JPS63177176A - Image forming device - Google Patents
Image forming deviceInfo
- Publication number
- JPS63177176A JPS63177176A JP62009561A JP956187A JPS63177176A JP S63177176 A JPS63177176 A JP S63177176A JP 62009561 A JP62009561 A JP 62009561A JP 956187 A JP956187 A JP 956187A JP S63177176 A JPS63177176 A JP S63177176A
- Authority
- JP
- Japan
- Prior art keywords
- image
- humidity
- image forming
- developer
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 238000012546 transfer Methods 0.000 claims description 13
- 238000005513 bias potential Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000003086 colorant Substances 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 12
- 108091008695 photoreceptors Proteins 0.000 description 10
- 238000011161 development Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Dry Development In Electrophotography (AREA)
- Control Or Security For Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は電子写真方式を用いた複写機、レーザービーム
プリンタ等の画像形成装置に関し、特に多色画像形成を
可能とした画像形成装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an image forming apparatus such as a copying machine or a laser beam printer using an electrophotographic method, and particularly to an image forming apparatus capable of forming a multicolor image.
(従来の技術)
従来より、電子写真方式を用いた画像形成装置において
は、形成画像の濃度を一定に保つために感光体ドラムの
帯電電位、現像器に印加する現像バイアス電位等を調整
し、現像コントラスト電位やカブリ防止電位等の画像形
成条件の制御を行っていた。特に、多色複写機において
は、各色ごとの現像剤の特性に応じた画像形成条件を設
定して、各色ごとの濃度が略同−濃度となるようにして
いた。(Prior Art) Conventionally, in an image forming apparatus using an electrophotographic method, in order to keep the density of a formed image constant, the charging potential of a photoreceptor drum, the developing bias potential applied to a developing device, etc. are adjusted. Image forming conditions such as development contrast potential and antifogging potential were controlled. In particular, in multicolor copying machines, image forming conditions are set according to the characteristics of the developer for each color, so that the densities of each color are approximately the same.
(発明が解決しようとする問題点)
しかしながら、斯かる従来例においては現像剤の各色ご
との画像形成条件の調整は行なわれているものの、現像
剤の置かれている環境変化による画像濃度の変化は考慮
されておらず、特に湿度の変化による画像濃度の変化は
顕著であり、且つ現像剤の各色ごと即ち種類によって吸
湿に伴う濃度変化の割合いが異なるために濃度差が目立
ってしまう問題点があった。(Problems to be Solved by the Invention) However, in such conventional examples, although the image forming conditions for each color of developer are adjusted, the image density changes due to changes in the environment in which the developer is placed. In particular, changes in image density due to changes in humidity are noticeable, and the density difference is noticeable because the rate of density change due to moisture absorption differs depending on the color or type of developer. was there.
そこで本発明は従来技術の上記した問題点を解決するた
めになされたもので、その目的とするところは、現像剤
の置かれている環境変化による形成画像の濃度変化をな
くし、しかも現像剤の種類によるの形成画像の濃度差を
もなくすことによって、常に最適な濃度の画像を形成で
きる画像形成装こを提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and its purpose is to eliminate changes in the density of formed images due to changes in the environment in which the developer is placed, and to It is an object of the present invention to provide an image forming apparatus that can always form images of optimum density by eliminating differences in density of formed images depending on the type.
(問題点を解決するための手段)
上記目的を達成するために、本発明に係る画像形成装置
においては、一様に帯電した感光体上に静電潜像を形成
し、該静電潜像を現像手段によって顕像化して、同一転
写材に少なくとも一種類の現像剤にて画像を形成する画
像形成装置において、前記現像手段近傍の環境を測定す
る環境検知手段を備え、該環境検知手段の検知結果と前
記現像剤の種類とに基づいて画像濃度を決定する画像形
成条件を設定することによって構成される。(Means for Solving the Problems) In order to achieve the above object, in the image forming apparatus according to the present invention, an electrostatic latent image is formed on a uniformly charged photoreceptor, and the electrostatic latent image is An image forming apparatus that forms an image on the same transfer material using at least one type of developer, comprising: an environment detection means for measuring an environment near the development means; It is configured by setting image forming conditions that determine image density based on the detection result and the type of developer.
(作 用)
上記の構成を有する本発明は、現像手段近傍の環境を測
定する環境検知手段を備え、該環境検知手段の検知結果
と現像剤の種類とに基づいて画像濃度を決定する画像形
成条件を設定することによって、現像剤の種類ごとに環
境変化に伴う画像濃度変化の補正を行うようにし1画像
濃度の変化と現像剤間の濃度差をなくしたものである。(Function) The present invention having the above-mentioned configuration is provided with an environment detection means for measuring the environment near the developing means, and is capable of image formation in which the image density is determined based on the detection result of the environment detection means and the type of developer. By setting conditions, image density changes due to environmental changes are corrected for each type of developer, thereby eliminating changes in one image density and density differences between developers.
(実 施 例) 以下に本発明を図示の実施例に基づいて説明する。(Example) The present invention will be explained below based on illustrated embodiments.
第2図は本発明に係る画像形成装置の一実施例を示す構
成図で、同図において、lは回転式現像装置で、回転体
中にはそれぞれ、イエロー現像器IY、マゼンタ現像器
IM、シアン現像器ICおよびブラック現像器IBKを
搭載している。2は上記現像装置lへの現像剤(トナー
)補給装置で、2Yはイエローホッパ、2Mはマゼンタ
ホッパ、2Cはシアンホッパ、そして2BKはブラック
ホッパを示す。FIG. 2 is a block diagram showing an embodiment of the image forming apparatus according to the present invention. In the figure, l is a rotary developing device, and the rotating body includes a yellow developing device IY, a magenta developing device IM, It is equipped with a cyan developer IC and a black developer IBK. 2 is a developer (toner) replenishing device to the developing device 1, 2Y is a yellow hopper, 2M is a magenta hopper, 2C is a cyan hopper, and 2BK is a black hopper.
このカラー画像形成装置全体の動作について。Regarding the overall operation of this color image forming apparatus.
先ず、フルカラーモードの場合を例として簡単に説明す
る。3は1図示矢印方向に回転する感光体ドラムで、該
ドラム3上の感光体は帯電器4によって均等に帯電され
る。つぎに、原稿(図示せず)のイエロー画像信号によ
り変調されたレーザ光Eにより画像露光が行われ、感光
体ドラム3上に静電潜像が形成され、そののち、あらか
じめ現像位置に定置されたイエロー現像器IYによって
現像が行われる。First, the case of full color mode will be briefly explained as an example. Reference numeral 3 denotes a photoreceptor drum that rotates in the direction of the arrow in the figure, and the photoreceptor on the drum 3 is uniformly charged by a charger 4. Next, image exposure is performed using the laser light E modulated by the yellow image signal of the original (not shown), and an electrostatic latent image is formed on the photoreceptor drum 3. Developing is performed by a yellow developing device IY.
一方、給紙ガイド5a、給紙ローラ6、給紙ガイド5b
を経由して進行した転写紙は、所定タイミングに同期し
てグリッパ7により保持され、当接用ローラ8とその対
向極によって静電的に転写ドラム9に巻き付けられる。On the other hand, paper feed guide 5a, paper feed roller 6, paper feed guide 5b
The transfer paper that has advanced through is held by the gripper 7 in synchronization with a predetermined timing, and is electrostatically wound around the transfer drum 9 by the contact roller 8 and its opposing pole.
転写ドラム9は、感光体ドラム3と同期して図示矢印方
向に回転しており、イエロー現像器IYで現像された顕
像は、転写部において転写帯電器10によって転写され
る。転写ドラム9はそのまま、回転を継続し、次の色(
第1図においてはマゼンタ)の転写に備える。The transfer drum 9 rotates in the direction of the arrow shown in the figure in synchronization with the photosensitive drum 3, and the developed image developed by the yellow developer IY is transferred by the transfer charger 10 in the transfer section. The transfer drum 9 continues to rotate and transfers the next color (
In FIG. 1, magenta) is prepared for transfer.
一方、感光体ドラム3は、帯電器11により除電され、
クリーニング部材12によってクリーニングされ、再び
帯電器4によって帯電され、次のマゼンタ画像信号によ
り前記したと同様に露光を受ける。この間に現像装置l
は回転して、マゼンタ現像器IMが所定の現像位置に定
置されていて所定のマゼンタ現像を行う、続いて、以上
と同様の行程を、それぞれシアンおよびブラックに対し
て行い、4色分の転写が終了すると、転写紙上の4色顕
像は各帯電器13.14により除電され、前記グリッパ
7を解除すると共に1分離爪15によって転写ドラム9
より分離され、搬送ベルト16で定着器17に送られ、
一連のフルカラープリント動作が終了し、フルカラープ
リント画像が形成される。On the other hand, the photoreceptor drum 3 is neutralized by the charger 11,
It is cleaned by the cleaning member 12, charged again by the charger 4, and exposed to the next magenta image signal in the same manner as described above. During this time, the developing device
rotates, and the magenta developer IM is placed at a predetermined development position to perform predetermined magenta development.Subsequently, the same process as above is performed for cyan and black, respectively, to transfer four colors. When this is completed, the four-color developed image on the transfer paper is neutralized by each charger 13 and 14, and the gripper 7 is released and the transfer drum 9 is moved by the one-separation claw 15.
is separated and sent to a fixing device 17 by a conveyor belt 16,
A series of full-color printing operations is completed, and a full-color printed image is formed.
さらに1本実施例においては上記構成に加えて、トナー
ホッパー近傍又は現像器近傍等のトナーの吸湿がよく反
映される位置に湿度センサーと温度センサーとで構成さ
れた環境センサー19が装備されている。Furthermore, in this embodiment, in addition to the above configuration, an environment sensor 19 consisting of a humidity sensor and a temperature sensor is installed at a position where the moisture absorption of the toner is well reflected, such as near the toner hopper or near the developer. .
第1図は本発明の一実施例を示すブロック図である。4
aは1次帯電器に給電する高圧電源。FIG. 1 is a block diagram showing one embodiment of the present invention. 4
a is a high-voltage power supply that supplies power to the primary charger.
4bは1次帯電器に設けられ、ドラム3に与える帯電量
を所望の値に制御するグリッドに給電するグリッドバイ
アス電源、1′は現像器に所定の交流波形にDC分を重
畳した現像バイアスを給電する電源であり、18は各電
源の出力値を制御するマイクロコンピュタ−等の制御手
段である。また制御手段18は環境センサー19及び電
位センサー20にも接続されている。4b is a grid bias power supply provided in the primary charger and supplies power to the grid that controls the amount of charge applied to the drum 3 to a desired value; 1' is a developing bias power supply having a DC component superimposed on a predetermined AC waveform to the developer; It is a power source for supplying power, and 18 is a control means such as a microcomputer that controls the output value of each power source. The control means 18 is also connected to an environmental sensor 19 and a potential sensor 20.
以下に本実施例の動作を説明する。第3図は、グリッド
バイアス電圧(横軸)と感光体ドラム3の表面電位(縦
軸)の関係を示すグラフであり、図中、Voは光照射さ
れないときの表面電位に対応し、Vtは光照射されたと
きの表面電位に対応する。同図より表面電位Voすなわ
ち帯電量は範囲を限ってみれば(使用範囲では)グリッ
ドバイアスVCに比例している。また、光照射後の表面
電位Vt も同様の傾向があるが、グリッドバイアスV
Gの変化量に対する変化の割合すなわち比例係数はVO
の場合の方がvLの場合より大(α〉β)の関係にある
。そこで、プリントシーケンスを行なう前に制御手段1
8はあらかじめ設定されたグリッド電圧VGI 、 V
G2による各VD+V〔を電位センサー20にて測定し
各データから第3図に示すようなグリッド電圧の変化に
対するVDIVLの帯電カーブを想定する。その後、実
際に画像形成する際には上述の動作で得られた帯電カー
ブから、画像コントラストすなわち後述の現像バイアス
のDC分と光照射後の表面電位vLとの差分又はVo−
Vtが所定の値になるようなグリッド電圧を演算により
求め、グリッドバイアス電源4bを制御する。さらに画
像の白地に対応する部分、本実施例の場合反転現像であ
るため、VDに相当する部分にトナーが付着しないよう
にVoより一定電位低い値(Va )の現像バイアスを
求め現像バイアス電源1′を制御する。The operation of this embodiment will be explained below. FIG. 3 is a graph showing the relationship between the grid bias voltage (horizontal axis) and the surface potential of the photoreceptor drum 3 (vertical axis). In the figure, Vo corresponds to the surface potential when no light is irradiated, and Vt Corresponds to the surface potential when irradiated with light. As can be seen from the figure, the surface potential Vo, that is, the amount of charge is proportional to the grid bias VC in a limited range (in the range of use). Also, the surface potential Vt after light irradiation has a similar tendency, but the grid bias Vt
The ratio of change to the amount of change in G, that is, the proportionality coefficient is VO
The relationship is larger (α>β) in the case of vL than in the case of vL. Therefore, before performing the print sequence, the control means 1
8 is the preset grid voltage VGI, V
Each VD+V due to G2 is measured by the potential sensor 20, and from each data, a charging curve of VDIVL with respect to a change in grid voltage as shown in FIG. 3 is assumed. Thereafter, when actually forming an image, the image contrast, that is, the difference between the DC component of the developing bias and the surface potential vL after light irradiation, or Vo-
A grid voltage such that Vt becomes a predetermined value is calculated and the grid bias power supply 4b is controlled. Further, in order to prevent toner from adhering to the portion corresponding to the white background of the image, in this example, reversal development is performed, a developing bias with a certain potential lower than Vo (Va) is determined, and the developing bias power source 1 ′ is controlled.
第4図は同一画像形成条件にてプリントしたときの湿度
に対する画像濃度の影響を示すグラフであり、同図に示
すように、同一画像形成条件では湿度が低いほど濃度が
低下し、湿度が上昇するにつれて濃度が上昇している。Figure 4 is a graph showing the influence of image density on humidity when printing under the same image forming conditions.As shown in the figure, under the same image forming conditions, the lower the humidity, the lower the density, and the higher the humidity. As time goes on, the concentration increases.
そのため、湿度を検知して、湿度に対応したコントラス
ト電位vc0゜tを求め、その値を基に画像形成条件を
設定するようにすれば環境条件の変動にかかわらず安定
した画像を得ることが可能になる。また、同図に示すよ
うに、色ごとにより湿度に対する濃度が異なるため、各
色ごとに画像形成条件を可変にしておけば、現像剤の色
の違いによる画像濃度の違いをも補正することができる
。Therefore, by detecting the humidity, determining the contrast potential vc0゜t corresponding to the humidity, and setting the image forming conditions based on that value, it is possible to obtain a stable image regardless of changes in environmental conditions. become. Additionally, as shown in the figure, since the density relative to humidity differs depending on the color, if the image forming conditions are made variable for each color, it is possible to compensate for differences in image density due to differences in developer color. .
以下に第5図(a)、(b)、(c)に示すフローチャ
ートに基づいて本実施例の制御手段18の動作につ゛い
て具体的に説明する。The operation of the control means 18 of this embodiment will be specifically explained below based on the flowcharts shown in FIGS. 5(a), 5(b), and 5(c).
先ず、処理Aについて第5図(a)に基づいて説明する
0割込処理等で、温度と湿度を環境センサー19で例え
ば30分ごとに1回又は30分間に数回測定しその平均
値を測定し、例えば8時間分メモリ内のバッファエリア
に格納しておく、ステップ■ではそのデータを基に絶対
湿度又はそれに対応する値(例えば混合比)を計算する
。これは画像濃度が絶対湿度すなわち空気中の水分量に
比例すると考えられるからである。ステップ■において
絶対湿度(混合比)の計算を8時間分行なったかどうか
を判断し、8時間分行った後に、ステップ■において2
時間、4時間、8時間のそれぞれの平均値 x、y、z
を求める。これら平均値x、y、zは以下の条件判
断を行ないコントラスト計算時の変数となる。ステップ
■では2時間平均値Xが混合比18.5g以上かどうか
の判定を行ない18.5g以上ならフラッグをC0NT
lにする。これは、2時間以上高湿状態が続いたと判定
される0次に、ステップ■で現在値が111t、5g以
上かどうかの判定を行ない18.5g以上ならフラッグ
をC6NT2にする。これは2時間低湿であったが現在
高温に向かいつ−あると判定される0次に、ステップ■
で8時間の平均値2が9g以上かどうかを判定し、9g
以上ならフラッグをC0NT3にする。これにより湿度
は8時間以上中温状態であるとされる0次に、ステップ
■で4時間平均値yが9g以上かどうかを比べ、9g以
上ならフラッグをC0NT4にする。これで低湿から中
温に向かっていると判定する。そして。First, in the 0 interrupt processing etc. explained based on FIG. 5(a) for processing A, the temperature and humidity are measured with the environmental sensor 19, for example, once every 30 minutes or several times every 30 minutes, and the average value is calculated. The humidity is measured and stored in a buffer area in a memory for, for example, 8 hours. In step (2), absolute humidity or a value corresponding thereto (for example, a mixing ratio) is calculated based on the data. This is because image density is considered to be proportional to absolute humidity, that is, the amount of moisture in the air. In step ■, it is determined whether absolute humidity (mixing ratio) has been calculated for 8 hours, and after calculating the absolute humidity (mixing ratio) for 8 hours, in step
Average values of time, 4 hours, and 8 hours x, y, z
seek. These average values x, y, and z serve as variables when calculating contrast by making the following conditional judgments. In step ■, it is determined whether the 2-hour average value
Make it l. This is because it is determined that the high humidity state has continued for more than 2 hours, and then in step 2, it is determined whether the current value is 111t, 5g or more, and if it is 18.5g or more, the flag is set to C6NT2. This has been low humidity for 2 hours, but is now heading towards high temperatures. Next, step ■
Determine whether the 8-hour average value 2 is 9g or more, and
If it is above, set the flag to C0NT3. As a result, the humidity is considered to be in a medium temperature state for 8 hours or more. Next, in step 2, it is compared whether the 4-hour average value y is 9 g or more, and if it is 9 g or more, the flag is set to C0NT4. This determines that the temperature is moving from low humidity to medium temperature. and.
上記以外すなわち4時間平均値<9gなら低湿状態とし
てフラッグをC0NT5にする。If it is other than the above, that is, the 4-hour average value is <9g, it is assumed that the humidity is low and the flag is set to C0NT5.
因みに、以上の処理は低湿から高湿に向かう場合と高湿
から低湿に向かう場合トナーの吸湿脱湿の速さが異るた
めに行なう、即ち、画像濃度は絶対湿度に比例するが雰
囲気の湿度ではなくトナーがどれだけ吸湿しているかに
よって決定されるため、上述の条件判断が行なわれる。Incidentally, the above processing is performed because the rate of moisture absorption and dehumidification of the toner is different when going from low humidity to high humidity and from high humidity to low humidity. In other words, image density is proportional to absolute humidity, but atmospheric humidity The condition is determined based on how much moisture the toner has absorbed, rather than on the amount of moisture absorbed by the toner, so the above condition judgment is made.
次に、ステップ■でコントラストフラッグによりコント
ラスト計算の変数Hを決定する。これは、例えばC0N
Tlの場合において高湿に完全に調湿されているため変
数は2時間平均値Xになる。またC0NT2の場合は低
湿と高湿の中間状態であるから2時間平均値Xと現在値
Wの平均値(x + w)/ 2となる。Next, in step (2), a variable H for contrast calculation is determined using the contrast flag. This is, for example, C0N
In the case of Tl, since the humidity is completely controlled to high humidity, the variable becomes the 2-hour average value X. Further, in the case of C0NT2, since it is in an intermediate state between low humidity and high humidity, the average value of the 2-hour average value X and the current value W is (x + w)/2.
さらに、コントラストフラッグと色情報によりメモリ内
のテーブルから計算式の係数をサーチして読出す、計算
の一般式はコントラスト電位Vcont= at −t
z Hテあり、こh−cHは上述の変数、al、blは
係数である。Furthermore, the general formula for searching and reading out the coefficients of the calculation formula from the table in the memory using the contrast flag and color information is the contrast potential Vcont = at - t
z Hte, h-chH are the above-mentioned variables, and al and bl are coefficients.
以上で得られた係数と変数によりコントラスト電位vc
ontを計算して、ステップ■でメモリに格納する0以
上を各色ごとに4色分繰り返す。Using the coefficients and variables obtained above, the contrast potential vc
ont is calculated and stored in the memory in step (2).0 or more is repeated for each color for four colors.
第6図は上記計算式をプロットしたものである0図に示
すように各色ごとに係数を変えている為、第4図で示し
たような色ごとによる濃度変化の違いを吸収して補正す
ることが可能となった。Figure 6 is a plot of the above calculation formula.As shown in Figure 0, the coefficients are changed for each color, so the differences in density changes for each color as shown in Figure 4 are absorbed and corrected. It became possible.
次に、処理Bについて第5図(b)に基づいて説明する
。先ず、通常のコピーシーケンスと同様に感光体ドラム
を回転させ1次高圧電源4at−ONする。そしイステ
ップ0.oでグリッドバイアスを所定の値VGIにして
感光体ドラムの表面電位You:測定しメモリに格納す
る0次に、レーザを点灯し最大光量によりドラムを照射
しステップ@で光照射後の表面電位7口を測定しメモリ
に格納する。さらに、ステップ[株]、[相]でグリッ
ドバイアスをもう1つの所定の値VG2にして表面電位
VL2を測定しその後レーザをOFFにしてステップ[
相]で表面電位VOZを測定し各々メモリに格納する。Next, processing B will be explained based on FIG. 5(b). First, the photosensitive drum is rotated and the primary high voltage power source 4at-ON is turned on, as in a normal copy sequence. Step 0. Set the grid bias to a predetermined value VGI in o and measure the surface potential of the photoreceptor drum You: Measure and store in memory 0 Next, turn on the laser and irradiate the drum with the maximum light intensity, and in step @ set the surface potential after light irradiation 7 Measure the mouth and store it in memory. Furthermore, in steps [stock] and [phase], the grid bias is set to another predetermined value VG2 to measure the surface potential VL2, and then the laser is turned off and step [
The surface potential VOZ is measured at each phase and stored in memory.
これにより後述の計算の為の測定データが得られる。な
おレーザの0N10FF順序VGI 、 VG2のタイ
ミングはシーケンスの都合により変更してもよい、また
処理Aと処理Bは互いに独立しておりどちらを先に行な
っても又処理のタイミングが同時でなくてもよい。This provides measurement data for later-described calculations. Note that the timing of the laser 0N10FF order VGI and VG2 may be changed depending on the sequence, and processing A and processing B are independent of each other, so it does not matter which one is performed first or even if the processing timings are not simultaneous. good.
次に、処理Cについて第5図(C)に基づいて説明する
。処理Cは必ず処理A、Bを行なった後に行なわなくて
はならない。Next, processing C will be explained based on FIG. 5(C). Processing C must be performed after processing A and B.
先ず、ステップ■でVGI 、 VG2及び測定データ
Vo+ 、 VD2 、 VLI 、 Vt2カらVD
及びvLのそれぞれの帯電カーブの傾斜α、βとα−β
を次の式に従い計算しておく。First, in step ■, convert VGI, VG2 and measurement data Vo+, VD2, VLI, Vt2 to VD.
The slopes α, β and α−β of the charging curves of and vL, respectively.
Calculate according to the following formula.
次にステップ[相]でバッファニリンに格納している前
述のカブリ取り電圧VB と処理Aで計算したコントラ
スト電圧VCOntを読み出す、そして、ステップ0で
グリッドバイアスVGはこのvcontとv8の和が得
られる電圧に決定される。すなわち以下の計算を行なう
。Next, in step [phase], the above-mentioned defogging voltage VB stored in the buffer Nilin and the contrast voltage VCOnt calculated in process A are read out, and in step 0, the grid bias VG is obtained as the sum of this vcont and v8. determined by the voltage. That is, the following calculation is performed.
ステップ■でグリッド電圧が求まれば次にVDを計算に
より求める。Once the grid voltage is determined in step (2), VD is then determined by calculation.
Vo = α(VG −VGI) +vDIさらに、ス
テップ[相]で現像バイアスDC分(DB)を求める。Vo = α(VG - VGI) +vDI Furthermore, in step [phase], the developing bias DC component (DB) is determined.
D B = Vo −We
ステップ[相]で以上の処理が4色について終了したと
判断すると処理を終了する。D B = Vo −We When it is determined in step [phase] that the above processing has been completed for the four colors, the processing is ended.
以上によりグリッドバイアス制御値vG、現像バイアス
制御°値DBが求められた。As described above, the grid bias control value vG and the developing bias control degree value DB were determined.
以上のようにして求められたグリッドバイアス電圧と、
現像バイアスD6は現像剤が鐙かれて来た湿度条件のみ
ならず、現像剤の色ごとの特性をも考慮した値であるた
め、極めて安定した適正濃度の画像が得られる。The grid bias voltage obtained as above,
Since the developing bias D6 is a value that takes into consideration not only the humidity conditions under which the developer is stirred, but also the characteristics of each color of the developer, an extremely stable image with an appropriate density can be obtained.
尚、上記実施例は多色画像を形成可能fJML=7い2
述べたが、これには限定されず、通常の単色の画像形成
装置にも適用できる。Incidentally, the above embodiment can form a multicolor image fJML=7-2
Although described above, the present invention is not limited thereto, and can also be applied to a normal monochrome image forming apparatus.
また、上記実施例では環境検知手段が絶対湿度を測定し
た場合について説明したが、温度等湿度以外に現像剤に
彩マする要素について測定して、画像濃度を制御しても
よい。Further, in the above embodiment, the case where the environment detection means measures the absolute humidity has been described, but the image density may be controlled by measuring elements that color the developer in addition to temperature and humidity.
さらに、上記実施例では、画像形成条件が、感光体ドラ
ム上の帯電電位、光照射後の電位、現像バイアス電位に
よって決定される場合について述べたが、現像剤の帯電
電位等地の条件を制御してもよい。Furthermore, in the above embodiment, the image forming conditions are determined by the charging potential on the photoreceptor drum, the potential after light irradiation, and the developing bias potential, but the conditions such as the charging potential of the developer are controlled. You may.
(発明の効果)
本発明は以上の構成及び作用よりなるもので、環境検知
手段の検知結果と現像剤の種類とに基づいて、画像形成
条件を設定することによって、環境変動による画像濃度
の変化をなくすると共に、現像剤の種類の違いによる濃
度差をなくし、常に適正な濃度の画像を形成できるとい
う効果を有する。(Effects of the Invention) The present invention has the configuration and operation described above, and by setting image forming conditions based on the detection result of the environment detection means and the type of developer, it is possible to change the image density due to environmental changes. This has the effect of eliminating density differences due to differences in developer types, and making it possible to always form images with appropriate density.
第1図は本発明に係る画像形成装置の一実施例を示すブ
ロック図、第2図は同実施例の構成図。
第3図はグリッドバイアス電圧とドラム表面電位の関係
を示すグラフ、第4図は現像剤の各色ごとの湿度に対す
る濃度変化を示すグラフ、第5図(a)、(b)、(C
)はそれぞれ同実施例の画像形成条件の設定手順を示す
フローチャート、第6図は湿度に対する設定コントラス
ト電位の関係を示すグラフである。
符号の説明
l・・・現像器(現像手段)
3・・・感光体ドラム
4・・・−次帯電器(帯電手段)
18・・・制御手段
19・・→【晩t′Aブー(環境検知手段)第1図
旬
第2図
第3図
第4図
第5図1b)FIG. 1 is a block diagram showing an embodiment of an image forming apparatus according to the present invention, and FIG. 2 is a block diagram of the embodiment. Fig. 3 is a graph showing the relationship between grid bias voltage and drum surface potential, Fig. 4 is a graph showing density changes with respect to humidity for each color of developer, and Figs. 5 (a), (b), (C
) are flowcharts showing the procedure for setting the image forming conditions in the same embodiment, and FIG. 6 is a graph showing the relationship between the set contrast potential and humidity. Explanation of symbols 1... Developing device (developing means) 3... Photoreceptor drum 4...-Next charger (charging means) 18... Control means 19... → [T'A boo (environment) Detection means) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 1b)
Claims (3)
静電潜像を現像手段によって顕像化して、同一転写材に
少なくとも一種類の現像剤にて画像を形成する画像形成
装置において、前記現像手段近傍の環境を測定する環境
検知手段を備え、該環境検知手段の検知結果と前記現像
剤の種類とに基づいて画像濃度を決定する画像形成条件
を設定することを特徴とする画像形成装置。(1) An electrostatic latent image is formed on a uniformly charged photoconductor, the electrostatic latent image is visualized by a developing means, and an image is formed on the same transfer material using at least one type of developer. The image forming apparatus includes an environment detecting means for measuring an environment near the developing means, and setting image forming conditions for determining image density based on the detection result of the environment detecting means and the type of developer. Features of the image forming device.
徴とする特許請求の範囲第1項記載の画像形成装置。(2) The image forming apparatus according to claim 1, wherein the environment detection means detects absolute humidity.
記感光体の静電潜像電位と、前記現像手段の現像バイア
ス電位とによって決定されることを特徴とする特許請求
の範囲第1項記載の画像形成装置。(3) The image forming condition is determined by the charging potential of the photoconductor, the electrostatic latent image potential of the photoconductor, and the developing bias potential of the developing means. The image forming apparatus described in .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62009561A JP2808107B2 (en) | 1987-01-19 | 1987-01-19 | Image forming device |
DE88300378T DE3879722T2 (en) | 1987-01-19 | 1988-01-18 | Imaging device. |
EP88300378A EP0276112B1 (en) | 1987-01-19 | 1988-01-18 | An image forming apparatus |
US07/145,600 US4888618A (en) | 1987-01-19 | 1988-01-19 | Image forming apparatus having ambient condition detecting means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62009561A JP2808107B2 (en) | 1987-01-19 | 1987-01-19 | Image forming device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63177176A true JPS63177176A (en) | 1988-07-21 |
JP2808107B2 JP2808107B2 (en) | 1998-10-08 |
Family
ID=11723700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62009561A Expired - Lifetime JP2808107B2 (en) | 1987-01-19 | 1987-01-19 | Image forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2808107B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0229053U (en) * | 1988-08-11 | 1990-02-23 | ||
US5682573A (en) * | 1995-03-01 | 1997-10-28 | Fuji Xerox Co., Ltd. | Image quality control in image forming apparatus |
US5729786A (en) * | 1994-09-13 | 1998-03-17 | Fuji Xerox Co., Ltd. | Image forming control apparatus which retreives control rules via control cases stored in control clusters |
US5734407A (en) * | 1995-03-31 | 1998-03-31 | Fuji Xerox Co., Ltd. | Image quality control at restart of image forming apparatus |
US5887223A (en) * | 1996-08-13 | 1999-03-23 | Fuji Xerox Co., Ltd. | Image forming apparatus having high image quality control mechanism |
US6122075A (en) * | 1996-10-28 | 2000-09-19 | Fuji Xerox Co., Ltd. | Image forming apparatus |
EP1254774A1 (en) * | 2001-04-30 | 2002-11-06 | Hewlett-Packard Company | Environmental factor detection system for inkjet printing |
GB2486064A (en) * | 2010-11-30 | 2012-06-06 | Canon Kk | Image forming apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484741A (en) * | 1977-12-19 | 1979-07-05 | Ricoh Co Ltd | Toner density controlling method and device for copier |
JPS58217960A (en) * | 1982-06-11 | 1983-12-19 | Canon Inc | Image forming device |
JPS597383A (en) * | 1982-07-02 | 1984-01-14 | Ricoh Co Ltd | Controlling method of developing process in image recorder |
-
1987
- 1987-01-19 JP JP62009561A patent/JP2808107B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484741A (en) * | 1977-12-19 | 1979-07-05 | Ricoh Co Ltd | Toner density controlling method and device for copier |
JPS58217960A (en) * | 1982-06-11 | 1983-12-19 | Canon Inc | Image forming device |
JPS597383A (en) * | 1982-07-02 | 1984-01-14 | Ricoh Co Ltd | Controlling method of developing process in image recorder |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0229053U (en) * | 1988-08-11 | 1990-02-23 | ||
US5729786A (en) * | 1994-09-13 | 1998-03-17 | Fuji Xerox Co., Ltd. | Image forming control apparatus which retreives control rules via control cases stored in control clusters |
US5682573A (en) * | 1995-03-01 | 1997-10-28 | Fuji Xerox Co., Ltd. | Image quality control in image forming apparatus |
US5734407A (en) * | 1995-03-31 | 1998-03-31 | Fuji Xerox Co., Ltd. | Image quality control at restart of image forming apparatus |
US5887223A (en) * | 1996-08-13 | 1999-03-23 | Fuji Xerox Co., Ltd. | Image forming apparatus having high image quality control mechanism |
US6122075A (en) * | 1996-10-28 | 2000-09-19 | Fuji Xerox Co., Ltd. | Image forming apparatus |
EP1254774A1 (en) * | 2001-04-30 | 2002-11-06 | Hewlett-Packard Company | Environmental factor detection system for inkjet printing |
US6568780B2 (en) | 2001-04-30 | 2003-05-27 | Hewlett-Packard Company | Environmental factor detection system for inkjet printing |
GB2486064A (en) * | 2010-11-30 | 2012-06-06 | Canon Kk | Image forming apparatus |
GB2486064B (en) * | 2010-11-30 | 2013-03-06 | Canon Kk | Image forming apparatus |
US8712263B2 (en) | 2010-11-30 | 2014-04-29 | Canon Kabushiki Kaisha | Image forming apparatus |
US9152114B2 (en) | 2010-11-30 | 2015-10-06 | Canon Kabushiki Kaisha | Image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2808107B2 (en) | 1998-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4829336A (en) | Toner concentration control method and apparatus | |
US5243383A (en) | Image forming apparatus with predictive electrostatic process control system | |
CA2076765C (en) | Esv readings of toner test patches for adjusting ird readings of developed test patches | |
CA2076846C (en) | Toner dispensing rate adjustment using the slope of successive ird readings | |
CA2076770C (en) | Electrostatic voltermeter (esv) zero offset adjustment | |
JP2808108B2 (en) | Image forming device | |
JPS63177176A (en) | Image forming device | |
JP2631305B2 (en) | Image forming device | |
CA2076800C (en) | Electrostatic target recalculation in a xerographic imaging apparatus | |
JP2604144B2 (en) | Image forming device | |
CA2076791C (en) | Charged area (cad) image loss control in a tri-level imaging apparatus | |
US5157441A (en) | Dark decay control system utilizing two electrostatic voltmeters | |
US5208632A (en) | Cycle up convergence of electrostatics in a tri-level imaging apparatus | |
US5236795A (en) | Method of using an infra-red densitometer to insure two-pass cleaning | |
JP2641050B2 (en) | Image forming device | |
US5212029A (en) | Ros assisted toner patch generation for use in tri-level imaging | |
JPH04285972A (en) | Image forming device | |
JPH04329562A (en) | Image forming device | |
JPH03193372A (en) | Image forming device | |
JPH08202092A (en) | Digital image forming device | |
JPH01180567A (en) | Multicolor image forming device | |
JP2001092200A (en) | Image forming device | |
JPH0527524A (en) | Image forming device | |
JPH04366862A (en) | Image forming device | |
JPH05100535A (en) | Image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |