JPS63166216A - Semiconductor manufacturing equipment - Google Patents
Semiconductor manufacturing equipmentInfo
- Publication number
- JPS63166216A JPS63166216A JP31411186A JP31411186A JPS63166216A JP S63166216 A JPS63166216 A JP S63166216A JP 31411186 A JP31411186 A JP 31411186A JP 31411186 A JP31411186 A JP 31411186A JP S63166216 A JPS63166216 A JP S63166216A
- Authority
- JP
- Japan
- Prior art keywords
- reaction chamber
- gas
- substrate
- film
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000004065 semiconductor Substances 0.000 title claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims abstract description 28
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 20
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000012495 reaction gas Substances 0.000 claims abstract description 17
- 229910000077 silane Inorganic materials 0.000 claims abstract description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 229910052786 argon Inorganic materials 0.000 claims abstract description 6
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 12
- 239000001272 nitrous oxide Substances 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 10
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 9
- 238000000354 decomposition reaction Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 230000005281 excited state Effects 0.000 abstract 2
- 239000010408 film Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔童業上の利用分野〕
この発明は、半導体製造装置、特に反応室内に供給した
反応ガスを、反応室の外部からその透光窓を通して照射
される光のエネルギーによって分解し、加熱された基板
上に化学的気相成長(OVD: Chemical V
apour Deposition)膜を形成する光化
学的気相成長装置に関するものである。[Detailed Description of the Invention] [Field of industrial application] The present invention is directed to semiconductor manufacturing equipment, particularly a reaction chamber in which a reaction gas supplied into the reaction chamber is heated by the energy of light irradiated from outside the reaction chamber through a light-transmitting window of the reaction chamber. Chemical vapor deposition (OVD) is performed on the decomposed and heated substrate.
The present invention relates to a photochemical vapor phase growth apparatus for forming apour deposition film.
近年、集積回路を含む半導体装置の製造プロセスの低温
化に伴い、プラズマ化学気相成長法と共に光化学気相成
長法が注目されている。In recent years, along with plasma chemical vapor deposition, photochemical vapor deposition has attracted attention as manufacturing processes for semiconductor devices including integrated circuits have become lower in temperature.
光化学気相成長法(以下化学気相成長をCVDという。Photochemical vapor deposition method (hereinafter chemical vapor deposition is referred to as CVD).
)はレーザー光や紫外光などの光のエネルギーをC1V
Dのエネルギー源として使用するものである。通常レー
ザーにはエキシマレーザ−又ハ炭酸ガスレーザーを用い
紫外光源には低圧水銀ランプ又は高圧水銀ランプ又は重
水素ランプを用いる。) converts the energy of light such as laser light and ultraviolet light into C1V.
It is used as an energy source for D. Usually, an excimer laser or a carbon dioxide laser is used as the laser, and a low-pressure mercury lamp, high-pressure mercury lamp, or deuterium lamp is used as the ultraviolet light source.
第2図は例えば%開昭60−152023号公報に記載
される、上記方法に適用される従来の光CVD装置を示
す断面構成図である。同図において+11は反応室であ
り、(2)は薄膜が形成される基板、(3)は基板を載
せる固定台、(4)は基板加熱用ヒーター、(5)は反
応ガスでシランガス、(6)は反応後のガス、(7)は
反応ガス供給口、(8)はガス排出口、(9)は光透過
材からなる透光窓、(1〔は炭酸ガスレーザー発振器、
αDは炭酸ガスレーザービーム径を絞るための光学系、
(2)は炭酸ガスレーザービーム、(至)ハ反応室通過
後の炭酸ガスレーザービームを吸収するダンパである。FIG. 2 is a cross-sectional configuration diagram showing a conventional optical CVD apparatus applied to the above method, which is described in, for example, Japanese Patent Publication No. 152023/1982. In the figure, +11 is a reaction chamber, (2) is a substrate on which a thin film is formed, (3) is a fixing table on which the substrate is placed, (4) is a heater for heating the substrate, (5) is a reaction gas such as silane gas, ( 6) is the gas after the reaction, (7) is the reaction gas supply port, (8) is the gas discharge port, (9) is the transparent window made of a light-transmitting material, (1[ is the carbon dioxide laser oscillator,
αD is an optical system for narrowing down the diameter of the carbon dioxide laser beam.
(2) is a damper that absorbs the carbon dioxide laser beam and (iii) the carbon dioxide laser beam after passing through the reaction chamber.
この装置では、シランガス(5)が供給口(7)から反
応室(1)に供給されると、炭酸ガスレーザ発振器α〔
から発振した後、光学系Ql)でビーム径を絞られて透
過窓(9)から入射した炭酸ガスレーザビーム(2)に
より、シランガス(5)は励起分解される。これは炭酸
ガスレーザの波長10.59μmで共鳴吸収がおこるた
めである。これにより生じた反応生成物が、ヒーター(
4)によって低温加熱された基板(2)上に堆積し、基
板(2)上にアモルファスシリコン膜が形成される。反
応後のガス(6)は排出口(8)から排出される。In this device, when silane gas (5) is supplied from the supply port (7) to the reaction chamber (1), the carbon dioxide laser oscillator α
The silane gas (5) is excited and decomposed by the carbon dioxide laser beam (2) which is oscillated from the oscillator, the beam diameter of which is narrowed down by the optical system Ql) and is incident through the transmission window (9). This is because resonance absorption occurs at the wavelength of 10.59 μm of the carbon dioxide laser. The reaction product produced by this is heated (
4), the amorphous silicon film is deposited on the substrate (2) heated at a low temperature, and an amorphous silicon film is formed on the substrate (2). The gas (6) after the reaction is discharged from the discharge port (8).
反応室(1)を通過した炭酸ガスレーザービーム(イ)
はダンパ(至)に吸収される。Carbon dioxide laser beam (a) that passed through the reaction chamber (1)
is absorbed by the damper.
従来の半導体製造装置では、以上のように炭酸ガスレー
ザーによってシランガスを分解しアモルファスシリコン
膜の形成が可能であるが形成膜種はアモルファスシリコ
ン膜に限られており上記装置を用いてシリコン酸化膜又
はシリコン窒化膜を形成することは、シランガスに加え
て供給する酸素又は亜酸化窒素又は窒素又はアンモニア
が炭酸ガスレーザーによって分解しにくいために困難で
ある0
この発明は上記のような問題点を解消するためてなされ
たもので、アモルファスシリコン膜の形成に加え、シリ
コン酸化膜及びシリコン窒化膜の形成ができるとともに
従来装置に比ベアモルファスシリコン膜を高速で形成す
ることができる半導体製造装置を得ることを目的とする
。With conventional semiconductor manufacturing equipment, as described above, it is possible to decompose silane gas using a carbon dioxide laser and form an amorphous silicon film, but the type of film that can be formed is limited to an amorphous silicon film. It is difficult to form a silicon nitride film because oxygen, nitrous oxide, nitrogen, or ammonia supplied in addition to silane gas is difficult to decompose by a carbon dioxide laser. This invention solves the above problems. The goal of this project is to provide a semiconductor manufacturing device that can not only form amorphous silicon films but also silicon oxide films and silicon nitride films, and also form bare amorphous silicon films at higher speeds than conventional equipment. purpose.
この発明に係る半導体製造装置は、反応ガスの供給口と
は別に導入ガス供給口を設け、導入ガスをプラズマ化し
て反応室へ導入するようにしたものである。The semiconductor manufacturing apparatus according to the present invention includes an introduction gas supply port separate from a reaction gas supply port, and the introduction gas is converted into plasma and introduced into the reaction chamber.
この発明における半導体製造装置において、導入ガス供
給口よりプラズマ化した酸素又は亜酸化窒gk反応室に
導入し、炭酸ガスレーザによ〕分解したシランと反応を
起こすことによりシリコン酸化膜の低温形成が可能にな
る。In the semiconductor manufacturing apparatus of this invention, it is possible to form a silicon oxide film at a low temperature by introducing plasma-formed oxygen or nitrous oxide into the GK reaction chamber through the inlet gas supply port and causing a reaction with decomposed silane using a carbon dioxide laser. become.
同様に9素又はアンモニアを導入することによりリコン
酸化膜の低温形成が可能になる。Similarly, by introducing 9 elements or ammonia, it becomes possible to form a silicon oxide film at a low temperature.
また、アルゴンを導入すれば、励起したアルゴンが反応
室内のシランと衝突し、シランの分解を促進させ、高速
にアモルファスシリコン膜を低温形成することができる
。Furthermore, if argon is introduced, the excited argon collides with the silane in the reaction chamber, promoting the decomposition of the silane, and making it possible to rapidly form an amorphous silicon film at a low temperature.
(実施例〕
以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による半導体製造装置を示す断
面構成図である。図において(1)〜α]は上記従来装
置と全く同一のものである。Q41は導入ガスであり、
シリコン酸化膜を形成する場合には酸素又は亜酸化窒素
、シリコン窒化膜を形成する場合には窒素又はアンモニ
ア、アそルファスシリコン膜を高速で形成する場合には
アルゴンである。(至)はプラズマ発生炉、aQは整合
器、方向性結合器、変換導波管等からなる導波管、αη
はマイクロ波発振装置、(ト)は石英管からなるプラズ
マ発生管である。プラズマ発生管(至)はゲージボート
もしくはメタルアダプターを介して反応室+0に接続さ
れ、マイクロ波によりプラズマ化された導入ガスを反応
室(1)へ供給する。(Example) Hereinafter, an example of the present invention will be explained with reference to the drawings.
The figure is a cross-sectional configuration diagram showing a semiconductor manufacturing apparatus according to an embodiment of the present invention. In the figure, (1) to α] are exactly the same as the conventional device described above. Q41 is the introduced gas,
Oxygen or nitrous oxide is used when forming a silicon oxide film, nitrogen or ammonia is used when forming a silicon nitride film, and argon is used when forming an amorphous silicon film at high speed. (to) is a plasma generation furnace, aQ is a waveguide consisting of a matching box, a directional coupler, a conversion waveguide, etc., αη
(g) is a microwave oscillator, and (g) is a plasma generation tube made of a quartz tube. The plasma generation tube (to) is connected to the reaction chamber +0 via a gauge boat or a metal adapter, and supplies the introduced gas, which has been turned into plasma by microwaves, to the reaction chamber (1).
基板(2)上にシリコン酸化膜を形成する場合は、プラ
ズマ発生管(7)に酸素又は亜酸化窒素CL41を供給
し、マイクロ波により励起した後反応室(1)に導入す
る。この励起状態の酸素または亜酸化窒素は反応ガス供
給口(力よシ導入され炭酸ガスレーザービーム(2)に
よって分解したシラン(5)と反応し基板(2)上にシ
リコン酸化膜を形成する。基板(2)上にシリコン窒化
膜を形成する場合は、プラズマ発生管(ト)に窒素又は
アンモニアα→を供給し、マイクロ波により励起した後
反応室(1)に導入する。この励起状態の窒素またはア
ンモニアは反応ガス供給口(7)より導入され炭酸ガス
レーザービーム(6)によって分解したシラン(5)と
反応し基板(2)上にシリコン窒化膜を形成する。基板
(2)上にアモルファスシリコン膜を高速成膜する場合
は、プラズマ発生管011りKアルゴン(ロ)を供給し
、マイクロ波により励起した後、反応室(1)に導入す
る。この励起状態のアルゴンは反応室(1)内のシラン
(5)と衝突しシランの分解を行い、炭酸ガスレーザー
ビーム(2)によるシラン(5)の分解作用と相まって
、基板(2)上にアモルファスシリコン膜を高速に形成
することができる。When forming a silicon oxide film on the substrate (2), oxygen or nitrous oxide CL41 is supplied to the plasma generating tube (7), excited by microwaves, and then introduced into the reaction chamber (1). This excited oxygen or nitrous oxide reacts with the silane (5) which is forcefully introduced into the reaction gas supply port and decomposed by the carbon dioxide laser beam (2) to form a silicon oxide film on the substrate (2). When forming a silicon nitride film on the substrate (2), nitrogen or ammonia α→ is supplied to the plasma generating tube (g), excited by microwaves, and then introduced into the reaction chamber (1). Nitrogen or ammonia is introduced from the reaction gas supply port (7) and reacts with the silane (5) decomposed by the carbon dioxide laser beam (6) to form a silicon nitride film on the substrate (2). When forming an amorphous silicon film at high speed, K argon (b) is supplied through the plasma generation tube 011, excited by microwaves, and then introduced into the reaction chamber (1). Collision with the silane (5) in 1) causes decomposition of the silane, and in combination with the decomposition action of the silane (5) by the carbon dioxide laser beam (2), forms an amorphous silicon film on the substrate (2) at high speed. I can do it.
なお、上記実施例では反応ガスはシランを用いたが、ジ
シラン、トリシラン等でもよい。In the above embodiments, silane was used as the reaction gas, but disilane, trisilane, etc. may also be used.
以上のように、この発明によれば反応ガスの供給口とは
別に導入ガス供給口を設け、導入ガスをプラズマ化して
反応室へ導入し、炭酸ガスレーザビームにより励起分解
された反応ガスと、プラズマ化した導入ガスとにより、
基板上に薄膜を形成するようにしたので、シリコン酸化
膜やシリコン窒化膜を低温で形成できると共に、アモル
ファスシリコン膜を高速に低温で形成できる半導体製造
装置が得られる効果がある。As described above, according to the present invention, an introduction gas supply port is provided separately from the reaction gas supply port, the introduction gas is turned into plasma and introduced into the reaction chamber, and the reaction gas excited and decomposed by the carbon dioxide laser beam and the plasma With the introduced gas,
Since a thin film is formed on the substrate, it is possible to form a silicon oxide film or a silicon nitride film at a low temperature, and it is also possible to obtain a semiconductor manufacturing apparatus that can form an amorphous silicon film at high speed and at a low temperature.
第1図はこの発明の一実施例による半導体製造装置を示
す断面構成図、及び第2図は従来の半導体製造装置を示
す断面構成図である。
(1)・・・反応室、(2)・・・基板、(5)・・・
反応ガス、(7)・・・反応ガス供給口、(1e・・・
炭やガスレーザ発振器、(6)・・・炭酸ガスレーザビ
ーム、O−9・・・導入ガス、α9・・・プラズマ発生
炉、αQ・・・導波管、aカ・・・マイクロ波発振装置
、(ト)・・・プラズマ発生管
なお、図中、同一符号は同−又は相当部分を示す。FIG. 1 is a cross-sectional configuration diagram showing a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional configuration diagram showing a conventional semiconductor manufacturing apparatus. (1)...Reaction chamber, (2)...Substrate, (5)...
Reaction gas, (7)...Reaction gas supply port, (1e...
Charcoal or gas laser oscillator, (6)...carbon dioxide laser beam, O-9...introduced gas, α9...plasma generation furnace, αQ...waveguide, a--microwave oscillator, (G)...Plasma generation tube In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (3)
応ガスを供給する反応ガス供給口、上記反応室内の上記
反応ガスを励起分解する炭酸ガスレーザビームを発生す
る炭酸ガスレーザ発振器、導入ガスを上記反応室へ供給
する導入ガス供給口、及び上記導入ガスをプラズマ化す
るプラズマ発生手段を備え、上記基板上に励起分解され
た上記反応ガスとプラズマ化した上記導入ガスとにより
薄膜を形成する半導体製造装置。(1) A reaction chamber in which a substrate is installed, a reaction gas supply port that supplies a reaction gas to the reaction chamber, a carbon dioxide laser oscillator that generates a carbon dioxide laser beam that excites and decomposes the reaction gas in the reaction chamber, and an introduced gas an introduced gas supply port for supplying the introduced gas to the reaction chamber, and a plasma generating means for turning the introduced gas into plasma, and forming a thin film on the substrate using the excited and decomposed reaction gas and the introduced gas turned into plasma. Semiconductor manufacturing equipment.
載の半導体製造装置。(2) The semiconductor manufacturing apparatus according to claim 1, wherein the reactive gas is silane.
、またはアルゴンのうちのいずれかである特許請求の範
囲第1項または第2項記載の半導体製造装置。(3) The semiconductor manufacturing apparatus according to claim 1 or 2, wherein the introduced gas is any one of oxygen, nitrous oxide, nitrogen, ammonia, or argon.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31411186A JPS63166216A (en) | 1986-12-27 | 1986-12-27 | Semiconductor manufacturing equipment |
US07/247,443 US4919077A (en) | 1986-12-27 | 1987-12-26 | Semiconductor producing apparatus |
PCT/JP1987/001045 WO1993013552A1 (en) | 1986-12-27 | 1987-12-26 | Semiconductor fabricating unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31411186A JPS63166216A (en) | 1986-12-27 | 1986-12-27 | Semiconductor manufacturing equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63166216A true JPS63166216A (en) | 1988-07-09 |
Family
ID=18049376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31411186A Pending JPS63166216A (en) | 1986-12-27 | 1986-12-27 | Semiconductor manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63166216A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4987855A (en) * | 1989-11-09 | 1991-01-29 | Santa Barbara Research Center | Reactor for laser-assisted chemical vapor deposition |
-
1986
- 1986-12-27 JP JP31411186A patent/JPS63166216A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4987855A (en) * | 1989-11-09 | 1991-01-29 | Santa Barbara Research Center | Reactor for laser-assisted chemical vapor deposition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4581249A (en) | Photochemical vapor deposition method | |
Bergonzo et al. | Low pressure photodeposition of silicon nitride films using a xenon excimer lamp | |
JPS63166216A (en) | Semiconductor manufacturing equipment | |
JPS60128265A (en) | Device for forming thin film in vapor phase | |
JPH0128830B2 (en) | ||
JPS63258017A (en) | Semiconductor manufacturing apparatus | |
JPS61224318A (en) | Device and method for formation of vapor-phase thin film | |
JPS61263213A (en) | Processor | |
JPH0351294B2 (en) | ||
JPS5982720A (en) | Optical vapor growth method | |
JPS61198733A (en) | Method of forming thin-film | |
JPS63216974A (en) | Device for forming thin film | |
JPS59147435A (en) | Formation of silicon oxide film | |
JPS5987041A (en) | Vapor growth method | |
JPH01126237A (en) | Production of preform for optical fiber | |
JPS6118122A (en) | Semiconductor manufacturing apparatus | |
JPH0578846A (en) | Photo-cvd device | |
WO1993013552A1 (en) | Semiconductor fabricating unit | |
JPS61112103A (en) | Method and apparatus for producing optical waveguide | |
JPS6386880A (en) | Photochemical reaction utilizing device | |
JPS61288431A (en) | Manufacture of insulating layer | |
JPS60195941A (en) | Treating device | |
JPS63126229A (en) | Processor | |
JPS61166976A (en) | Surface treatment | |
JPH02234429A (en) | Manufacture of silicon nitride film |