JPH0128830B2 - - Google Patents
Info
- Publication number
- JPH0128830B2 JPH0128830B2 JP58157554A JP15755483A JPH0128830B2 JP H0128830 B2 JPH0128830 B2 JP H0128830B2 JP 58157554 A JP58157554 A JP 58157554A JP 15755483 A JP15755483 A JP 15755483A JP H0128830 B2 JPH0128830 B2 JP H0128830B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction
- excitation
- reaction vessel
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 230000005284 excitation Effects 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 230000005281 excited state Effects 0.000 claims description 5
- 239000012808 vapor phase Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000012071 phase Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052805 deuterium Inorganic materials 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- VSQYNPJPULBZKU-UHFFFAOYSA-N mercury xenon Chemical compound [Xe].[Hg] VSQYNPJPULBZKU-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、シリコンなどの半導体などの固体薄
膜を製造するための、いわゆる光CVD
(Chemical Vapor Deposition)による固体薄膜
の製造方法に関する。[Detailed Description of the Invention] Industrial Application Field The present invention is directed to the so-called optical CVD for producing solid thin films of semiconductors such as silicon.
This invention relates to a method for producing a solid thin film by (Chemical Vapor Deposition).
従来技術
先行技術では、基板上にシリコンを気相成長さ
せるために、反応容器内にSiH4とO2とN2Oとの
混合ガスを供給している。反応容器に設けられた
光通過窓には、反応容器外に配置されている水銀
ランプなどのような光源からの光が導かれ、この
光は基板上に導かれる。Prior Art In the prior art, a mixed gas of SiH 4 , O 2 and N 2 O is supplied into a reaction vessel in order to vapor phase grow silicon on a substrate. Light from a light source such as a mercury lamp placed outside the reaction vessel is guided to a light passage window provided in the reaction vessel, and this light is guided onto the substrate.
発明が解決しようとする問題点
このような先行技術では、ガスの分解および反
応効率をさらに速めることが望まれる。Problems to be Solved by the Invention In such prior art, it is desirable to further speed up gas decomposition and reaction efficiency.
本発明の目的は、ガスの分解および反応効率を
速めることができるようにした光CVDによる固
体薄膜の製造方法を提供することである。 An object of the present invention is to provide a method for producing a solid thin film by optical CVD, which makes it possible to accelerate gas decomposition and reaction efficiency.
問題点が解決するための手段
本発明は、光源からの励起用光を通過する反応
容器の通過窓から離れた反応容器内の位置で、か
つ気相成長すべき基板の近傍に、形成すべき固体
薄膜に含まれる原子を有する第1のガスを導き、
第1ガス以外の第2ガスを通過窓付近に導き、光
CVD反応において第2ガスが反応容器外の励起
室で第1段階の励起をし、基板の近傍で第2段階
の励起をし、これによつて高エネルギの励起状態
のガスを作り、この高エネルギ励起状態のガスと
第1ガスとの直接化学反応によつて光CVDの反
応のための第1ガスの分解および反応効率を格段
と早めることを特徴とする光CVDによる固体薄
膜の製造方法である。Means for Solving the Problems The present invention provides a method for forming an excitation light at a position within a reaction vessel away from a passage window of the reaction vessel through which excitation light from a light source passes, and near a substrate to be vapor-phase grown. directing a first gas having atoms contained in the solid thin film;
A second gas other than the first gas is guided near the passage window, and light
In a CVD reaction, a second gas undergoes a first stage of excitation in an excitation chamber outside the reaction vessel and a second stage of excitation near the substrate, thereby creating a high-energy excited state of the gas. A method for producing a solid thin film by photo-CVD, characterized in that the decomposition of the first gas for the photo-CVD reaction and the reaction efficiency are significantly accelerated by a direct chemical reaction between the gas in an energetically excited state and the first gas. be.
実施例
第1図は本発明の基礎となる構成を示す断面図
であり、第2図はその簡略化した平面図である。
反応容器1には、開口が形成され、この開口には
励起用光を通過するためのCaF2などから成る透
光性通過窓部材2が設けられ、この通過窓部材2
を介する光源としての重水素ランプ3からの短波
長光は、シリコンウエハである基板4上に達する
ことができる。反応容器1内では、光通過窓部材
2から離れた反応容器1内の位置で、かつ気相成
長すべき基板4の近傍に、反応のための第1ガス
が管路5からノズル6によつて供給される。この
反応ガスは、SiH410mol%と、それを希釈する
90mol%のN2とから成つてもよい。光通過窓部
材2近傍には、管路7から第2ガスとしてのO2
が導かれ、ノズル8から光通過窓部材2に向けて
噴射される。基板4はヒータ9によつて加熱され
る。反応容器1は、たとえば石英ガラス、ステン
レス鋼などから成つてもよい。管路5からの反応
ガスと管路7からのO2との流量比は、たとえば、
0.6:1〜1:1程度であつてもよい。Embodiment FIG. 1 is a sectional view showing the basic structure of the present invention, and FIG. 2 is a simplified plan view thereof.
An opening is formed in the reaction vessel 1, and a translucent passage window member 2 made of CaF 2 or the like is provided in this opening for passing excitation light.
The short wavelength light from the deuterium lamp 3 as a light source can reach the substrate 4, which is a silicon wafer. In the reaction vessel 1, a first gas for reaction is supplied from a pipe 5 to a nozzle 6 at a position within the reaction vessel 1 away from the light passage window member 2 and near the substrate 4 to be vapor-phase grown. supplied. This reaction gas dilutes it with 10mol% SiH4
90 mol% N2 . Near the light passing window member 2, O 2 as a second gas is supplied from the conduit 7.
is guided and injected from the nozzle 8 toward the light passing window member 2. The substrate 4 is heated by a heater 9. The reaction vessel 1 may be made of quartz glass, stainless steel, etc., for example. The flow rate ratio of the reaction gas from pipe 5 and O 2 from pipe 7 is, for example,
The ratio may be about 0.6:1 to 1:1.
ノズル8は開口Saに形成されており、この開
口8aには管路7からのO2が供給される。管路
7から開口8aに供給される部分には整流体7a
が設けられており、これによつて半径方向内方に
向けられたノズル8からは、ほぼ等しい流量で
O2が噴射される。もう1つのノズル6も同様に
して開口6aに接続され、この開口6aには前述
のように管路5から反応ガスが供給される。 The nozzle 8 is formed in an opening Sa, and O 2 from the conduit 7 is supplied to this opening 8a. A rectifier 7a is provided in the portion supplied from the pipe line 7 to the opening 8a.
are provided, so that the radially inwardly directed nozzles 8 deliver approximately equal flow rates.
O2 is injected. The other nozzle 6 is similarly connected to the opening 6a, to which the reaction gas is supplied from the conduit 5 as described above.
重水素ランプ3は200mmよりも短い短波長帯を
もつ紫外線の光を発生する。O2は、第3図に示
されるように、このような短波長帯、たとえば
135〜170mm付近において大きな吸収スペクトルを
有する。したがつて、重水素ランプ3を用いて
O2を効率よく励起させることができ、したがつ
て基板4上へのSiO2の気相成長を比較的低温度
で行うことができるようになる。 The deuterium lamp 3 generates ultraviolet light having a short wavelength band shorter than 200 mm. As shown in FIG. 3, O 2
It has a large absorption spectrum around 135-170mm. Therefore, using deuterium lamp 3
O 2 can be excited efficiently, and therefore SiO 2 can be grown in vapor phase on the substrate 4 at a relatively low temperature.
第4図は本発明の一実施例の系統図である。前
述の構成の対応する部分には同一の参照符を付す
る。管路16からは、O2が供給される。この酸
素O2は励起室17において短波長光を発生する
重水素ランプ18によつて、励起酸素O3となる。
この励起酸素O3は管路19から管路7を経て、
反応容器1内のノズル8から反応室内に供給され
る。光通過窓部分2には、短波長光を発生する光
源、たとえば水銀ランプ、キセノンランプ、エキ
シマレーガ、水銀キセノンランプなどの光源20
が設けられる。 FIG. 4 is a system diagram of an embodiment of the present invention. Corresponding parts of the structure described above are given the same reference numerals. O 2 is supplied from the conduit 16. This oxygen O 2 is converted into excited oxygen O 3 by a deuterium lamp 18 that generates short wavelength light in an excitation chamber 17 .
This excited oxygen O 3 passes from pipe 19 to pipe 7,
It is supplied into the reaction chamber from a nozzle 8 in the reaction vessel 1. The light passing window portion 2 includes a light source 20 that generates short wavelength light, such as a mercury lamp, a xenon lamp, an excimer gas, a mercury xenon lamp, etc.
will be provided.
励起室17では、酸素の吸収スペクトルが良好
な短波長光を発生する重水素ランプ18によつて
励起酸素O3が作られる。この励起酸素O3は、そ
の寿命が長くしかも長波長発光の吸収スペクトル
を第5図のように有している。したがつて、反応
容器1内では、この励起酸素O3が長波長光の光
源20によつて励起される。このようにして、効
率よくO2を励起して光CVDによつて、基板4上
に半導体薄膜を堆積することができる。 In the excitation chamber 17, excited oxygen O 3 is produced by a deuterium lamp 18 that generates short wavelength light with a good oxygen absorption spectrum. This excited oxygen O 3 has a long lifetime and has an absorption spectrum of long wavelength light emission as shown in FIG. Therefore, within the reaction vessel 1, this excited oxygen O 3 is excited by the light source 20 of long wavelength light. In this way, it is possible to efficiently excite O 2 and deposit a semiconductor thin film on the substrate 4 by optical CVD.
第6図は本発明の原理を示すエネルギ伝達図で
ある。この図を参照して光CVD反応において反
応のための第1ガスの光励起エネルギをE1とす
ると励起状態がら再結合放射するエネルギE1を
もち、かつそのエネルギE1への励起に必要な別
のエネルギE2に対して大きな吸収係数を持つ第
2ガスを準備し、光CVDの第1ガスと励起エネ
ルギE1を持つ光源I1のほかに励起エネルギE
2を持つ光源I2と第2ガスを同時に介在させて
光CVDの第1ガスの分解効率を格段と早めるこ
とができるようになる。 FIG. 6 is an energy transfer diagram showing the principle of the present invention. Referring to this figure, if the optical excitation energy of the first gas for reaction in a photoCVD reaction is E1, the excited state has energy E1 for recombination and radiation, and another energy E2 necessary for excitation to that energy E1. A second gas having a large absorption coefficient is prepared, and in addition to the first gas for optical CVD and a light source I1 having an excitation energy E1, a second gas having an excitation energy E1 is prepared.
By simultaneously intervening the light source I2 having 2 and the second gas, it becomes possible to significantly accelerate the decomposition efficiency of the first gas in optical CVD.
第7図は本発明の原理を説明するための他のエ
ネルギ伝達図である。この図を参照して、光
CVD反応において第2ガスがI3およびI4な
どの複数の光源によつて二段階以上励起され、
O3 *などの高エネルギの励起用状態のガスを作
り、このO3 *は、O2ガスと化学活性の大きいO*
ラジカルに分解される。O*と第1ガスとの直接
化学反応によつて、光CVD反応のための第1ガ
スの分解および反応効率を格段と早めることがで
きる。 FIG. 7 is another energy transfer diagram for explaining the principle of the present invention. Referring to this diagram, the light
In the CVD reaction, the second gas is excited in two or more stages by multiple light sources such as I3 and I4,
A high-energy excitation state gas such as O 3 * is created, and this O 3 * is combined with O 2 gas and O * , which has high chemical activity.
Decomposed into radicals. The direct chemical reaction between O * and the first gas can significantly speed up the decomposition of the first gas and the reaction efficiency for the photo-CVD reaction.
効 果
以上のように本発明によれば、ガスの分解およ
び反応効率を格段と速めることができるようにな
る。Effects As described above, according to the present invention, gas decomposition and reaction efficiency can be significantly accelerated.
第1図は本発明の基礎となる構成を示す断面
図、第2図は第1図に示された実施例の平面図の
簡略化した図、第3図はO2の吸収スペクトルを
示すグラフ、第4図は本発明の一実施例の断面
図、第5図はオゾンの吸収スペクトルを示すグラ
フ、第6図は本発明の原理を示すエネルギ伝達
図、第7図は本発明の他の原理の励起を示すエネ
ルギ伝達図である。
1……反応容器、2……光通過窓部材、3,1
8……重水素ランプ、4……基板、5,7,1
6,19……管路、6,18……ノズル、9……
ヒータ、11……第2室、12……第1室、13
……隔壁、14……光通過孔、17……励起室、
20……長波長光源。
Fig. 1 is a cross-sectional view showing the basic structure of the present invention, Fig. 2 is a simplified plan view of the embodiment shown in Fig. 1, and Fig. 3 is a graph showing the absorption spectrum of O 2 . , FIG. 4 is a cross-sectional view of one embodiment of the present invention, FIG. 5 is a graph showing the absorption spectrum of ozone, FIG. 6 is an energy transfer diagram showing the principle of the present invention, and FIG. 7 is a diagram showing another example of the present invention. FIG. 3 is an energy transfer diagram illustrating the excitation principle; 1...Reaction container, 2...Light passing window member, 3,1
8... Deuterium lamp, 4... Substrate, 5, 7, 1
6,19...Pipeline, 6,18...Nozzle, 9...
Heater, 11...Second chamber, 12...First chamber, 13
... partition wall, 14 ... light passage hole, 17 ... excitation chamber,
20...Long wavelength light source.
Claims (1)
過窓から離れた反応容器内の位置で、かつ気相成
長すべき基板の近傍に、形成すべき固体薄膜に含
まれる原子を有する第1のガスを導き、第1ガス
以外の第2ガスを通過窓付近に導き、光CVD反
応において第2ガスが反応容器外の励起室で第1
段階の励起をし、反応容器内の基板の近傍で第2
段階の励起をし、これによつて高エネルギの励起
状態のガスを作り、この高エネルギ励起状態のガ
スと第1ガスとの直接化学反応によつて光CVD
の反応のための第1ガスの分解および反応効率を
格段と早めることを特徴とする光CVDによる固
体薄膜の製造方法。1. At a position in the reaction vessel away from the passage window of the reaction vessel through which the excitation light from the light source passes, and in the vicinity of the substrate to be vapor phase grown, a first In a photo-CVD reaction, the second gas is introduced into the first gas in the excitation chamber outside the reaction vessel.
step excitation and a second phase near the substrate in the reaction vessel.
step excitation, thereby creating a high-energy excited state gas, and a direct chemical reaction between this high-energy excited state gas and the first gas to perform photoCVD.
A method for producing a solid thin film by optical CVD, which is characterized by greatly accelerating the decomposition of a first gas and the reaction efficiency for the reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15755483A JPS6050168A (en) | 1983-08-29 | 1983-08-29 | Production of thin solid film by photo cvd method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15755483A JPS6050168A (en) | 1983-08-29 | 1983-08-29 | Production of thin solid film by photo cvd method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6969587A Division JPS6366924A (en) | 1987-03-23 | 1987-03-23 | Manufacture of solid-state thin-film through photo-cvd |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050168A JPS6050168A (en) | 1985-03-19 |
JPH0128830B2 true JPH0128830B2 (en) | 1989-06-06 |
Family
ID=15652218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15755483A Granted JPS6050168A (en) | 1983-08-29 | 1983-08-29 | Production of thin solid film by photo cvd method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050168A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62116771A (en) * | 1985-11-15 | 1987-05-28 | Canon Inc | Film forming device |
JPS62129060U (en) * | 1986-02-10 | 1987-08-15 | ||
JPH0627335B2 (en) * | 1986-10-24 | 1994-04-13 | 日本電気株式会社 | Photochemical vapor deposition equipment |
JPH01297820A (en) * | 1988-03-04 | 1989-11-30 | Emcore Inc | Apparatus and method for applying film to board |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53126867A (en) * | 1977-04-13 | 1978-11-06 | Hitachi Ltd | Cvd apparatus |
JPS57187033A (en) * | 1981-05-12 | 1982-11-17 | Seiko Epson Corp | Vapor phase chemical growth device |
-
1983
- 1983-08-29 JP JP15755483A patent/JPS6050168A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53126867A (en) * | 1977-04-13 | 1978-11-06 | Hitachi Ltd | Cvd apparatus |
JPS57187033A (en) * | 1981-05-12 | 1982-11-17 | Seiko Epson Corp | Vapor phase chemical growth device |
Also Published As
Publication number | Publication date |
---|---|
JPS6050168A (en) | 1985-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3361112B2 (en) | Semiconductor wafer processing equipment | |
JP2635021B2 (en) | Deposition film forming method and apparatus used for the same | |
JPH0128830B2 (en) | ||
JPS60245217A (en) | Thin film formation equipment | |
JPS5982732A (en) | Manufacture for semiconductor device | |
JPS59207621A (en) | Formation of thin film | |
JPH0351294B2 (en) | ||
JPS59129774A (en) | Selective formation of nitrided film | |
JPS63126229A (en) | Processor | |
JPS5982720A (en) | Optical vapor growth method | |
JPS61230326A (en) | Vapor growth apparatus | |
JPS6118125A (en) | Thin film forming apparatus | |
JPS6128443A (en) | Photochemical gaseous phase growing apparatus | |
JPS61119028A (en) | Photo-chemical vapor deposition equipment | |
JPS6052579A (en) | Optical nitride film forming device | |
JPS59147435A (en) | Formation of silicon oxide film | |
JPS61196542A (en) | Photochemical vapor deposition equipment | |
JPH036379A (en) | Chemical vapor growth device | |
JPS60211847A (en) | Forming method of insulating film | |
JPS59194427A (en) | Optical cvd device | |
JPS61263213A (en) | Processor | |
JPH02159376A (en) | Method and device for light-excited cvd | |
JPS61264719A (en) | Light cvd device | |
JPS63216974A (en) | Device for forming thin film | |
JPS59209643A (en) | Photochemical vapor phase deposition device |