[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6312346A - Production of catalytic carrier containing aluminium titanate as main component - Google Patents

Production of catalytic carrier containing aluminium titanate as main component

Info

Publication number
JPS6312346A
JPS6312346A JP61157446A JP15744686A JPS6312346A JP S6312346 A JPS6312346 A JP S6312346A JP 61157446 A JP61157446 A JP 61157446A JP 15744686 A JP15744686 A JP 15744686A JP S6312346 A JPS6312346 A JP S6312346A
Authority
JP
Japan
Prior art keywords
sol
aluminum titanate
carrier
gel
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61157446A
Other languages
Japanese (ja)
Inventor
Shogo Nagamine
正吾 長峯
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Nobue Tejima
手嶋 信江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61157446A priority Critical patent/JPS6312346A/en
Publication of JPS6312346A publication Critical patent/JPS6312346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a porous catalytic carrier having high strength by adding a sol or gel-like material capable of forming the aluminium titanate by calcining it to the aluminium titanate powders having a specific particle size, kneading and forming, followed by calcining it. CONSTITUTION:The sol or gel-like material capable of forming the aluminium titanate by calcining such as a mixture of alumina sol and orthotitanic acid sol is added to the aluminium titanate powders having 3mum mean particle size. Any one of the aluminium type and the titanium type additives is preferably to be the gel or sol-like material. The used amount of the aluminium titanate to the additives is over zero to <30wt% on the weight based on the additives. The porous aluminium titanate carrier obtd. by adding said mixture, followed by kneading, forming and calcining it, is used to the catalytic carrier for burning which has an excellent strength and heat-resisting property.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチタン酸アルミを主成分とする触媒担体の製造
法に係り、特にチタン酸アルミを主成分とする多孔質な
触媒担体の製造法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a catalyst carrier containing aluminum titanate as a main component, and particularly a method for producing a porous catalyst carrier containing aluminum titanate as a main component. It is related to.

(従来の技術) 触媒燃焼法は、燃焼ガス中のNOx発生量が少ないとい
う特徴を有しており、近年、本性を各種燃焼器に適用し
ようとする研究が活発に行なわれている。
(Prior Art) The catalytic combustion method is characterized by a small amount of NOx generated in the combustion gas, and in recent years, research has been actively conducted to apply this property to various combustors.

燃焼器に用いられる燃焼触媒が具備すべき特性として、
下記項目が挙げられる。
Characteristics that a combustion catalyst used in a combustor should have include:
The following items are listed.

(1)1200〜1600℃の高温で連続使用しても物
性に変化がない。
(1) There is no change in physical properties even when used continuously at high temperatures of 1200 to 1600°C.

(2)触媒体の強度が高い。(2) The strength of the catalyst is high.

(3)起動・停止時の急激な温度変化に十分耐える。(3) Sufficiently withstand sudden temperature changes during startup and shutdown.

このうち、(1)については、耐熱性に優れるLa−β
−Aj!203担体く特開昭59−080752号)、
あるいはB a A l 12 0 、y担体(特別昭
60−89196号)が発明された。(2)については
、上記担体の強度を向上させた部分ムライト化担体(特
願昭60−49098号)が本発明者らによって発明さ
れた。しかしながら、これらの上記担体は(3)に示し
た耐熱衝撃性の点については十分な配慮がなされていな
かった。このため、燃焼用触媒の開発に携わる研究者ら
は、(1)〜(3)の特性を全て有する担体あるいは触
媒の開発を目標に鋭意研究を行なっているが、これまで
、その目標は完全には遂げられていない。
Among these, regarding (1), La-β has excellent heat resistance.
-Aj! 203 carrier (Japanese Patent Application Laid-open No. 59-080752),
Alternatively, a B a A l 12 0 ,y carrier (Special No. 89196/1989) was invented. Regarding (2), the present inventors invented a partially mullitized carrier (Japanese Patent Application No. 1983-49098) which improved the strength of the above-mentioned carrier. However, with respect to these above-mentioned carriers, sufficient consideration has not been given to the thermal shock resistance shown in (3). For this reason, researchers involved in the development of combustion catalysts are conducting intensive research with the goal of developing a carrier or catalyst that has all of the characteristics (1) to (3), but until now, this goal has not been fully achieved. has not been achieved.

現在、この目標を達成する最も有力な方法として耐熱衝
撃性セラミックス担体に、混錬法、含浸法あるいはコー
ティング法により活性成分を担持させて触媒を得る方法
が挙げられる。耐熱衝撃性セラミックスの代表的なもの
として、コーディエライト、β−スボデューメン、チタ
ン酸アルミが挙げられる。このうち、コーディエライト
は、今日、自動車排ガス浄化用触媒担体として広く使用
されているが、本物質の融点は1460℃であり、これ
を燃焼用として使用する場合、前記の必要特性(1)を
満足させることができない。また、β−スポデューメン
の融点は1423℃であり、やはり前記の必要特性(1
)を満足させることができない。チタン酸アルミの融点
は、1860°Cであり、これを燃焼用触媒担体として
用いるならば、前記の必要特性(1)〜(3)を全て満
足させる触媒が得られる可能性が大きい。
Currently, the most effective method for achieving this goal is to obtain a catalyst by supporting an active ingredient on a thermal shock-resistant ceramic carrier by kneading, impregnation, or coating. Typical examples of thermal shock-resistant ceramics include cordierite, β-subodumen, and aluminum titanate. Among these, cordierite is widely used today as a catalyst carrier for automobile exhaust gas purification, but the melting point of this substance is 1460°C, and when using it for combustion, it meets the above-mentioned required characteristics (1). cannot be satisfied. In addition, the melting point of β-spodumene is 1423°C, which is also the above-mentioned required property (1).
) cannot be satisfied. The melting point of aluminum titanate is 1860°C, and if it is used as a combustion catalyst carrier, there is a high possibility that a catalyst satisfying all of the above-mentioned required properties (1) to (3) can be obtained.

チタン酸アルミを含浸あるいはコーティング用担体とし
て使用するためには、本物質を多孔質化させておく必要
がある。一般に、多孔質な焼成体(担体)を得るには、
原料坏土あるいは泥漿に次の物質を添加する方法がとら
れることが多い。
In order to use aluminum titanate as a carrier for impregnation or coating, it is necessary to make the material porous. Generally, to obtain a porous fired body (carrier),
The following substances are often added to the raw clay or slurry.

(a)有機可燃性物質 (b)揮発性物質 (c)ガス発生物質 (素木洋−:築炉用セラミック材料844頁〜849頁
)。このうち、(a)については、有機結合剤、おがく
ず、黒鉛等を多量に添加し、200〜400°Cの比較
的高い温度で分解・燃焼させて多孔体を得ようとする方
法である。(b)については室温付近の温度で揮発する
低融点化合物あるいは昇華しやすい物質を多量に添加す
る方法であり、(C)については、(b)より少し高い
温度項域(60〜100℃)において、気体成分に分解
する物質、例えば炭酸アンモニウムを多量に添加する方
法である。(a)〜(C)の物質を多量に添加する方法
は、原理的には全て同じであり、成形体中に(a)〜(
C)の物質を多量に存在させておき、次にそれを飛散さ
せて多数の空洞を作ろうとするものである。
(a) Organic combustible substances (b) Volatile substances (c) Gas-generating substances (Hiroshi Soki: Ceramic materials for furnace construction, pages 844 to 849). Of these, (a) is a method in which a large amount of organic binder, sawdust, graphite, etc. is added, and the porous material is obtained by decomposing and burning at a relatively high temperature of 200 to 400°C. For (b), a large amount of a low-melting point compound that volatilizes at a temperature around room temperature or a substance that sublimes easily is added in large quantities, and for (C), a temperature range slightly higher than (b) (60 to 100°C) is used. In this method, a large amount of a substance that decomposes into gaseous components, such as ammonium carbonate, is added. The methods for adding large amounts of substances (a) to (C) are all the same in principle, and the methods for adding large amounts of substances (a) to (C) are the same in principle;
This involves allowing a large amount of the substance C) to exist, and then scattering it to create a large number of cavities.

(発明が解決しようとする問題点) しかしながら、上記のごとく固体あるいは液体として成
形体中に存在する物質が、気体として飛散してしまうの
であるから、得られる担体の細孔径は大きなものとなり
、強度が低下する場合が多い。このため、成形体中に焼
結助剤を添加して強度向上を図る必要がある。例えば、
チタン酸アルミの場合、(a)の物質を添加する方法で
は、成形用坏土中にシリカを5%程度添加しておき、実
用上の必要強度を得ている(特公昭57−42563)
。本性から得られた担体は、800〜1000℃で使用
される自動者用触媒担体としては優れたものであるが、
1200℃以上の温度で使用すると、焼結助剤と担体成
分が反応して低融点化合物を生成したり、使用中に焼結
が進行したりして細孔および表面積の減少を招き、活性
が経時的に低下するという問題があった。
(Problems to be Solved by the Invention) However, as mentioned above, since the substance present in the molded body as a solid or liquid is scattered as a gas, the resulting carrier has a large pore diameter and has a high strength. often decreases. Therefore, it is necessary to add a sintering aid to the compact to improve its strength. for example,
In the case of aluminum titanate, in the method of adding the substance (a), approximately 5% of silica is added to the molding clay to obtain the strength required for practical use (Japanese Patent Publication No. 57-42563).
. The carrier obtained from this property is excellent as an automatic catalyst carrier used at 800 to 1000°C, but
If used at temperatures above 1200°C, the sintering aid and carrier component may react to form a low melting point compound, or sintering may progress during use, resulting in a decrease in pores and surface area, resulting in decreased activity. There was a problem that it decreased over time.

(問題点を解決するた゛めの手段) 上記問題点を解決するため、本発明の触媒担体の製造法
は、平均粒径が3μm以上、好ましくは10〜30μm
であるチタン酸アルミの粉末に、焼成によってチタン酸
アルミを生成し得るゾルまたはゲル状物質を添加混合し
、成形したのち焼成することにより、多孔質で、熱的に
安定で、十分な強度を有する触媒担体を得るものである
(Means for Solving the Problems) In order to solve the above problems, the method for producing a catalyst carrier of the present invention has an average particle diameter of 3 μm or more, preferably 10 to 30 μm.
By adding and mixing a sol or gel-like substance that can produce aluminum titanate by firing to aluminum titanate powder, shaping and firing, it is porous, thermally stable, and has sufficient strength. A catalyst carrier having the following properties is obtained.

本発明になる担体を製造するには、典型的には平均粒径
が3μm以上であるチタン酸アルミの粉末に、アルミニ
ウムを主成分とするゾルまたはゲル状物質とチタンを主
成分とするゾルまたはゲル状物質とを添加するか、また
は上記粉末に、チタン酸アルミを主成分とするゾルまた
はゲル状物質を添加し、湿式混錬を経て、ハニカム、丸
棒、粒状等の形状に成形した後、焼成すればよい。
In order to produce the carrier of the present invention, aluminum titanate powder having an average particle size of 3 μm or more is typically mixed with a sol or gel material containing aluminum as a main component and a sol or gel material containing titanium as a main component. After adding a gel-like substance to the powder, or adding a sol or gel-like substance containing aluminum titanate as a main component to the above powder, and forming it into a shape such as a honeycomb, round bar, or granule through wet kneading. , just need to be fired.

上記チタン酸アルミ粉末としては、平均粒径が3μm以
上のものであれば、どのような原料から作られたもので
あってもよい。例えば、γ−アルミナとチタニア、ある
いは水酸化アルミニウムとメタチタン酸スラリ等の原料
があげられる。なお、アルミナゾルとチタニアのゾルの
ように、粒径が1μm以下のものを使用すると粉砕性が
悪くなるる。
The aluminum titanate powder may be made from any raw material as long as it has an average particle size of 3 μm or more. Examples include raw materials such as γ-alumina and titania, or aluminum hydroxide and metatitanic acid slurry. Note that if a particle size of 1 μm or less is used, such as alumina sol and titania sol, the pulverizability becomes poor.

チタン酸アルミに添加するゾルまたはゲル状物質として
は、焼成によってチタン酸アルミを生成すれば、どのよ
うなものでもよい。例えば、アルミニウムを主成分とす
る物質としては、アルミナゾル、ベーマイトゲル、また
は硝酸アルミニウム水溶液にアンモニア水を添加して得
られる沈殿生成物等が挙げられる。チタンを主成分とす
る物質としては、オルトチタン酸のゾル(以下、チタニ
アゾルと称する)、メタチタン酸スラリ等が挙げられる
。上記ゾルまたはゲル状物質は、アルミニウムを主成分
とするもの、およびチタンを主成分とするもののうちど
ちらか一方が、ゾルまたはゲル状物質であれば、他方は
ゾルまたはゲル状物質でなくとも、本発明になる担体が
得られる。すなわち、アルミナゾルとチタニア、γ−ア
ルミナとチタニアゾル、水酸化アルミニウムとメタチタ
ン酸スラリ、ベーマイトゲルとチタニアといった各種の
組合わせが可能である。ただし、アルミニウム系添加物
にα−アルミナを使用した場合、強度が低下することも
ある。上記の添加物の他に、チタン酸アルミの超微粉を
分散させたようなゾル状物質を用いても、本発明の担体
が得られる。
Any sol or gel-like substance to be added to aluminum titanate may be used as long as aluminum titanate is produced by firing. For example, examples of substances containing aluminum as a main component include alumina sol, boehmite gel, and a precipitated product obtained by adding aqueous ammonia to an aqueous solution of aluminum nitrate. Examples of substances containing titanium as a main component include orthotitanic acid sol (hereinafter referred to as titania sol), metatitanic acid slurry, and the like. As long as one of the above-mentioned sol or gel material is mainly composed of aluminum or titanium, the other one is not a sol or gel material. A carrier according to the present invention is obtained. That is, various combinations such as alumina sol and titania, γ-alumina and titania sol, aluminum hydroxide and metatitanic acid slurry, and boehmite gel and titania are possible. However, when α-alumina is used as an aluminum additive, the strength may decrease. In addition to the above-mentioned additives, the carrier of the present invention can also be obtained by using a sol-like substance in which ultrafine aluminum titanate powder is dispersed.

アルミニウム系およびチタン系添加物の組成比としては
、アルミニウム:チタンの原子比が約2:1となるよう
な組成比が好ましく、この比率のときに、焼成によって
全てチタン酸アルミとなる。
The compositional ratio of the aluminum-based and titanium-based additives is preferably such that the atomic ratio of aluminum:titanium is about 2:1, and when this ratio is used, all of the additives become aluminum titanate by firing.

上記した添加物のチタン酸アルミ粉末に対する添加割合
としては、ドライベースでOを越えて3Qwt%以内と
するのが好ましい。
The addition ratio of the above-mentioned additives to the aluminum titanate powder is preferably greater than O and within 3 Qwt% on a dry basis.

(実施例) 以下、本発明を具体的実施例により詳述する。(Example) Hereinafter, the present invention will be explained in detail with reference to specific examples.

(チタン酸アルミ粉末の調製例) 平均粒径3μmの水硬性γ−アルミナ10kgと、平均
粒径4μmのメタチタン酸スラリ (酸化チタンとして
3 Q w t%金含有もの)26.1kgとを、容量
1007!のニーダを用いて150℃で3時間加熱混錬
した後、180℃で10時間乾燥を行ない、しかる後に
1600℃まで4時間で昇温し、1600°Cで2時間
焼成した。この焼成物をハンマミルにて粉砕し、平均粒
径が17μmであるチタン酸アルミ粉末を得た。この粉
末を、以下原料と呼ぶ。
(Preparation example of aluminum titanate powder) 10 kg of hydraulic γ-alumina with an average particle size of 3 μm and 26.1 kg of metatitanate slurry (containing 3 Q w t% gold as titanium oxide) with an average particle size of 4 μm were mixed into 1007! After heating and kneading at 150°C for 3 hours using a kneader, the mixture was dried at 180°C for 10 hours, then heated to 1600°C over 4 hours, and fired at 1600°C for 2 hours. This fired product was pulverized with a hammer mill to obtain aluminum titanate powder having an average particle size of 17 μm. This powder is hereinafter referred to as raw material.

実施例1 原料4 kgに、アルミナゾル(アルミナとしてIQw
t%含有のもの’)400gとチタニアゾル(酸化チタ
ンとして3Qwt%含有のもの)104gとからなる混
合物を添加した後、ピストン押出成形器を用いて直径I
Qmmの丸棒成形体を得た。
Example 1 4 kg of raw material was added with alumina sol (IQw as alumina)
After adding a mixture consisting of 400 g of titania sol (containing 3Qwt% titanium oxide) and 104 g of titania sol (containing 3Qwt% titanium oxide), a piston extruder was used to mold the diameter I.
A round bar molded product of Qmm was obtained.

この成形体を180℃で1時間乾燥した後、1400℃
で2時間焼成してチタン酸アルミ担体を得た。
After drying this molded body at 180°C for 1 hour, it was heated to 1400°C.
The aluminum titanate carrier was obtained by firing for 2 hours.

実施例2 原料4 kgに水を1.71J添加して調製したスラリ
を、スタートボールミルを用いて湿式粉砕した。
Example 2 A slurry prepared by adding 1.71 J of water to 4 kg of raw material was wet-pulverized using a starter ball mill.

このとき、粉砕時間(スタートボールミル内の滞留時間
)を2.3分として、平均粒径3μmのチタン酸アルミ
スラリを得た。このスラリにアルミナゾル400gとチ
タニアゾル104gとからなる混合物を加え、容ff1
5Jのニーダを用いて120℃で2時間加熱混錬した後
、室温で冷却した。これをピストン押出成形器によって
直径10mの先棒に成形し、実施例1と同様の乾燥、焼
成を行ない、チタン酸アルミ担体を得た。
At this time, the grinding time (residence time in the start ball mill) was set to 2.3 minutes to obtain aluminum titanate slurry with an average particle size of 3 μm. A mixture of 400 g of alumina sol and 104 g of titania sol was added to this slurry, and the volume was ff1.
After heating and kneading at 120° C. for 2 hours using a 5J kneader, the mixture was cooled to room temperature. This was formed into a tip rod with a diameter of 10 m using a piston extruder, and dried and fired in the same manner as in Example 1 to obtain an aluminum titanate support.

実施例3.4 実施例1のアルミナゾルの添加量を4.0瞳および9.
6 kg、チタニアゾルの添加量を1.0 kgおよび
2)5 kgに替えて、他は実施例1と同様の手順によ
り、チタン酸アルミ担体を得た。
Example 3.4 The amount of alumina sol added in Example 1 was set to 4.0 pupil and 9.0 pupil.
An aluminum titanate support was obtained by the same procedure as in Example 1 except that the amount of titania sol added was changed to 1.0 kg and 2) 5 kg.

実施例5 実施例3のアルミナゾルをベーマイトケルに替え、その
添加量を530gとした。チタニアゾル1、0 kgの
他に氷酢酸を90g添加し、以下は実施例1と同様の手
順により、チタン酸アルミ担体を得た。
Example 5 The alumina sol in Example 3 was replaced with boehmite kel, and the amount added was 530 g. In addition to 1.0 kg of titania sol, 90 g of glacial acetic acid was added, and the same procedure as in Example 1 was followed to obtain an aluminum titanate support.

実施例6.7 実施例3のチタニアゾルをメタチタン酸スラリ、平均粒
径3μmのアナターゼ型チタニアに替え、添加量をそれ
ぞれ1.0kg、34gとし、他は実施例3と同様の手
順により、チタン酸アルミ担体を得た。
Example 6.7 The titania sol in Example 3 was replaced with metatitanic acid slurry and anatase titania with an average particle size of 3 μm, and the amounts added were 1.0 kg and 34 g, respectively, and titanic acid was added using the same procedure as in Example 3. An aluminum carrier was obtained.

実施例8 FM5kgに、ヒドロキシメチルセルロース50gと、
ベーマイトゲル880gとを加えて乾式で十分に混合し
た。この混合粉末にチタニアゾル1゜3 kgと氷酢酸
110gとを添加し、容量51のニーダを用いて2時間
混錬し、成形用坏土を得た。
Example 8 50g of hydroxymethylcellulose to 5kg of FM,
880 g of boehmite gel was added and thoroughly mixed in a dry method. To this mixed powder, 1.3 kg of titania sol and 110 g of glacial acetic acid were added and kneaded for 2 hours using a kneader with a capacity of 51 to obtain a clay for molding.

しかる後に、この坏土を押出成形器を用いて、外径口3
5in、セル径口1.4鶴、壁厚0.41のハニカム構
造体に成形した後、20℃で12時間、60℃で3時間
、180℃で1時間乾燥して、ハニカム形状の乾燥体を
得た。この乾燥体を1600℃で2時間焼成して、チタ
ン酸アルミのハニカム担体を得た。
After that, this clay is molded into an outer diameter hole 3 using an extruder.
After forming into a honeycomb structure with a diameter of 5 inches, a cell diameter of 1.4, and a wall thickness of 0.41, it was dried at 20°C for 12 hours, 60°C for 3 hours, and 180°C for 1 hour to obtain a honeycomb-shaped dried body. I got it. This dried body was fired at 1600° C. for 2 hours to obtain a honeycomb carrier of aluminum titanate.

実施例9 実施例8のハニカム担体について、La−β−A120
3スラリ(スラリ濃度65%)中に浸漬して行なうコー
ティングを6回繰返した後、800℃で焼成した。この
焼成体に、パラジウムを含浸法によって1wt%担持さ
せ、しかる後に1200℃で2時間焼成してハニカム触
媒を得た。
Example 9 Regarding the honeycomb carrier of Example 8, La-β-A120
After repeating the coating process six times by immersing it in 3 slurry (slurry concentration: 65%), it was fired at 800°C. This fired body was loaded with 1 wt % palladium by an impregnation method, and then fired at 1200° C. for 2 hours to obtain a honeycomb catalyst.

実施例10 実施例1におけるアルミナゾルを40g、チタニアゾル
を10.4 gとし、他は実施例1と同様の手順にて、
チタン酸アルミ担体を得た・比較例1 実施例2で行なったスタートボールミルによる湿式粉砕
における粉砕時間を、27.8分として、平均粒径1.
7μmのチタン酸アルミスラリを得た。
Example 10 The alumina sol in Example 1 was 40 g, the titania sol was 10.4 g, and the other procedures were the same as in Example 1.
Comparative Example 1 Aluminum titanate carrier obtained Comparative Example 1 The grinding time in the wet grinding using the start ball mill performed in Example 2 was 27.8 minutes, and the average particle size was 1.
A 7 μm aluminum titanate slurry was obtained.

以下の手順は実施例2に従って行ない、チタン酸アルミ
担体を得た。
The following procedure was carried out according to Example 2 to obtain an aluminum titanate support.

比較例2 実施例1のアルミナゾルの添加量を12.1 kg、チ
タニアゾルの添加量を3.2 kgとして、以下は実施
例1と同様の手順により、チタン酸アルミ担体を得た。
Comparative Example 2 An aluminum titanate support was obtained in the same manner as in Example 1 except that the amount of alumina sol added was 12.1 kg and the amount of titania sol added was 3.2 kg.

比較例3 原料5 kgに、ヒドロキシメチルセルロース1kgと
平均粒径1μmの黒鉛500gおよびカオリナイl−5
00gとを加え、乾式で十分に混合した後、水を2.1
2添加し、容量51のニーダを用いて2時間混錬して成
形用坏土を得た。以下の手順は実施例8に従って行ない
、ハニカム担体を得た。さらに、実施例9と同様の手順
により、ハニカム触媒を得た。
Comparative Example 3 5 kg of raw materials, 1 kg of hydroxymethylcellulose, 500 g of graphite with an average particle size of 1 μm, and kaolina l-5
After adding 00g of water and thoroughly mixing with a dry method, add 2.1g of water.
2 was added and kneaded for 2 hours using a kneader with a capacity of 51 to obtain a molding clay. The following procedure was carried out according to Example 8 to obtain a honeycomb carrier. Furthermore, a honeycomb catalyst was obtained by the same procedure as in Example 9.

(試験方法) 1、各担体の焼成時における収縮率を、焼成前後の寸法
差から算出した。
(Test method) 1. The shrinkage rate of each carrier during firing was calculated from the dimensional difference before and after firing.

2)各担体の吸水率を、吸水前後の重量差から算出した
2) The water absorption rate of each carrier was calculated from the difference in weight before and after water absorption.

3、丸棒形状の担体の曲げ強度を試料長さ50mとして
測定した。
3. The bending strength of the round bar-shaped carrier was measured using a sample length of 50 m.

4、ハニカム形状の担体の縦圧壊強度を試料長さ501
婁として測定した。
4. The longitudinal crushing strength of the honeycomb-shaped carrier is determined by measuring the sample length 501
Measured as a mu.

5、ハニカム触媒の耐熱性を評価するため、次の条件に
より、メタン燃焼試験を行なった。
5. In order to evaluate the heat resistance of the honeycomb catalyst, a methane combustion test was conducted under the following conditions.

(1)触媒寸法:口35鶴×50鶴 (2)メタン濃度=4.7%(残部は空気)(3)空間
速度:40.000h−1 (4)空気予熱温度:300℃ (5)試験時間:lOOh 第1表に、実施例1〜lO1比較例1.2の担体および
比較例3の触媒化前の担体における・焼成時数縮率およ
び担体の吸水率を示す。木表から、本発明になる担体は
、比較例に比べ、焼成による収縮率の値は10分の1か
ら2分の1と小さく、吸水率は1.7〜5.4倍の大き
な値を示し、多孔質であるという点で非常に優れている
(1) Catalyst dimensions: 35 cranes x 50 cranes (2) Methane concentration = 4.7% (remainder is air) (3) Space velocity: 40.000 h-1 (4) Air preheating temperature: 300°C (5) Test time: lOOh Table 1 shows the firing time reduction ratio and the water absorption rate of the carriers of Examples 1 to 1O1 Comparative Example 1.2 and the carrier of Comparative Example 3 before catalysis. From the wood surface, it can be seen that the carrier of the present invention has a shrinkage rate of 1/10 to 1/2, which is smaller than that of the comparative example, and a water absorption rate of 1.7 to 5.4 times larger than that of the comparative example. It is highly porous and porous.

以下余白 第2表に、実施例1〜10および比較例1〜3の担体あ
るいは触媒の強度を示す。木表の結果から、本発明にな
る担体あるいは本担体を使用して製造した触媒の強度は
、焼結が進行した比較例1〜3のものと比べて、大きく
は劣らないことがわかる。通常、ハニカム担体の強度は
100 kg/ctA以上であることが好ましいとされ
ており、本発明になる担体は実用上の強度に関しては、
全く問題がないものである。
Table 2 in the margin below shows the strengths of the supports or catalysts of Examples 1 to 10 and Comparative Examples 1 to 3. From the wood surface results, it can be seen that the strength of the carrier according to the present invention or the catalyst produced using the present carrier is not significantly inferior to that of Comparative Examples 1 to 3 in which sintering has proceeded. Generally, it is said that the strength of the honeycomb carrier is preferably 100 kg/ctA or more, and the carrier of the present invention has a strength of 100 kg/ctA or more.
There is no problem at all.

以下余白 第   2   表 第1図は、実施例9および比較例3の触媒を使用して、
メタン燃焼による耐熱試験を行なった結果である。本図
から、従来法(比較例3)では問題となった耐熱性が、
本発明になる担体を使用すれば解決されることがわかる
Table 1 shows the results using the catalysts of Example 9 and Comparative Example 3.
These are the results of a heat resistance test using methane combustion. From this figure, it can be seen that the heat resistance, which was a problem with the conventional method (Comparative Example 3),
It can be seen that the problem can be solved by using the carrier according to the present invention.

(発明の効果) 以上述べてきたように、本発明によれば、熱的に安定な
特性を示し、かつ必要にして十分な強度を持つような耐
熱衝撃性の多孔質チタン酸アルミ担体が得られる。
(Effects of the Invention) As described above, according to the present invention, a porous aluminum titanate carrier with thermal shock resistance that exhibits thermally stable characteristics and has sufficient strength as required can be obtained. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になるハニカム担体を使用した触媒と
、従来法で得られるハニカム担体を使用した触媒につい
て、メタン燃焼による耐熱試験を行なった結果を示す図
である。 代理人 弁理士 川 北 武 長 燃焼継続時間    (h)
FIG. 1 is a diagram showing the results of a heat resistance test using methane combustion for a catalyst using a honeycomb carrier according to the present invention and a catalyst using a honeycomb carrier obtained by a conventional method. Agent Patent Attorney Takeshi Kawakita Long combustion duration (h)

Claims (3)

【特許請求の範囲】[Claims] (1)チタン酸アルミを主成分とする触媒担体の製造法
において、平均粒径が3μm以上であるチタン酸アルミ
の粉末に、焼成によってチタン酸アルミを生成し得るゾ
ルまたはゲル状物質を添加し、混錬したのち成形し、そ
の後焼成することを特徴とするチタン酸アルミを主成分
とする触媒担体の製造法。
(1) In a method for producing a catalyst carrier containing aluminum titanate as a main component, a sol or gel-like substance capable of producing aluminum titanate by firing is added to aluminum titanate powder having an average particle size of 3 μm or more. A method for producing a catalyst carrier containing aluminum titanate as a main component, which is characterized by kneading, shaping, and then sintering.
(2)特許請求の範囲第1項記載の触媒担体の製造法に
おいて、チタン酸アルミ粉末に添加するゾルまたはゲル
状物質として、アルミニウムを含有金属元素の主成分と
するゾルまたはゲル状物質、チタンを含有金属元素の主
成分とするゾルまたはゲル状物質、およびチタン酸アル
ミを主成分とするゾルまたはゲル状物質のうち、少なく
とも1種のゾルまたはゲル状物質を添加することを特徴
とするチタン酸アルミを主成分とする触媒担体の製造法
(2) In the method for producing a catalyst carrier according to claim 1, the sol or gel substance added to the aluminum titanate powder is a sol or gel substance containing aluminum as the main component of the metal element, titanium titanium characterized by adding at least one kind of sol or gel-like substance out of a sol or gel-like substance whose main component is a metal element containing A method for producing a catalyst carrier whose main component is acid aluminum.
(3)特許請求の範囲第1項の触媒担体の製造法におい
て、チタン酸アルミ粉末に添加するゾルまたはゲル状物
質の添加量を、チタン酸アルミ粉末に対して、アルミナ
およびまたはチタニアおよびまたはチタン酸アルミとし
て、0を越えて30wt%以下添加することを特徴とす
るチタン酸アルミを主成分とする触媒担体の製造法。
(3) In the method for producing a catalyst carrier according to claim 1, the amount of the sol or gel substance to be added to the aluminum titanate powder is adjusted to the amount of alumina and/or titania and/or titanium added to the aluminum titanate powder. A method for producing a catalyst carrier containing aluminum titanate as a main component, characterized by adding more than 0 and 30 wt% or less as aluminum acid.
JP61157446A 1986-07-04 1986-07-04 Production of catalytic carrier containing aluminium titanate as main component Pending JPS6312346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157446A JPS6312346A (en) 1986-07-04 1986-07-04 Production of catalytic carrier containing aluminium titanate as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157446A JPS6312346A (en) 1986-07-04 1986-07-04 Production of catalytic carrier containing aluminium titanate as main component

Publications (1)

Publication Number Publication Date
JPS6312346A true JPS6312346A (en) 1988-01-19

Family

ID=15649835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157446A Pending JPS6312346A (en) 1986-07-04 1986-07-04 Production of catalytic carrier containing aluminium titanate as main component

Country Status (1)

Country Link
JP (1) JPS6312346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316996A (en) * 1991-06-03 1994-05-31 Idemitsu Kosan Co., Ltd. Compound oxide catalyst carrier, method of producing the same and method of treating heavy oil with the same
EP1138383A4 (en) * 1998-11-26 2002-04-17 Idemitsu Kosan Co Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
CN104475168A (en) * 2014-11-12 2015-04-01 中国海洋石油总公司 Preparation method of titanium-aluminum composite oxide with large specific surface and small aperture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316996A (en) * 1991-06-03 1994-05-31 Idemitsu Kosan Co., Ltd. Compound oxide catalyst carrier, method of producing the same and method of treating heavy oil with the same
EP1138383A4 (en) * 1998-11-26 2002-04-17 Idemitsu Kosan Co Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
CN104475168A (en) * 2014-11-12 2015-04-01 中国海洋石油总公司 Preparation method of titanium-aluminum composite oxide with large specific surface and small aperture

Similar Documents

Publication Publication Date Title
KR100300805B1 (en) Manufacturing method of catalyst carrier
CA1327346C (en) Catalyst support material containing lanthanides
KR940000869B1 (en) Preparation of monolithic catalyst supports having an integrated high surface area phase
US5266548A (en) Catalyst carrier
US5262102A (en) Process for firing ceramic honeycomb structural bodies
US4049582A (en) Method for producing a supported catalyst
KR101154903B1 (en) Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JPS6240061B2 (en)
JPS61212329A (en) Preparation of high surface area flocculated substance for catalyst carrier and preparation of monolithic carrier structure containing the same
JPH02290250A (en) Catalyst for selectively reducing nitrogen oxide with ammonia
JP2009521388A (en) High porosity cordierite ceramic honeycomb articles and methods
JPH02229773A (en) Phosphate-containing ceramic structure and its manufacture
US4711872A (en) Catalyst for combustion and process for producing same
US3974255A (en) Method for treatment of engine exhaust gases
JPS6312346A (en) Production of catalytic carrier containing aluminium titanate as main component
KR101096196B1 (en) Catalyst for the removal of nitrogen oxides with reducing agent and its preparation method
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
RU2233700C2 (en) Composition of charge for high-porous cellular- structure material for catalyst carriers
JPH06116059A (en) Production of ceramic honeycomb
JPH0275341A (en) Heat-resistant catalyst carrier molding and catalyst prepared therefrom
RU2021013C1 (en) Method of preparing of block carrier with cellular structure for catalysts
JPH0557021B2 (en)
JP2570647B2 (en) Nitrogen oxide reduction catalyst and nitrogen oxide reduction method
RU2093249C1 (en) Honeycomb catalyst for cleaning effluent gases and method of preparation thereof
JPH04193344A (en) Heat resistance catalyst and its production