on this judgement, the load variation is compared with the first reference value, at the initial stage of acceleration/deceleration operation start, and acceleration/deceleration is judged by the first acceleration/ deceleration judging means D. After completion of the judgement, the load variation is compared with the second reference value being smaller than the first reference value, and the judgement is carried out by the second acceleration/deceleration judging means E. Thus, the frequency of false judgement can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は燃料噴射制御等に使用される内燃機関の加・減
速判定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an acceleration/deceleration determination device for an internal combustion engine used for fuel injection control and the like.

〈従来の技術〉 加・減速判定装置が使用される内燃機関の電子制御燃料
噴射装置の従来例として以下のようなものがある(実開
昭60−066558号参照)。
<Prior Art> The following is a conventional example of an electronically controlled fuel injection system for an internal combustion engine in which an acceleration/deceleration determination device is used (see Utility Model Application No. 60-066558).

すなわち、エアフロメータ等により検出された吸入空気
流MQと機関回転速度Nとから基本噴射量Tp=KxQ
/N(Kは定数)を演算すると共に、主として水温に応
じた各種補正係数C0EFと空燃比フィードバック補正
係数αとバッテリ電圧による補正係数Tsとを演算した
後、定常運転時における燃料噴射量Ti =TpxcO
EFxα+Tsを演算する。
That is, from the intake air flow MQ detected by an air flow meter etc. and the engine rotation speed N, the basic injection amount Tp=KxQ
/N (K is a constant), as well as various correction coefficients C0EF mainly depending on water temperature, air-fuel ratio feedback correction coefficient α, and correction coefficient Ts depending on battery voltage, fuel injection amount Ti = during steady operation. TpxcO
Calculate EFxα+Ts.

そして、例えばシングルポイントインジェクションシス
テム(以下SP1方式)では、機関のA回転毎に点火信
号等に同期して燃料噴射弁に対し前記燃料噴射lTiに
対応するパルス巾の噴射パルス信号を出力し機関に燃料
を供給する。
For example, in a single point injection system (hereinafter referred to as SP1 system), an injection pulse signal with a pulse width corresponding to the fuel injection lTi is output to the fuel injection valve in synchronization with an ignition signal etc. every A rotation of the engine. Supply fuel.

さらに吸気絞弁開度の変化率から加速判定を一定時間(
例えば10m5ec)毎に行って加速時増量噴射量を算
出し該増量噴射量を前記燃料噴射量Tiに加算すること
により、燃料の加速時増量を図り機関出力を増大させる
Furthermore, acceleration is determined based on the rate of change of the intake throttle valve opening for a certain period of time (
For example, by calculating the increased injection amount during acceleration every 10 m5ec) and adding the increased injection amount to the fuel injection amount Ti, the amount of fuel is increased during acceleration and the engine output is increased.

また、加速時増量は通常の噴射パルス信号の間に加速時
の噴射パルスを割り込ませて行う割込み噴射によっても
行われる。
Further, the increase in fuel consumption during acceleration is also performed by interrupt injection, which is performed by inserting an injection pulse during acceleration into a normal injection pulse signal.

また、減速運転時にも前記変化率から減速判定を行って
減速減量を図るようにしている。
Also, during deceleration operation, deceleration determination is made based on the rate of change to reduce the amount of deceleration.

〈発明が解決しようとする問題点〉 ところで、吸気絞弁開度センサにより検出された吸気絞
弁開度の変化率から加速判定を一定時間毎に行っている
ので、以下の不具合があった。
<Problems to be Solved by the Invention> By the way, since the acceleration determination is performed at regular intervals based on the rate of change in the intake throttle valve opening detected by the intake throttle valve opening sensor, the following problems occur.

すなわち、前記吸気絞弁開度センサは吸気絞弁開度が前
記一定時間内に約1°変化する付近までは摺動ノイズが
発生するので、検出分解能力が低く前記一定時間内に1
°以下変化する緩加速運転時等には前記変化率から加速
運転状態を正確に検出できず、適正な加速時増量が図れ
ないという不具合がある。
In other words, the intake throttle valve opening sensor generates sliding noise until the intake throttle valve opening changes by about 1° within the certain period of time, so its detection and resolution ability is low.
During a slow acceleration operation where the change rate is less than .degree., there is a problem that the acceleration operation state cannot be accurately detected from the rate of change, and an appropriate increase in amount during acceleration cannot be achieved.

このため、従来においては前記一定時間すなわち10m
5ecの間に吸気絞弁開度が例えば1.6°以上変化し
たときに加速判定を行うようにしているが、これによる
と前記摺動ノイズによる加速誤判定は防止できると共に
急加速運転時の加速運転時の加速用を図れる。
For this reason, in the past, the fixed time, that is, 10 m
Acceleration is determined when the intake throttle valve opening changes, for example, by 1.6° or more during 5ec, which can prevent erroneous acceleration determinations due to the sliding noise, and also prevents acceleration during sudden acceleration. It can be used for acceleration during accelerated driving.

しかしながら、吸気絞弁開度センサの出力が瞬断すると
、この瞬断により前記一定時間内に吸気絞弁開度が前記
1.6°以上変化し、定常運転時にも拘わらず、例えば
減速判定がなされて減速減量が行われ、運転性能を悪化
させるという不具合があった。
However, when the output of the intake throttle valve opening sensor momentarily interrupts, the intake throttle valve opening changes by more than 1.6° within the certain period of time due to this instantaneous interruption, and even during steady operation, deceleration judgment is made. This resulted in a reduction in deceleration, resulting in a problem of deterioration of driving performance.

本発明は、このような実状に鑑みてなされたもので、吸
気絞弁開度センサ等の負荷検出手段の出力が瞬断しても
加・減速運転の誤判定の頻度を低減できる内燃機関の加
・減速判定装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides an internal combustion engine capable of reducing the frequency of erroneous determination of acceleration/deceleration operation even if the output of a load detection means such as an intake throttle valve opening sensor is momentarily cut off. The purpose of this invention is to provide an acceleration/deceleration determination device.

〈問題点を解決するための手段〉 このため、本発明は、第1図に示すように、機関負荷を
検出する負荷検出手段Aと、前記検出信号を入力して所
定のサンプリング期間毎の負荷変化量を演算する負荷変
化量演算手段Bと、演算された負荷変化量に基づいて加
・減速運転が開始されたか否かを判定する加・減速運転
開始判定手段Cと、該別・減速運転開始判定手段Cの判
定結果に基づいて、加・減速運転開始初期には、前記演
算された負荷変化量と第1基準値とを比較し加・減速運
転か否かを判定する第1加・減速判定手段りと、前記加
・減速運転開始判定手段Cの判定結果に基づいて前記第
1加・減速判定手段による判定終了後は、前記演算され
た負荷変化量と前記第1基準値より小さな第2基準値と
を比較し加・減速運転か否かを判定する第2加・減速判
定手段Eとを備えるようにした。
<Means for Solving the Problems> For this reason, the present invention, as shown in FIG. A load change amount calculation means B that calculates the amount of change, an acceleration/deceleration operation start determination means C that determines whether acceleration/deceleration operation has started based on the calculated load change amount, and classification/deceleration operation Based on the determination result of the start determination means C, at the beginning of acceleration/deceleration operation, a first acceleration/deceleration operation is performed that compares the calculated load change amount with a first reference value to determine whether acceleration/deceleration operation is to be performed. After the determination by the first acceleration/deceleration determination means based on the determination results of the deceleration determination means and the acceleration/deceleration operation start determination means C is smaller than the calculated load change amount and the first reference value. A second acceleration/deceleration determining means E is provided which compares the driving speed with a second reference value and determines whether or not acceleration/deceleration operation is being performed.

〈作用〉 このようにして、加・減速運転開始初期の判定時には、
演算された負荷変化率と比較的大きな第1基準値とを比
較して加・減速判定を行う一方、その後は前記負荷変化
率と比較的小さな第2基準値とを比較して加・減速判定
を行うようにした。
<Effect> In this way, when determining the initial stage of acceleration/deceleration operation,
Acceleration/deceleration is determined by comparing the calculated load change rate with a relatively large first reference value, and thereafter acceleration/deceleration is determined by comparing the load change rate with a relatively small second reference value. I decided to do this.

〈実施例〉 以下に、本発明の一実施例を第2図〜第5図に基づいて
説明する。尚、本実施例は燃料噴射制御を例にとり説明
する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 5. Note that this embodiment will be explained by taking fuel injection control as an example.

第2図において、例えばマイクロコンピュータからなる
制御装置1には、点火コイル2から出力される点火信号
(回転速度信号)、エアフローメータ3から出力される
吸入空気流量信号、水温センサ4から出力される冷却水
温度信号、負荷検出手段としての吸気絞弁開度センサ5
から出力される吸気絞弁開度信号と、が入力されている
。制御装置1は第3図〜第5図に示すフローチャートに
従って作動し、燃料噴射弁6の駆動回路7に噴射パルス
信号及び割込噴射パルス信号を出力する。
In FIG. 2, a control device 1 consisting of a microcomputer, for example, receives an ignition signal (rotational speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and a water temperature sensor 4. Cooling water temperature signal, intake throttle valve opening sensor 5 as load detection means
The intake throttle valve opening signal output from the intake throttle valve is inputted. The control device 1 operates according to the flowcharts shown in FIGS. 3 to 5, and outputs an injection pulse signal and an interrupt injection pulse signal to the drive circuit 7 of the fuel injection valve 6.

ここでは、制御装R1が負荷変化量演算手段と加・減速
運転開始判定手段と第1及び第2加・減速判定手段とを
構成する。
Here, the control device R1 constitutes a load change amount calculation means, an acceleration/deceleration operation start determination means, and first and second acceleration/deceleration determination means.

次に、作用を第3図〜第5図のフローチャートに従って
説明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 5.

かかるフローチャートはlQmsec毎に起動信号が入
力されて起動する。
This flowchart is activated by inputting an activation signal every 1Qmsec.

Slでは、吸気絞弁開度センサ5により検出された吸気
絞弁開度を読込む。
At Sl, the intake throttle valve opening detected by the intake throttle valve opening sensor 5 is read.

S2では今回と前回とに検出された吸気絞弁開度に基づ
いてサンプリング期間(例えば10m5ec)における
吸気絞弁の開度変化率Δαを演算する。
In S2, the intake throttle valve opening degree change rate Δα during the sampling period (for example, 10 m5ec) is calculated based on the intake throttle valve opening degrees detected this time and the previous time.

S3では、演算された開度変化率Δαと第2基準値とし
ての第2基準開度1.6°とを比較し、Δα〉1.6の
ときには加速運転が開始されたと判定しS4に進み、Δ
α≦1.6°のときにはS5に進む。
In S3, the calculated opening degree change rate Δα is compared with a second reference opening degree of 1.6° as a second reference value, and when Δα>1.6, it is determined that acceleration operation has started, and the process proceeds to S4. ,Δ
When α≦1.6°, the process advances to S5.

S4では、加速運転開始後初回の加速判定か否かを判定
し、YESのときにはS6に進みNoのときすなわち加
速判定が2回目以降のときにはS7に進む。
In S4, it is determined whether or not this is the first acceleration determination after the start of acceleration driving. If YES, the process advances to S6; if NO, that is, if it is the second or subsequent acceleration determination, the process advances to S7.

S6では、演算された開度変化率Δαと第1基準値とし
ての第1基準開度2.4°とを比較し、Δα〉2.4°
のときにはS7に進みΔα≦2.4°のときにはS8に
進む。
In S6, the calculated opening degree change rate Δα is compared with the first reference opening degree of 2.4° as the first reference value, and Δα>2.4° is determined.
When Δα≦2.4°, the process proceeds to S7, and when Δα≦2.4°, the process proceeds to S8.

S7では、加速増量フラッグF ACCを1に設定し、
加速運転状態であることをRAMに記憶させる。
In S7, the acceleration increase flag F ACC is set to 1,
The fact that it is in an accelerated driving state is stored in the RAM.

S8では、加速増量フラッグF ACCをOに設定し、
定常運転状態であることをRAMに記憶させる。
In S8, the acceleration increase flag F ACC is set to O,
Store in RAM that it is in a steady operating state.

一方、S5では、演算された開度変化率Δαと第2基準
開度1.6°の負の値とを比較し、Δα〈−1,6°の
ときには減速運転が開始されたと判定し、S9に進みΔ
α≧−1.6°のときには定常運転状態であると判定し
、SIOに進み加速増量フラッグF ACCと減速減量
フラッグFDEeとを共に0に設定する。
On the other hand, in S5, the calculated opening degree change rate Δα is compared with the negative value of the second reference opening degree of 1.6°, and when Δα<−1.6°, it is determined that deceleration operation has started, Proceed to S9 and Δ
When α≧−1.6°, it is determined that the operating state is steady, and the process proceeds to SIO, where both the acceleration increase flag FACC and the deceleration decrease flag FDEe are set to 0.

S9では、減速運転開始後初回の減速判定か否かを判定
し、YESのときにはSllに進み、NOのときすなわ
ち減速判定が2回目以降のときにはS12に進む。
In S9, it is determined whether or not this is the first deceleration determination after the start of deceleration driving. If YES, the process proceeds to Sll; if NO, that is, if it is the second or subsequent deceleration determination, the process proceeds to S12.

Sllでは、演算された開度変化率Δαと第1基準開度
2.4°の負の値とを比較し、Δα<−2,4゜のとき
にはS12に進みΔα≧−2,4°のときにはS13に
進む。
In Sll, the calculated opening degree change rate Δα is compared with the negative value of the first reference opening degree of 2.4°, and when Δα<-2.4°, the process proceeds to S12 and the calculation is performed to determine that Δα≧-2.4°. In some cases, the process proceeds to S13.

S12では、減速減量フラッグFI、!。をlに設定し
、減速運転状態であることをRAMに記憶させる。
In S12, the deceleration reduction flag FI, ! . is set to l, and the fact that it is in a deceleration driving state is stored in the RAM.

313では、減速減量フラッグFIlEcをOに設定し
、定常運転状態であることをRAMに記憶させる。
In step 313, the deceleration reduction flag FIlEc is set to O, and the steady state of operation is stored in the RAM.

このようにすると、加・減速運転開始後の初回の加速判
定時には、演算された開度変化率Δαと比較的大きな第
1基準開度2.4°若しくは、その負の値とに基づいて
加・減速判定がなされる。そして、2回目以降の加・減
速判定時には、比較的小さな第2基準開度1.6°若し
くはその負の値に基づいて加・減速判定がなされる。
In this way, at the time of the first acceleration determination after the start of acceleration/deceleration operation, the acceleration is based on the calculated opening change rate Δα and the relatively large first reference opening of 2.4° or its negative value.・Deceleration judgment is made. Then, in the second and subsequent acceleration/deceleration determinations, acceleration/deceleration determinations are made based on the relatively small second reference opening degree of 1.6° or its negative value.

このため、定常運転状態にも拘わらず吸気絞弁開度セン
サ5の出力が瞬断することにより演算された開度変化率
Δαが瞬間的に第2基準開度1.6゜を上回った場合或
いはその負の値を下回った場合でも第1基準間度2.4
°若しくはその負の値を超えないかぎり初回の加・減速
判定がなされないので、誤加・減速判定の頻度を低減で
き運転性能を良好に維持できる。また、第2回目以降の
加・減速判定時には従来例と同様に設定された第2基準
開度1.6°により加・減速判定を行うようにしたので
、開度変化率Δαが小さな状態から加・減速判定を行う
ことができる。
Therefore, if the output of the intake throttle valve opening sensor 5 is momentarily interrupted despite the steady operating state, the calculated opening change rate Δα momentarily exceeds the second reference opening 1.6°. Or even if it is less than the negative value, the first standard interval is 2.4
Since the initial acceleration/deceleration determination is not made unless the acceleration/deceleration exceeds .degree. or its negative value, the frequency of erroneous acceleration/deceleration determinations can be reduced and good driving performance can be maintained. In addition, since the second and subsequent acceleration/deceleration judgments are made based on the second standard opening of 1.6°, which is set in the same way as in the conventional example, the opening change rate Δα is small. Acceleration/deceleration judgment can be made.

次に、加速増量制御ルーチンを第4図のフローチャート
に従って説明する。
Next, the acceleration increase control routine will be explained according to the flowchart shown in FIG.

S21では、加速増量フラッグF’Accが1かOかを
判定し、Face=1のときには加速運転状態であると
判定しS22に進みFacc=Oのときにはルーチンを
終了させる。
In S21, it is determined whether the acceleration increase flag F'Acc is 1 or O. When Face=1, it is determined that the accelerating operation is in progress, and the process proceeds to S22, and when Facc=O, the routine is ended.

S22では、前記演算された開度変化率Δαに基づいて
開度変化率依存増量係数Aをマツプから検索する。この
増量係数Aは前記変化率Δαが増大するに従って大きく
なるように設定されている。
In S22, the opening change rate dependent increase coefficient A is searched from the map based on the calculated opening change rate Δα. This increase coefficient A is set to increase as the rate of change Δα increases.

S23では、検出された機関の冷却水温度に基づいて水
温依存増量係数Bをマツプから検索する。
In S23, a water temperature dependent increase coefficient B is searched from the map based on the detected engine cooling water temperature.

この増量係数Bは冷却水温度が高くなるに従って小さく
なるように設定されている。
This increase coefficient B is set to decrease as the cooling water temperature increases.

S24では、検出された回転速度に基づいて回転依存増
量係数Ncをマツプから検索する。この増量係数Ncは
回転速度が増加するに伴って大きくなるように設定され
ている。
In S24, a rotation-dependent increase coefficient Nc is searched from the map based on the detected rotation speed. This increase coefficient Nc is set to increase as the rotational speed increases.

S25では、割込み噴射ITRを次式により演算する。In S25, the interrupt injection ITR is calculated using the following equation.

’l’ 、l= A X BX Nc X K Q を
尚、KO2は負荷(例えば吸入空気流量、基本噴射量)
に依存する係数である。
'l', l = A
It is a coefficient that depends on .

このようにして得られた割込み噴射量T11に対応する
割込噴射パルス信号を駆動回路7を介して燃料噴射弁6
に出力し割込み噴射を行わせ加速増量を図る。
An interrupt injection pulse signal corresponding to the interrupt injection amount T11 obtained in this way is sent to the fuel injection valve 6 via the drive circuit 7.
output to perform interrupt injection to increase the amount of fuel for acceleration.

次に減速減量制御ルーチンを第5図のフローチャートに
従って説明する。
Next, the deceleration reduction control routine will be explained according to the flowchart of FIG.

S31では、減速減量フラッグF DECがlかOかを
判定し、FDEC=1のときには減速運転状態であると
判定しS32に進み、Fotc=0のときにはルーチン
を終了させる。
In S31, it is determined whether the deceleration reduction flag F_DEC is 1 or 0. When FDEC=1, it is determined that the vehicle is in a deceleration driving state and the process proceeds to S32, and when Fotc=0, the routine is ended.

S32では、検出された機関の冷却水温度に基づいて、
水温依存減速減量係数BDをマツプから検索する。この
減量係数BDは冷却水温度が高くなるに従って小さくな
るように設定されている。尚、この減量係数BDは前記
増量係数Bと同様であってもよい。
In S32, based on the detected engine cooling water temperature,
Search the map for the water temperature dependent deceleration loss coefficient BD. This reduction coefficient BD is set to decrease as the cooling water temperature increases. Note that this reduction coefficient BD may be the same as the increase coefficient B.

S33では、検出された回転速度に基づいて回転依存減
速減量係数NDをマツプから検索する。
In S33, a rotation dependent deceleration reduction coefficient ND is searched from the map based on the detected rotation speed.

S34では、減速減量燃料係数KDCを次式により演算
する。
In S34, the deceleration reduction fuel coefficient KDC is calculated using the following equation.

KDC=BDxNDxKQ。KDC=BDxNDxKQ.

このようにして得られた減速減量燃料係数KDCは通常
噴射時の燃料噴射量Tiを演算するときに以下の式を用
いて使用する。
The deceleration reduction fuel coefficient KDC obtained in this way is used when calculating the fuel injection amount Ti during normal injection using the following formula.

T i =’rp XcrX (1+ K、、+に−(
@+−十Kas−KDC)+Ts 尚、K、、1は空燃比補正係数、KTWは水温増量補正
係数、KASは始動及び始動後増量補正係数である。
T i ='rp XcrX (1+ K,, + to -(
@+-10Kas-KDC)+Ts In addition, K,, 1 is an air-fuel ratio correction coefficient, KTW is a water temperature increase correction coefficient, and KAS is a starting and post-starting increase correction coefficient.

このようにして、演算された燃料噴射量Tiに対応する
噴射パルス信号を駆動回路7を介して燃料噴射弁6d出
力し、燃料噴射を行なう。
In this way, an injection pulse signal corresponding to the calculated fuel injection amount Ti is outputted to the fuel injection valve 6d via the drive circuit 7 to perform fuel injection.

尚、本実施例では、加・減速運転開始後の初回の加・減
速判定時のみ第1基準開度2.4°と比較するようにし
たが、例えば初回と第2回目の加・減速判定時に第1基
準開度2.4°と比較するようにしてもよい。また、負
荷としては吸入空気流量。
In this embodiment, the first reference opening degree of 2.4° is compared only at the first acceleration/deceleration determination after the start of acceleration/deceleration operation, but for example, the first and second acceleration/deceleration determinations Sometimes, the opening degree may be compared with the first standard opening degree of 2.4°. In addition, the load is the intake air flow rate.

吸気負圧、トルク等があげられる。Examples include intake negative pressure and torque.

〈発明の効果〉 本発明は、以上説明したように、加・減速運転開始初期
には演算された負荷変化率と比較的大きな第1基準値と
を比較し、その後比較的小さな第2基準値とを比較する
ようにしたので、定常運転時に瞬断により前記負荷変化
率が第2基準値を上回っても第1基準値を超えないかぎ
り加・減速判定がなされない。このため、誤加・減速判
定の頻度を低減でき運転性能を良好に維持しつつ第2基
準値により加・減速判定を行うことができる。
<Effects of the Invention> As explained above, the present invention compares the calculated load change rate with a relatively large first reference value at the beginning of acceleration/deceleration operation, and then compares the calculated load change rate with a relatively small second reference value. Therefore, even if the load change rate exceeds the second reference value due to a momentary interruption during steady operation, acceleration/deceleration determination will not be made unless the load change rate exceeds the first reference value. Therefore, the frequency of erroneous acceleration/deceleration determinations can be reduced, and acceleration/deceleration determinations can be made based on the second reference value while maintaining good driving performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第5図は同上のフローチ
ャートである。 l・・・制御装置  2・・・点火コイル  5・・・
吸気絞弁開度センサ  6・・・燃料噴射弁特許出願人
 日本電子機器株式会社 代理人 弁理士 笹 島  富二雄 第4図 第5図
FIG. 1 is a diagram corresponding to claims of the present invention, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIGS. 3 to 5 are flowcharts of the same. l...Control device 2...Ignition coil 5...
Intake throttle valve opening sensor 6...Fuel injection valve Patent applicant Japan Electronics Co., Ltd. Representative Patent attorney Fujio Sasashima Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 機関負荷を検出する負荷検出手段と、前記検出信号を入
力して所定のサンプリング期間毎の負荷変化量を演算す
る負荷変化量演算手段と、演算された負荷変化量に基づ
いて加・減速運転が開始されたか否かを判定する加・減
速運転開始判定手段と、該加・減速運転開始判定手段の
判定結果に基づいて加・減速運転開始初期には、前記演
算された負荷変化量と第1基準値とを比較し加・減速運
転か否かを判定する第1加・減速運転判定手段と、前記
加・減速運転開始判定手段の判定結果に基づいて前記第
1加・減速判定手段による判定終了後は、前記演算され
た負荷変化量と前記第1基準値より小さな第2基準値と
を比較し、加・減速運転か否かを判定する第2加・減速
判定手段とを備えたことを特徴とする内燃機関の加・減
速判定装置。
load detection means for detecting the engine load; load change amount calculation means for inputting the detection signal and calculating the load change amount for each predetermined sampling period; and acceleration/deceleration operation based on the calculated load change amount. Acceleration/deceleration start determining means determines whether the acceleration/deceleration start has been started, and based on the determination result of the acceleration/deceleration start determining means, the calculated load change amount and the first a first acceleration/deceleration operation determination means that compares with a reference value and determines whether or not acceleration/deceleration operation is being performed; and a determination by the first acceleration/deceleration determination means based on the determination result of the acceleration/deceleration operation start determination means. After completion, the method further comprises second acceleration/deceleration determining means for comparing the calculated load change amount with a second reference value smaller than the first reference value and determining whether or not acceleration/deceleration operation is being performed. An acceleration/deceleration determination device for an internal combustion engine, characterized by:
JP62000582A 1987-01-07 1987-01-07 Acceleration / deceleration determination device for internal combustion engine Expired - Lifetime JPH0733805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000582A JPH0733805B2 (en) 1987-01-07 1987-01-07 Acceleration / deceleration determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000582A JPH0733805B2 (en) 1987-01-07 1987-01-07 Acceleration / deceleration determination device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63170543A true JPS63170543A (en) 1988-07-14
JPH0733805B2 JPH0733805B2 (en) 1995-04-12

Family

ID=11477708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000582A Expired - Lifetime JPH0733805B2 (en) 1987-01-07 1987-01-07 Acceleration / deceleration determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0733805B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104929A (en) * 1988-10-14 1990-04-17 Hitachi Ltd Electronically controlled gasoline injecting device
JPH02218840A (en) * 1989-02-20 1990-08-31 Mitsubishi Electric Corp Fuel control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132467A (en) * 1980-02-11 1981-10-16 Saab Scania Ab Method of adjusting signal from converter linked to internal combustion engine
JPS5990769A (en) * 1982-11-16 1984-05-25 Fujitsu Ten Ltd Timing detecting circuit
JPS61279756A (en) * 1985-06-04 1986-12-10 Mazda Motor Corp Engine operating range detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132467A (en) * 1980-02-11 1981-10-16 Saab Scania Ab Method of adjusting signal from converter linked to internal combustion engine
JPS5990769A (en) * 1982-11-16 1984-05-25 Fujitsu Ten Ltd Timing detecting circuit
JPS61279756A (en) * 1985-06-04 1986-12-10 Mazda Motor Corp Engine operating range detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104929A (en) * 1988-10-14 1990-04-17 Hitachi Ltd Electronically controlled gasoline injecting device
JPH02218840A (en) * 1989-02-20 1990-08-31 Mitsubishi Electric Corp Fuel control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0733805B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
EP0275507B1 (en) Method and device for learn-controlling the air-fuel ratio of an internal combustion engine
EP0378814B1 (en) Method of controlling air-fuel ratio
JPS63170543A (en) Acceleration/deceleration judging device for internal combustion engine
JP2583662B2 (en) Engine air-fuel ratio control device
JPS63113137A (en) Fuel supply controlling method for internal combustion engine
JP3361533B2 (en) Electronic control unit for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH01125532A (en) Controller for internal combustion engine
JP2510877B2 (en) Auxiliary air control device for internal combustion engine
JPS6245949A (en) Electronic control fuel injection device for car internal combustion engine
JPS6245950A (en) Electronic control fuel injection device for car internal combustion engine
JP2582617B2 (en) Internal combustion engine deceleration control device
JP2930256B2 (en) Engine throttle valve controller
JPH0833130B2 (en) Learning control device for air-fuel ratio of internal combustion engine
JPS62240444A (en) Device for controlling interruptingly increasing quantity at the time of accelerating electronically controlled fuel injection type internal combustion engine
JPH0745843B2 (en) Fuel supply control device for internal combustion engine
JPS6394045A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0668251B2 (en) Fuel supply stop control device for internal combustion engine
JP2660620B2 (en) Idle speed control device for internal combustion engine
JPH0788790B2 (en) Deceleration control device for internal combustion engine
JPS61101650A (en) Fuel injection apparatus for internal combustion engine
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS62271945A (en) Electronic control type fuel injection device for internal combustion engine
JPS63186941A (en) Fuel supply stop control device for internal combustion engine
JPH0758052B2 (en) Electronically controlled fuel injection device for internal combustion engine