[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63147145A - Waveguide type mach-zehnder interferometer - Google Patents

Waveguide type mach-zehnder interferometer

Info

Publication number
JPS63147145A
JPS63147145A JP29522686A JP29522686A JPS63147145A JP S63147145 A JPS63147145 A JP S63147145A JP 29522686 A JP29522686 A JP 29522686A JP 29522686 A JP29522686 A JP 29522686A JP S63147145 A JPS63147145 A JP S63147145A
Authority
JP
Japan
Prior art keywords
optical
waveguide
mach
optical waveguides
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29522686A
Other languages
Japanese (ja)
Other versions
JPH0660982B2 (en
Inventor
Masao Kawachi
河内 正夫
Norio Takato
高戸 範夫
Mitsuho Yasu
安 光保
Kaname Jinguji
神宮寺 要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29522686A priority Critical patent/JPH0660982B2/en
Priority to US07/049,387 priority patent/US4781424A/en
Priority to CA000537436A priority patent/CA1294161C/en
Priority to EP87306341A priority patent/EP0255270B1/en
Priority to DE87306341T priority patent/DE3785105T2/en
Publication of JPS63147145A publication Critical patent/JPS63147145A/en
Publication of JPH0660982B2 publication Critical patent/JPH0660982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To attain stable interferometer operation which does not depend upon the polarization direction of incident light by controlling the birefringent values of two single-mode optical waveguides locally through the operation of an applied adjustment groove. CONSTITUTION:When the difference in effective refractive index between a TM wave which has a polarization direction at right angles to a substrate and a TE wave which has a polarization direction in parallel to the substrate is a birefringent value B, the difference R in optical path length between optical waveguides 4 and 5 which depends upon the polarization directions is the difference between line integral values integral Bdl1 and integral Bdl2 of the value B along the respective optical waveguides, where l1 and l2 are line coordinates along the two optical waveguides 4 and 5. Applied adjustment grooves are provided on both sides of at least one optical waveguides along the optical waveguide so that the R is an integral multiple (including 0) of the wavelength of in-use light. Consequently. The Mach-Zender light interferometer performs the same operation with an optical frequency multiplexer demultiplexer without depending upon the polarization state of the incident wave.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入射光の偏光方向にかかわらず安定動作の可
能な導波形マッハ・ツェンダ光干渉S1に関づるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a waveguide Mach-Zehnder optical interference S1 that is capable of stable operation regardless of the polarization direction of incident light.

〔従来技術および問題点〕[Prior art and problems]

2個の光結合器、例えば方向性結合器を2本の光導波路
で連結して(M成される光干渉計はマッハ・ツェンダ光
干渉計とげばれ、尤スイッチや光センリ、さらに最近で
は周波数多重光通信合分波器などに使用されている。こ
のマッハ・ツェンダ光干渉計は、その構成により、(1
)バルク形、(2)ファイバ形、(3)導波形の3種類
に分類できるが、信頼性、生産性、小形軽量性等の理由
から平面基板上に構成する導波形のものが最有望視され
ている。
Optical interferometers that connect two optical couplers, such as directional couplers, with two optical waveguides (M) are known as Mach-Zehnder optical interferometers, switches, optical sensors, and more recently, frequency It is used in multiplex optical communication multiplexer/demultiplexer, etc. This Mach-Zehnder optical interferometer has a (1
) Bulk type, (2) fiber type, and (3) waveguide type, but the waveguide type constructed on a flat substrate is considered the most promising for reasons such as reliability, productivity, small size and light weight. has been done.

また、マッハ・ツェンダ光干渉計は、光路構成面から、
(a)対称形と(b)非対称形に分類することもできる
。対称形は2個の光結合器を連結する2本の光導波路の
長さが等しいものであり、非対称形は故意にそれらの長
さに差を与えたものである。
In addition, the Mach-Zehnder optical interferometer has the following characteristics in terms of optical path configuration:
It can also be classified into (a) symmetrical type and (b) asymmetrical type. A symmetric type is one in which the lengths of the two optical waveguides connecting two optical couplers are equal, and an asymmetric type is one in which the lengths are intentionally made different.

第3図は、光周波数多重合分波器への応用を目的に構成
された従来の非対称導波形光干渉計の構成の説明図であ
り、(a)は平面図、(b)は(aJ図における線分Δ
A′に沿っての断面拡大図である。
FIG. 3 is an explanatory diagram of the configuration of a conventional asymmetric waveguide optical interferometer configured for application to an optical frequency multiplexing/demultiplexing device, where (a) is a plan view and (b) is an (aJ Line segment Δ in the diagram
It is an enlarged cross-sectional view along A'.

図において、シリコン基板1上に石英系ガラス材料によ
り形成された方向性結合器2.3は、近接した2本の石
英系単一モード光導波路からなり、その結合率はいずれ
もほぼ50%になるように設定されている。また、方向
性結合器2.3の間を連結する2本の光導波路4.5は
長さがΔしたけ箕なっている。
In the figure, a directional coupler 2.3 formed of a silica-based glass material on a silicon substrate 1 consists of two adjacent silica-based single-mode optical waveguides, each of which has a coupling rate of approximately 50%. It is set to be. Further, the two optical waveguides 4.5 connecting between the directional couplers 2.3 have a length as short as Δ.

このようなマッハ・ツェンダ形光干渉計では、入力ボー
ト1aから入射した信号光の光周波数を変化させていく
と、 八f=□・□ 2n   ΔL (Cは光速、nは光導波路の屈折率) を周期として出力ボート1b、2bに交互に信号光を取
り出せることが知られている。したがって、例えば、1
.55μm帯において、Δf=10GI12だけ光周波
数間隔の離れた2本の信号光fl。
In such a Mach-Zehnder type optical interferometer, when the optical frequency of the signal light incident from the input boat 1a is changed, 8f=□・□ 2n ΔL (C is the speed of light, n is the refractive index of the optical waveguide) ) It is known that signal light can be taken out alternately to the output ports 1b and 2b with a period of . Therefore, for example, 1
.. In the 55 μm band, two signal lights fl separated by an optical frequency interval of Δf=10GI12.

f2を入カポ−1−1aから同時に入射させると、上式
に従ってΔL均10mmに設定しておくと、出力ボート
1b、2bに2つの信号光f、、f2を分離してとり出
すことができる。実際にはマッハ・ツェンダ光干渉計の
1述の周期を信号光f+。
When f2 is input simultaneously from input capo 1-1a, if ΔL is set to 10 mm according to the above formula, two signal beams f, f2 can be separated and taken out to output boats 1b and 2b. . In reality, the first period of the Mach-Zehnder optical interferometer is the signal light f+.

f2の周波数値と同期させ、希望の出力ポートに、希望
の信号光を取り出づために、一方の光導波路5の上部に
は、光導波路5の実効的な光路長を熱光学効果によって
1波長程度変化させるための移相器として薄膜ヒータ6
が形成されており、第3図の光干渉計は全体として光周
波数多重合分波器として機能する。
In order to synchronize with the frequency value of f2 and take out the desired signal light to the desired output port, the effective optical path length of the optical waveguide 5 is set to 1 by the thermo-optic effect at the top of one of the optical waveguides 5. A thin film heater 6 is used as a phase shifter to change the wavelength.
The optical interferometer shown in FIG. 3 functions as an optical frequency multiplexer/demultiplexer as a whole.

しかし、この従来の導波形光干渉こ1では以下のような
問題点があった。すなわら、シリコン基板1とその上に
形成された光導波路4.5との熱膨張係数が異なること
から、光導波路は基板と平行方向の圧縮応力を受け、そ
のため応力複屈折性を右することになり、実効屈折率n
が入射光の偏光方向によってわずかに異なる。したがっ
て、入用光の偏光方向をいずれか一方に合わせておかな
いど、光周波数多Φ合分波器としての動作が全く不能に
なるという問題があった。
However, this conventional waveguided optical interference method 1 has the following problems. In other words, since the thermal expansion coefficients of the silicon substrate 1 and the optical waveguide 4.5 formed thereon are different, the optical waveguide is subjected to compressive stress in a direction parallel to the substrate, which causes stress birefringence. Therefore, the effective refractive index n
differs slightly depending on the polarization direction of the incident light. Therefore, there is a problem that unless the polarization direction of the desired light is set to one of the two, the operation as an optical frequency multi-Φ multiplexer/demultiplexer becomes completely impossible.

本発明は、従来の導波形光干渉計の欠点を解決し、入射
光の偏光方向に依存しない導波形マッハ・ツェンダ光干
渉計を提供することにある。
The present invention solves the drawbacks of conventional waveguide optical interferometers and provides a waveguide Mach-Zehnder optical interferometer that does not depend on the polarization direction of incident light.

〔問題点を解決するための手段〕[Means for solving problems]

前記従来技術の問題点を解決する方法としては、光導波
路の複屈折を零にづることかまず考えられるが、平面基
板上に形成される光導波路において?ll1li′I折
を零にでることは作製上極めて困難である。
One possible solution to the problems of the prior art is to reduce the birefringence of the optical waveguide to zero, but what about optical waveguides formed on a flat substrate? It is extremely difficult in manufacturing to achieve zero ll1li'I fold.

これに対し、本発明はむしろ光導波路の複屈折の存在を
認めて実効的にマッハ・ツェンダ光干渉計の偏光依存性
を解H’Iするものである。
In contrast, the present invention recognizes the existence of birefringence in the optical waveguide and effectively solves the polarization dependence of the Mach-Zehnder optical interferometer.

基板に垂直な偏光方向を有するTM波と基板に平行な偏
光方向をnりるTE波の実効屈折率の差を複屈折値Bと
すると、偏光方向に依る光導波路4.5(第3図)の光
路長差Rは次式で与えられる。
If the difference in effective refractive index between a TM wave with a polarization direction perpendicular to the substrate and a TE wave with a polarization direction parallel to the substrate is defined as the birefringence value B, then the optical waveguide 4.5 depending on the polarization direction (Fig. 3) ) is given by the following equation.

R= f 8dJ + −f BdJ 2      
 ・・・(1)ここで、J+ 、 J2はそれぞれ2本
の光ヌ9波路4.5に沿う線座標ぐある。また、f B
dJ + とfBdJ2はB値のそれぞれの光導波路に
沿う線積分値であり、積分範囲は、方向性結合器2から
方向性結合器3までである。
R= f 8dJ + −f BdJ 2
...(1) Here, J+ and J2 are the line coordinates along the two optical wave paths 4.5, respectively. Also, f B
dJ + and fBdJ2 are line integral values of the B value along each optical waveguide, and the integral range is from directional coupler 2 to directional coupler 3.

本発明は、Rが使用光の波長の整数倍値(Oを含む)に
なるようにB値を局所的に調節しておくことを最大の特
徴としている。すなわら、光波長λの整数倍の光位相差
はマッハ・ツェンダ光干渉計では識別できないことから
、見掛は上、TM波の干渉条件とT、E波の干渉条件と
が一致することに着目したものである。B値の局所的調
節は、具体的には少なくとも一方の光導波路に沿フてこ
の光導波路の両側に応用調節溝を設けることによりなさ
れる。
The main feature of the present invention is that the B value is locally adjusted so that R is an integral multiple (including O) of the wavelength of the light used. In other words, since an optical phase difference that is an integral multiple of the optical wavelength λ cannot be identified by a Mach-Zehnder optical interferometer, it appears that the interference conditions for the TM wave match those for the T and E waves. The focus is on Specifically, the local adjustment of the B value is achieved by providing applied adjustment grooves along at least one of the optical waveguides on both sides of the optical waveguide.

このような設定により、従来問題であったTM波の分離
条件とTE波の分離条件とのずれは解消し、同一の簿膜
ヒータ移相器駆動条件で、マッハ・ツェンダ光干渉π1
は入用波の偏光状態に依らず光周波数多重合分波器とし
て同一・の動作をすることができるようになる。
With these settings, the discrepancy between the TM wave separation conditions and the TE wave separation conditions, which was a conventional problem, is resolved, and the Mach-Zehnder optical interference π1 is eliminated under the same film heater phase shifter driving conditions.
It becomes possible to perform the same operation as an optical frequency multiplexing/demultiplexing device regardless of the polarization state of the required wave.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

以下に示す図中にrNllじ符号によって示された要素
は同じものを表している。
Elements indicated by the same reference numerals rNll in the figures shown below represent the same thing.

〔実施例1〕 第1図は、本発明の第1の実施例を説明する図であって
、(a)は導波形マッハ・ツェンダ光干渉計の平面図、
(b)は(a)図における線分AA’ に沿った断面拡
大図である。この図に示した実施例のマッハ・ツェンダ
光干渉計と第3図に示した従来例のマッハ・ツェンダ光
干渉計とは、光導波路4の一部に、光導波路4の応力複
屈折値を局所的に変化させるための応力調節溝21a、
21bが形成されている点で異なる。
[Embodiment 1] FIG. 1 is a diagram illustrating a first embodiment of the present invention, in which (a) is a plan view of a waveguide Mach-Zehnder optical interferometer;
(b) is an enlarged cross-sectional view taken along line segment AA' in figure (a). The Mach-Zehnder optical interferometer of the embodiment shown in this figure and the conventional Mach-Zehnder optical interferometer shown in FIG. stress adjustment groove 21a for locally changing stress;
The difference is that 21b is formed.

本実施例では、厚さ0.7mmのシリコン基板1の上に
厚さ50μmの石英系ガラスクラッドH12が形成され
ており、ぞのクラッド層12の中に形成された2本の石
英系ガラスコア部が2本の光導波路4.5を構成してい
る。これら2本の石英系ガラス光導波路4,5はエバネ
ッセント結合するように近接して、結合比50%の方向
性結合器2.3を形成している。
In this example, a 50 μm thick silica glass cladding H12 is formed on a 0.7 mm thick silicon substrate 1, and two silica glass cores are formed in each cladding layer 12. portion constitutes two optical waveguides 4.5. These two silica-based glass optical waveguides 4 and 5 are adjacent to each other so as to be evanescently coupled to form a directional coupler 2.3 with a coupling ratio of 50%.

光導波路4.5の断面寸法は約6μ7rL×6μmに設
定されており、クラッド層12との比屈折率差は0.7
5%である。また、光導波路4,5の曲線部は5mm程
度の曲率半径をもって構成されている。このような石英
系単一モード光導波路は、si C1a 、 Tt C
14等の原料ガスの火炎加水分解反応によるガラス膜の
堆積技術と反応性イオンエツチング技術との組み合わけ
による周知の方法で作製できる。応力調節溝218.2
1bは光導波路4のコア部の両側のクラッド層12の一
部を反応性イオンエツチングにより除去することにより
形成されている。したがって、導波路4の両側に形成し
た応力調節溝21a、21bは、導波路4がgt板1か
ら受けている導波路幅方向の圧縮応力を緩和する働きが
ある。応力調節溝2La、21b形成領域の光導波路4
の良さをJ 12とすると、前記式(1)で与えられた
偏光方向に依存する2木の光導波路の光路長差Rは次式
のようになる。
The cross-sectional dimensions of the optical waveguide 4.5 are set to approximately 6μ7rL×6μm, and the relative refractive index difference with the cladding layer 12 is 0.7.
It is 5%. Further, the curved portions of the optical waveguides 4 and 5 are configured to have a radius of curvature of about 5 mm. Such a silica-based single mode optical waveguide has Si C1a, Tt C
It can be produced by a well-known method combining a glass film deposition technique using a flame hydrolysis reaction of raw material gas such as No. 14 and a reactive ion etching technique. Stress adjustment groove 218.2
1b is formed by removing a portion of the cladding layer 12 on both sides of the core portion of the optical waveguide 4 by reactive ion etching. Therefore, the stress adjustment grooves 21a and 21b formed on both sides of the waveguide 4 function to relieve the compressive stress in the waveguide width direction that the waveguide 4 receives from the GT plate 1. Optical waveguide 4 in stress adjustment groove 2La, 21b forming region
Assuming that the quality of J is J12, the optical path length difference R between the two optical waveguides, which depends on the polarization direction given by the above equation (1), is expressed by the following equation.

R=8・ΔL −(B−8”  ) J 12   ・
・・(2)式中、ΔLは2本の光導波路の長さの差であ
り、本実施例ではΔL=10mとした。また、Bは応力
調節溝21a、21b未形成領域の光導波路4の複屈折
値であり、本実施例ではB≠4×10−4であった。ま
た、B9は応力調節溝21a、21b形成領域の光導波
路4の複屈折値である。B9は応力調節溝21a、21
bによってはさまれたクラッドFAの幅W(第1図(b
、l参照)によって規定され、ここでは〜V#150μ
mと選ぶことにより、複屈折値を半分に減少させ、B=
2x10−’とした(一般に89はWの減少とともに減
少する)前記したようにRを波長λの整数倍になるよう
光干渉計の複屈折構造を設31すれば、入tA偏波依存
性を解消できるが、本実施例ではB≠4×10−4車 、B  #2X10−’、 △L汝10m=10’ 1
1mに対応してJt2#12.3mと設定すると、前記
(2)式よりR#1.55μm、すなわち使用光波長の
1倍にRを調節することかできる。
R=8・ΔL−(B−8”) J 12・
... In formula (2), ΔL is the difference in length between the two optical waveguides, and in this example, ΔL was set to 10 m. Further, B is the birefringence value of the optical waveguide 4 in the region where the stress adjustment grooves 21a and 21b are not formed, and in this example, B≠4×10 −4. Further, B9 is the birefringence value of the optical waveguide 4 in the region where the stress adjustment grooves 21a and 21b are formed. B9 is the stress adjustment groove 21a, 21
The width W of the cladding FA sandwiched by b (Fig. 1 (b
, l), here ~V#150μ
By choosing m, the birefringence value is reduced by half, and B=
2x10-' (in general, 89 decreases as W decreases).If the birefringence structure of the optical interferometer is designed so that R is an integral multiple of the wavelength λ as described above, the polarization dependence of the input tA can be reduced. However, in this example, B≠4×10−4 cars, B #2×10−′, △L 10m=10′ 1
If Jt2# is set to 12.3m corresponding to 1m, R# can be adjusted to 1.55μm, that is, 1 times the wavelength of the light used, from the above equation (2).

実際、上記の数値例をもって構成されたマッハ・ツェン
ダ光干渉計は、光周波数多重通信用合分波器として、入
射信号光の偏波方向に依らず安定な動作を示すことをi
認した。
In fact, it has been shown that the Mach-Zehnder optical interferometer configured with the above numerical example exhibits stable operation as a multiplexer/demultiplexer for optical frequency multiplexing communications, regardless of the polarization direction of the incident signal light.
Approved.

なお、本発明は上記のB*とJ 12の和み合わせに限
定されるものでなく、式(1)あるいは式(2)を満足
りる範囲で種々の組み合わせがあることはもちろんであ
る。例えば、Wを90μ7n程度に設定覆ると、B“=
ixio−4となるが、この場合J+?#13.3mと
設定して、R#Oすなわち使用光波長の′零倍に1≧を
調節しで漏光依存性を解消することも可能である。
It should be noted that the present invention is not limited to the above-mentioned combination of B* and J12, and there are of course various combinations within the range that satisfies formula (1) or formula (2). For example, if W is set to about 90μ7n, B"=
It becomes ixio-4, but in this case J+? It is also possible to eliminate light leakage dependence by setting #13.3m and adjusting R#O, that is, 1≧0 times the used light wavelength.

〔実施例2〕 第2図は本発明の第2の実施例を示す説明図であり、実
施例1と同様、シリコン基板1上に石英系単一モード光
導波路4.5で方向性結合器2゜3を連結した非対称形
のマッハ・ツェンダ光干渉計(光路長差へL # 5 
mm )が構成されている。実施例1とは逆に短かい方
の光導波路5に沿って、その一部に長さ、121にわた
って応力調節溝21a。
[Example 2] FIG. 2 is an explanatory diagram showing a second example of the present invention. Similar to Example 1, a directional coupler is formed using a silica-based single mode optical waveguide 4.5 on a silicon substrate 1. An asymmetrical Mach-Zehnder optical interferometer that connects 2゜3 (to optical path length difference L #5
mm) is constructed. Contrary to Embodiment 1, a stress adjustment groove 21a is provided along a part of the shorter optical waveguide 5 over a length of 121.

21bが形成されている。この場合、前記(1)式で与
えられたRは次式のように表わされる。
21b is formed. In this case, R given by the above formula (1) is expressed as follows.

R=[3・Δl+ (B−8” )J2+  ・・・(
3)そこで、ΔL#5M、B#4X10−4.8’″絢
2X10’、721 =5.5mmと設定することによ
り、R#3.1μm=i、55μ71LX2すなわち、
Rを波長1.55μmの2倍調節して、やはりマッハ・
ツェンダ光干渉計の偏波依存性を実効上解消することが
できた。
R=[3・Δl+ (B-8”)J2+...(
3) Therefore, by setting ΔL #5M, B #4
By adjusting R twice the wavelength of 1.55 μm, Mach
We were able to effectively eliminate the polarization dependence of the Zehnder optical interferometer.

なお、実施例1.実施例2のいずれの場合も、薄膜ヒー
タ移相器6は、2本の光導波路の光路長差を信号光の光
周波数値に合わせて1波長程度変化させ、マッハ・ツェ
ンダ光干渉計の周波数分離周期を信号光の周波数値に同
調させる目的のものであるから、光導波路5上に設ける
かわりに光導波路4上に設けてもよい。
In addition, Example 1. In either case of the second embodiment, the thin film heater phase shifter 6 changes the optical path length difference between the two optical waveguides by about one wavelength in accordance with the optical frequency value of the signal light, and changes the frequency of the Mach-Zehnder optical interferometer. Since the purpose is to tune the separation period to the frequency value of the signal light, it may be provided on the optical waveguide 4 instead of on the optical waveguide 5.

また、薄膜ヒータ移相器6は、熱光学効果原理に基づく
もので、その移相作用は、等方向、すなわらTE波、T
M波いずれにも同等に働くので、偏波依存性が移相器6
において発生する懸念はないことを付記する。
Further, the thin film heater phase shifter 6 is based on the thermo-optic effect principle, and its phase shifting action is isodirectional, that is, TE wave, T
Since it works equally well on both M waves, the polarization dependence is
Please note that there is no concern that this will occur.

さらにまた、上記実施例では、光干渉に1を構成する光
結合器として方向性結合器を利用したが、方向性結合器
の代わりにY字形の分岐・合流器によりマッハ・ツェン
ダ光干渉計を構成したものも本発明の範囲に含まれる。
Furthermore, in the above embodiment, a directional coupler was used as the optical coupler 1 for optical interference, but instead of the directional coupler, a Mach-Zehnder optical interferometer was used using a Y-shaped branch/combiner. Those configured are also included within the scope of the present invention.

また、上記実施例では応力調節itAの深さはクラッド
層の厚さすべてとしているが、この深さはその中間の値
でもよく、溝の深さが深くなる程B*は減少する。
Further, in the above embodiment, the depth of the stress adjustment itA is set to the entire thickness of the cladding layer, but this depth may be an intermediate value, and B* decreases as the depth of the groove increases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、非対称導波形マッハ
・ツェンダ光干渉計を構成する2本の甲−モード光導波
路の複屈折値を特定長にわたって、応用調節溝の作用で
局所的に制御することにより、実効的に光干渉計の偏波
依存性を解消覆るもので、入射光の偏波方向に依存しな
い安定な光干渉計動作を実現できる利点がある。すなわ
ち、偏波面コントローラ等の余計な光学装置を用いるこ
となく光周波数多単回路や干渉計形光センサ回路等を提
供することができる。
As explained above, in the present invention, the birefringence value of the two A-mode optical waveguides constituting the asymmetric waveguide Mach-Zehnder optical interferometer is locally controlled over a specific length by the action of the applied adjustment groove. This effectively eliminates the polarization dependence of the optical interferometer, and has the advantage of realizing stable optical interferometer operation that is independent of the polarization direction of the incident light. That is, it is possible to provide an optical frequency multi-single circuit, an interferometer type optical sensor circuit, etc. without using an unnecessary optical device such as a polarization controller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の7ツハ・ツエンダ光干
渉計の構成図で、(a)は平面図、(b)は(a)図の
線分A△′における断面拡大図、第2図は本発明の第2
の実流例のマッハ・ツェンダ光干渉C1の構成平面図、
第3図は従来のマッハ・ツェンダ光干渉計の構成図であ
る。 1・・・基板、la、2a−人力ポート、1b、2b・
・・出力ポート、2.3・・・方向性結合器、4.5・
・・光導波路、6・・・薄膜ヒータ移相器、21a、2
1b・・・応力調節溝。 第1図 第2図 第3図 (b)
FIG. 1 is a block diagram of a 7-Zehnder optical interferometer according to a first embodiment of the present invention, in which (a) is a plan view, and (b) is an enlarged cross-sectional view at line segment A△' in figure (a). , FIG. 2 shows the second embodiment of the present invention.
A configuration plan view of Mach-Zehnder optical interference C1 of an actual flow example,
FIG. 3 is a block diagram of a conventional Mach-Zehnder optical interferometer. 1... Board, la, 2a-manpower port, 1b, 2b・
... Output port, 2.3... Directional coupler, 4.5.
...Optical waveguide, 6... Thin film heater phase shifter, 21a, 2
1b... Stress adjustment groove. Figure 1 Figure 2 Figure 3 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)2個の光結合器を長さの異なる2本の応力複屈折
性光導波路で連結してなるマッハ・ツェンダ光干渉計に
おいて、それぞれの光導波路についてその導波路複屈折
Bを前記2個の光結合器間で線積分した値の差が使用光
波長λの整数倍にほぼ等しくなるように少なくとも一方
の光導波路に沿ってこの光導波路の両側に応力調節溝を
設けたことを特徴とする導波形マッハ・ツェンダ光干渉
計。
(1) In a Mach-Zehnder optical interferometer in which two optical couplers are connected by two stress-birefringent optical waveguides of different lengths, the waveguide birefringence B of each optical waveguide is Stress adjustment grooves are provided along at least one of the optical waveguides on both sides of the optical waveguide so that the difference in line integral values between the two optical couplers is approximately equal to an integral multiple of the used optical wavelength λ. A waveguide Mach-Zehnder optical interferometer.
(2)光導波路がシリコン基板上に形成されてなる石英
系ガラス単一モード光導波路であることを特徴とする特
許請求の範囲第1項記載の導波形マッハ・ツェンダ光干
渉計。
(2) The waveguide Mach-Zehnder optical interferometer according to claim 1, wherein the optical waveguide is a silica glass single mode optical waveguide formed on a silicon substrate.
JP29522686A 1986-07-28 1986-12-11 Waveguide-type Matsuha-Tsender optical interferometer Expired - Lifetime JPH0660982B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29522686A JPH0660982B2 (en) 1986-12-11 1986-12-11 Waveguide-type Matsuha-Tsender optical interferometer
US07/049,387 US4781424A (en) 1986-07-28 1987-05-13 Single mode channel optical waveguide with a stress-induced birefringence control region
CA000537436A CA1294161C (en) 1986-07-28 1987-05-19 Single mode optical waveguide
EP87306341A EP0255270B1 (en) 1986-07-28 1987-07-17 Single mode optical waveguide
DE87306341T DE3785105T2 (en) 1986-07-28 1987-07-17 Optical single-mode waveguide.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29522686A JPH0660982B2 (en) 1986-12-11 1986-12-11 Waveguide-type Matsuha-Tsender optical interferometer

Publications (2)

Publication Number Publication Date
JPS63147145A true JPS63147145A (en) 1988-06-20
JPH0660982B2 JPH0660982B2 (en) 1994-08-10

Family

ID=17817844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29522686A Expired - Lifetime JPH0660982B2 (en) 1986-07-28 1986-12-11 Waveguide-type Matsuha-Tsender optical interferometer

Country Status (1)

Country Link
JP (1) JPH0660982B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297851A2 (en) * 1987-06-29 1989-01-04 Nippon Telegraph And Telephone Corporation Integrated optical device and method for manufacturing thereof
JPH02157711A (en) * 1988-12-09 1990-06-18 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing and demultiplexing device
JPH02204728A (en) * 1989-02-03 1990-08-14 Nippon Hoso Kyokai <Nhk> Polarization independent optical switch
JPH04241304A (en) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> Polarization independent waveguide type optical device
US6847772B2 (en) 2002-02-14 2005-01-25 Fujitsu Limited Planar optical waveguide device
JP2006084537A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Optical device
WO2009028029A1 (en) * 2007-08-24 2009-03-05 Nippon Telegraph And Telephone Corporation Polarized wave-independent waveguide type optical interferometric circuit
US7603002B2 (en) 2005-03-18 2009-10-13 Fujitsu Limited Optical device
JP2011065187A (en) * 2005-01-14 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> Waveguide type variable light attenuator
JP2014512573A (en) * 2011-03-28 2014-05-22 ジェムファイア コーポレイション Optical device with reduced polarization dependence
CN113406747A (en) * 2020-03-17 2021-09-17 苏州旭创科技有限公司 Wavelength division multiplexer and silicon optical integrated chip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297851A2 (en) * 1987-06-29 1989-01-04 Nippon Telegraph And Telephone Corporation Integrated optical device and method for manufacturing thereof
US4900112A (en) * 1987-06-29 1990-02-13 Nippon Telegraph And Telephone Corporation Integrated optical device and method for manufacturing thereof
JPH02157711A (en) * 1988-12-09 1990-06-18 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing and demultiplexing device
JPH02204728A (en) * 1989-02-03 1990-08-14 Nippon Hoso Kyokai <Nhk> Polarization independent optical switch
JPH04241304A (en) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> Polarization independent waveguide type optical device
US6847772B2 (en) 2002-02-14 2005-01-25 Fujitsu Limited Planar optical waveguide device
JP2006084537A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Optical device
JP4713866B2 (en) * 2004-09-14 2011-06-29 富士通オプティカルコンポーネンツ株式会社 Optical device
JP2011065187A (en) * 2005-01-14 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> Waveguide type variable light attenuator
US7603002B2 (en) 2005-03-18 2009-10-13 Fujitsu Limited Optical device
WO2009028029A1 (en) * 2007-08-24 2009-03-05 Nippon Telegraph And Telephone Corporation Polarized wave-independent waveguide type optical interferometric circuit
US8346030B2 (en) 2007-08-24 2013-01-01 Nippon Telegraph And Telephone Corporation Polarization-independent waveguide-type optical interference circuit
JP2014512573A (en) * 2011-03-28 2014-05-22 ジェムファイア コーポレイション Optical device with reduced polarization dependence
CN113406747A (en) * 2020-03-17 2021-09-17 苏州旭创科技有限公司 Wavelength division multiplexer and silicon optical integrated chip
CN113406747B (en) * 2020-03-17 2022-06-21 苏州旭创科技有限公司 Wavelength division multiplexer and silicon optical integrated chip

Also Published As

Publication number Publication date
JPH0660982B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US4781424A (en) Single mode channel optical waveguide with a stress-induced birefringence control region
EP2026123B1 (en) Tunable all-pass optical filters with large free spectral ranges
JP5155447B2 (en) Broadband interferometer polarization combiner
EP0304709B1 (en) Waveguide type optical device
EP2447761B1 (en) Planar lightwave circuit type variable optical attenuator
JP2005010805A6 (en) Waveguide type optical interferometer
JP2005010805A (en) Waveguide optical interferometer
JPH08304664A (en) Wavelength demultiplexing element
JPH04241304A (en) Polarization independent waveguide type optical device
JPS63147145A (en) Waveguide type mach-zehnder interferometer
JP3112193B2 (en) Optical ring resonator
JPS62183406A (en) Waveguide type optical interferometer
WO2002063389A1 (en) Optical device
JPH08334639A (en) Mach-zehnder optical circuit
US6819859B2 (en) Planar lightwave circuit type variable optical attenuator
JP3027965B2 (en) Optical multiplexer / demultiplexer
JP2659293B2 (en) Waveguide type optical switch
JP3128974B2 (en) Waveguide type optical multiplexer / demultiplexer
JPH0660803B2 (en) Matsu Ha Tsuender-type optical interferometer
JPS63182608A (en) Waveguide type polarized light separating element
JPS63254404A (en) Optical multiplexer/demultiplexer
JP2003014958A (en) Waveguide type optical multiplexer/demultiplexer circuit
JPS62100742A (en) Mach-zehnder interferometer type optical multiplexer/ demultiplexer
WO2023100297A1 (en) Waveguide-type optical coupler
JP2000147280A (en) Method for correcting wavelength of optical multiplexer-demultiplexer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term