JPS63106485A - Detector for operation of solenoid valve - Google Patents
Detector for operation of solenoid valveInfo
- Publication number
- JPS63106485A JPS63106485A JP61305191A JP30519186A JPS63106485A JP S63106485 A JPS63106485 A JP S63106485A JP 61305191 A JP61305191 A JP 61305191A JP 30519186 A JP30519186 A JP 30519186A JP S63106485 A JPS63106485 A JP S63106485A
- Authority
- JP
- Japan
- Prior art keywords
- solenoid
- solenoid valve
- time
- zero potential
- movable iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 13
- 230000002159 abnormal effect Effects 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 40
- 229910052742 iron Inorganic materials 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 14
- 230000005856 abnormality Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は電磁弁の制御に係り、特に各種プラントの安全
性及び稼動率を高めるために電磁弁の健全性をプラント
運転中にも確認できる電磁弁の動作検出装置に関する。Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to the control of solenoid valves, and in particular, to the control of solenoid valves in order to improve the safety and availability of various plants. It also relates to an operation detection device for a solenoid valve, which can also be confirmed.
(従来の技術)
例えば原子力発電所の緊急停止系のようなプラントの異
常時のみに作動し、プラントを停止させる系統に使用さ
れる重要な空気作動弁用電磁弁は一般に二重化され、し
かも常時励磁して、不必要なプラント停止を防止すると
ともに異常時には確実に作動させるような構成となって
いる。(Prior art) Solenoid valves for important air-operated valves used in systems that operate only in the event of a plant abnormality and shut down the plant, such as emergency shutdown systems in nuclear power plants, are generally duplicated and constantly energized. The system is designed to prevent unnecessary plant shutdowns and ensure reliable operation in the event of an abnormality.
このような電磁弁はプラントの運転中にも弁の健全性を
確認するため電磁弁の開閉を確認することが重要である
が、二重化された電磁弁を同時に作動させるとプラント
が停止してしすうので一弁ずつ作動させているが、電磁
弁が実際に作動したことの確認ができないのが現状であ
る。It is important to check the opening and closing of such solenoid valves to confirm their health even during plant operation, but if duplicated solenoid valves are operated at the same time, the plant may stop. Therefore, we are operating one valve at a time, but currently it is not possible to confirm that the solenoid valves are actually operating.
電磁弁の作動確認の方法としては、リミットスイッチを
取付ける方法等が考えられるが、弁体が小さいので取付
けが困難であり、また弁の数が多いことの為にこの方法
は採用されていないのが現状である。また、音響センサ
ー等を利用するものもあるがS/N比、信頼性等の問題
がある。One way to check the operation of a solenoid valve is to install a limit switch, but this method is not used because the valve body is small and it is difficult to install, and there are a large number of valves. is the current situation. There are also methods that use acoustic sensors, but they have problems such as S/N ratio and reliability.
これに対して、特公昭59−12159号公報には次の
ような電磁弁の制御装置が記載されている。On the other hand, Japanese Patent Publication No. 59-12159 describes the following control device for a solenoid valve.
電磁弁のソレノイドには常に交流電流が供給されており
、可動鉄片はソレノイド中に吸引されている。この状態
から電磁弁の動作を確認する為に゛電流を停止すると、
しばらくして可動鉄片はソレノイド中から解放される。Alternating current is always supplied to the solenoid of the solenoid valve, and the movable iron piece is attracted into the solenoid. In order to check the operation of the solenoid valve in this state, when the current is stopped,
After a while, the movable iron piece is released from inside the solenoid.
この状態から再び電流を流し始めると、第8図に示すよ
うに当初は大きな電流土工$が流れ、ソレノイドに可動
鉄片が吸引される。ソレノイドに可動鉄片が吸引される
とインダクタンスが増加してソレノイドに流れる電流は
減少じて来、吸引が完了した時点では図に示すように±
IIで安定する。この電流の変化を検出して電磁弁の動
作を確認するものである。When the current starts to flow again from this state, a large current flows at first, as shown in FIG. 8, and the movable iron piece is attracted to the solenoid. When the movable piece of iron is attracted to the solenoid, the inductance increases and the current flowing through the solenoid gradually decreases, and when the attraction is completed, ± as shown in the figure.
Stable at II. This change in current is detected to confirm the operation of the solenoid valve.
このようなものにあっては、電流をオフした後に再びオ
ンしなければ動作検出が行なえない(オンが故障しか検
出できない)と共に検出に時間カフ++
かかるといった問題が生じていた。In such a device, there is a problem that operation cannot be detected unless the current is turned on again after being turned off (on only a failure can be detected), and it takes time for detection.
(発明が解決しようとする問題点)
上述したように従来の’J zットスイッチや音響セン
サーを城付けたものにおいては、取付けの困難性及び信
頼性の問題があり、他のものは瞬時に動作検出が行なえ
ないという欠点があった。(Problems to be Solved by the Invention) As mentioned above, the conventional 'J z switch and the one equipped with an acoustic sensor have problems of installation difficulty and reliability, while other types do not operate instantly. The drawback was that detection could not be performed.
本発明は上記事情に鑑みてなされたものでその目的とす
るところは、プラントの運転中にも瞬時に電磁弁の動作
を確実に確認できる111磁弁の動作検出装置を提供す
ることにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide an operation detection device for a 111 solenoid valve that can instantly and reliably confirm the operation of a solenoid valve even during plant operation.
(問題点を解決するための手段)
本発明の電磁弁の動作検出装置においては、電磁弁を開
閉する電源のオン−オフを零電位クロス点のオン−オフ
に変換する変換手段を設け、ソレノイドコイルにコンデ
ンサーを並列に接続して共振回路を形成し、電源をオフ
した時点から共振回路で共振する電圧若しくは電流を変
換手段で零電位クロス点にてオフした時点からnπν工
て(nは1゜2.3・・・、Lはソレノイドコイルのイ
ンダクタンス、Cはコンデンサーの容量)の時間を測定
することにより、電磁弁の正常動作時の基準時間と比較
し*M1yPの正常異常を判別するように構成している
。(Means for Solving the Problems) In the solenoid valve operation detection device of the present invention, a conversion means is provided to convert the on/off of the power supply for opening/closing the solenoid valve to the on/off of the zero potential cross point, and the solenoid valve is A resonant circuit is formed by connecting a capacitor to the coil in parallel, and from the time the power is turned off, the voltage or current that resonates in the resonant circuit is converted to nπν (n is 1) from the time the conversion means is turned off at the zero potential cross point.゜2.3..., L is the inductance of the solenoid coil, C is the capacitance of the capacitor) By measuring the time, it is compared with the reference time during normal operation of the solenoid valve to determine whether *M1yP is normal or abnormal. It is composed of
(作用)
このように構成されたものにおいては、電源をオフした
ときに、電磁弁のソレノイドコイルと可動鉄片の位置関
係により共振回路で共振する電圧若しくは電流の周波数
2πAてが変化(ソレノイドコイルのインダクタンスL
が変化)する。したがってnπ、&(任意の時間)を測
定し、電磁弁の正常動作時の基準時間と比較することに
よって電磁弁の動作が正常か異常か電源をオフしてから
瞬時に判断できる。(Function) In a device configured in this way, when the power is turned off, the frequency 2πA of the voltage or current that resonates in the resonant circuit changes depending on the positional relationship between the solenoid coil of the solenoid valve and the movable iron piece (the solenoid coil's frequency 2πA changes). Inductance L
change). Therefore, by measuring nπ, & (arbitrary time) and comparing it with the reference time during normal operation of the solenoid valve, it is possible to instantly determine whether the operation of the solenoid valve is normal or abnormal after turning off the power.
(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
ここ、では原子力発電所の電磁弁の動作検出を一例とし
て原子炉緊急停止系(スクラム)について述べる。Here, we will discuss the nuclear reactor emergency shutdown system (scram) using the operation detection of a solenoid valve in a nuclear power plant as an example.
第4図は原子炉緊急停止系の概略構成図であり、判断を
行い、その結果の指令を出す論理部1,2カ)らの信号
により、ソレノイド3,4を無励磁にすると電磁弁5,
6が動作し、圧搾空気23は空気配管7を経由し′て図
示した空気の排気方向24に排気される。同時に配管8
内の空気も排気方向24に排気され、配管8内の圧搾空
気が喪失する結果、弁9,10が開かれる。弁9,10
が開かれると圧縮水21が弁9を経由してピストンII
Q下部に注入されると共に、ピストン11の上部の水が
弁1oを経由して排出方向22へ排水される。これによ
ってピストン11は水圧で急激に押上げられ図示しない
制御棒が炉心に挿入される。電磁弁5又は6の1個が無
励磁にされても、圧搾空気の流れ方向から配管8内の空
気は喪失せず、制御棒が挿入されることはない。この為
に通常は論理部l又は2のlチャンネルずつのテストを
行ない、かつ論理部1゜2の動作の健全性は確認できる
ものとなっている。Figure 4 is a schematic diagram of the reactor emergency shutdown system. When the solenoids 3 and 4 are de-energized by signals from the logic units 1 and 2 which make judgments and issue commands as a result, the solenoid valve 5 ,
6 is operated, and the compressed air 23 is exhausted through the air pipe 7 in the illustrated air exhaust direction 24. Piping 8 at the same time
The air inside is also exhausted in the exhaust direction 24, and as a result of the loss of compressed air in the pipe 8, the valves 9, 10 are opened. Valve 9, 10
is opened, compressed water 21 passes through valve 9 to piston II.
At the same time, the water in the upper part of the piston 11 is drained in the discharge direction 22 via the valve 1o. As a result, the piston 11 is rapidly pushed up by water pressure, and a control rod (not shown) is inserted into the reactor core. Even if one of the solenoid valves 5 or 6 is de-energized, the air in the pipe 8 is not lost from the flow direction of the compressed air, and the control rod is not inserted. For this purpose, each channel of logic section 1 or 2 is usually tested, and the soundness of the operation of logic section 1.degree. 2 can be confirmed.
第5図は、第4図の電磁弁5,6のソレノイドと可動鉄
片との関係を概念的に示した図である。FIG. 5 is a diagram conceptually showing the relationship between the solenoids of the electromagnetic valves 5 and 6 of FIG. 4 and the movable iron piece.
同図(b)は励磁された状態を示し、同図(a)は無励
磁の状態を示している。ソレノイド3に電流を流すと可
動鉄片31は磁気力により吸いつけられて同図(b)に
示すごとく可動鉄片31はソレノイド3中に吸引される
。ソレノイド中に流れている電流を遮断すれば可動鉄片
31は解放されて同図(a)に示すようになる。この可
動鉄片31と連動している弁の本体部はそれぞれ上記に
対応して動作する。FIG. 5(b) shows an excited state, and FIG. 2(a) shows a non-excited state. When a current is applied to the solenoid 3, the movable iron piece 31 is attracted by magnetic force, and the movable iron piece 31 is attracted into the solenoid 3 as shown in FIG. 3(b). When the current flowing through the solenoid is cut off, the movable iron piece 31 is released as shown in FIG. The main body of the valve that is interlocked with the movable iron piece 31 operates in accordance with the above.
次に第1図は、本発明の電磁弁の動作検出装置の一実施
例を示す概略ブロック図である。Next, FIG. 1 is a schematic block diagram showing an embodiment of the electromagnetic valve operation detection device of the present invention.
交番電源50より供給された電流鱒論理部1,2内のト
リップスイッチ52(プラント既設のスイッチでスクラ
ム信号を制御する)をオンすると、5SR51(ソリッ
ド・ステートΦリレー)が電源電圧の零電位点より導通
状態(オン状態)(第2図のC,D参照)になり、コン
デンサ53、電磁弁54にそれぞれ電流が供給される。When the trip switch 52 (controls the scram signal with an existing switch in the plant) in the current trout logic units 1 and 2 supplied from the alternating power supply 50 is turned on, the 5SR51 (solid state Φ relay) switches to the zero potential point of the power supply voltage. The capacitor 53 becomes conductive (ON state) (see C and D in FIG. 2), and current is supplied to the capacitor 53 and the solenoid valve 54, respectively.
したがって電磁弁54は励磁状態(第5図(b))にな
る。Therefore, the electromagnetic valve 54 becomes energized (FIG. 5(b)).
トリップスイッチ52をオフするとコンデンサ53とこ
れに並列に接続される電磁弁5,6のソレノイド3,4
とで形成される共振回路(タンク回路)により、電圧は
t工2π〜/’LK(4,はソレノイド3のインダクタ
ンス、Cはコンデンサ53のキャパシタンス)の周期で
減披振動(第2図B参照)を起こす。When the trip switch 52 is turned off, the capacitor 53 and the solenoids 3 and 4 of the solenoid valves 5 and 6 connected in parallel to the capacitor 53 are turned off.
Due to the resonant circuit (tank circuit) formed by the above, the voltage is damped at a period of t = 2π~/'LK (4 is the inductance of the solenoid 3, and C is the capacitance of the capacitor 53) (see Fig. 2B). ).
電磁弁5,6内部の可動鉄片部分の停止位置により、L
(インダクタンス)が変化する。つまり、トリップスイ
ッチ52をオフした時点で、可動鉄片31がソレノイド
3内から完全に出れば(正常な状態)インダクタンスは
小となるが、何らかの原因により可動鉄片31がソレノ
イド3内に残った場合(異常な状態)にはインダクタン
スは大となる。Depending on the stop position of the movable iron piece inside the solenoid valves 5 and 6, L
(inductance) changes. In other words, if the movable iron piece 31 completely comes out of the solenoid 3 when the trip switch 52 is turned off (normal condition), the inductance will be small, but if the movable iron piece 31 remains inside the solenoid 3 for some reason ( (abnormal state), the inductance becomes large.
そこで、あらかじめ正常な状態の時の振動周波数2π4
で 若しくは撮動周波数のn倍のnπlで(n=1.2
.3・・・)を測定しておき、実際にトリップスイッチ
52をオフして測定する周波数、と比較することにより
て、tHi弁5,6の動作を確認することができる。Therefore, in advance, the vibration frequency in the normal state is 2π4
or nπl which is n times the imaging frequency (n=1.2
.. The operation of the tHi valves 5 and 6 can be confirmed by measuring the frequencies (3...) and comparing them with the frequencies actually measured by turning off the trip switch 52.
これを実現するために、トリップスイッチ52をオフし
た時点(実際には零電位クロスコンパレータ52によっ
て変換された零電位の時点)からt=nπ41秒(nは
1,2.3・・・)後の電圧値の°零りロス点までの時
間を次に述べる回路により計則する。In order to realize this, t=nπ41 seconds (n is 1, 2.3, etc.) after the time when the trip switch 52 is turned off (actually, the time of zero potential converted by the zero potential cross comparator 52). The time required for the voltage value to reach the zero loss point is calculated using the circuit described below.
検出回路55は、コンデンサ53と電磁弁5,6のソレ
ノイド3の両端の電圧波形を零電位クロスコンパレータ
57に都合のよいレベルに変換して出力する。零電位ク
ロスコンパレータ57で電圧波形(蜘波)を矩形波に整
形しAND回路59へ送る。The detection circuit 55 converts the voltage waveforms across the capacitor 53 and the solenoids 3 of the electromagnetic valves 5 and 6 to a level suitable for the zero potential cross comparator 57 and outputs the converted voltage waveforms. A zero potential cross comparator 57 shapes the voltage waveform (spider wave) into a rectangular wave and sends it to an AND circuit 59.
一方、トリップスイッチ52からの信号によって単安定
マルチバイブレータ56を起動する。この単安定マルチ
バイブレータ56からは測定したい任意時間t=nπJ
でよりもわずかに長い時間の単パルスを発生(第2図E
に示す)させAND回路59へ送る。さらに、時間を測
定するための基準時間信号発生器58から時間基準信号
を(第2図1(に示す)AND回路59へ送る。AND
回路59へ入力されるこれら3つの信号のAND回路5
9からの出力が測定したい時間t=nπV4万に相当す
る信号である。この信号をデジタルコンパレータ60を
通すことにより、あらかじめ求めである電磁弁が正常l
こ動作した時の時間と比較する。そしてOR,判別表示
回路61は、それぞれのデジタルコンパレータ6゜から
の警報(故障)信号を一括して制御室等lこ送ることも
できる。On the other hand, the monostable multivibrator 56 is activated by a signal from the trip switch 52. From this monostable multivibrator 56, any desired time t=nπJ
generates a single pulse of slightly longer duration than (Fig. 2E)
) is sent to the AND circuit 59. Further, a time reference signal is sent from a reference time signal generator 58 for measuring time to an AND circuit 59 (shown in FIG. 2).
AND circuit 5 of these three signals input to circuit 59
The output from 9 is a signal corresponding to the time t=nπV40,000 to be measured. By passing this signal through the digital comparator 60, it is determined that the solenoid valve is in a normal state as determined in advance.
Compare this time with the time it took to operate. The OR and discrimination display circuit 61 can also send alarm (failure) signals from the respective digital comparators 6° all at once to a control room, etc.
第2図は、第1図に示すブロック図の主要部の電圧波形
を示している。なお、第2図中のAからHまでの符号は
第1図に示すAからHの符号に対応して8す、それぞれ
のブロック図での観測波形の位置を示すものである。FIG. 2 shows voltage waveforms of the main parts of the block diagram shown in FIG. Note that the symbols A to H in FIG. 2 correspond to the symbols A to H shown in FIG. 1, and indicate the positions of observed waveforms in the respective block diagrams.
第2図Aは、トリップスイッチ52のオン−オフ波形で
ある。Bは、コンデンサ°53とソレノイド3゜4から
なる共振回路の減衰振動波形を示している。FIG. 2A shows the on-off waveform of the trip switch 52. B shows a damped vibration waveform of a resonant circuit consisting of a capacitor 53° and a solenoid 3°4.
な2、実線は正常時、破線は異常時を示している。2. The solid line indicates normal conditions, and the broken line indicates abnormal conditions.
異常時は、電源をオフして無励磁の状態にしたにもかか
わらず、ソレノイド中に可動鉄片が残っており、可動鉄
片が完全に解放される正常な状態と比較してインダクタ
ンスが大きく、減衰摂動の周波数2πAでも大きくなっ
ている。C9Dは、それぞれ異常時、正常時の零電位ク
ロスコンパレータ57を通した矩形波、Eは単安定マル
チバイブレータ56の出力波形、F、GはそれぞれAN
D回路59を通した異常時と正常時の出力信号波形・、
Hは時間基準46号波形である。When an abnormality occurs, the movable iron piece remains in the solenoid even though the power is turned off and the solenoid is de-energized, and the inductance is large compared to the normal state when the movable iron piece is completely released, causing damping. It is also large at the perturbation frequency of 2πA. C9D is a rectangular wave passed through the zero-potential cross comparator 57 during abnormal and normal conditions, E is the output waveform of the monostable multivibrator 56, and F and G are AN, respectively.
Output signal waveforms during abnormal and normal times through D circuit 59.
H is the time reference No. 46 waveform.
第3図は、本発明の他の実施例を示すものであり、コン
デンサ53とソレノイド3,4からなる共振回路から電
流値を検出するためにc’r(カレントトランス)62
を紋けだものである。第3図においては、第1図と同等
のものには同符号を付して説明は省略するが、オフ故障
の検出の作用、効果は同じである。つまり、トリップス
イッチ528オフした時点(実際には零電位クロスコン
パレータ57によって変換された零電位の時点)からt
= nπ囚χ秒(nは1 、2 、3−)後の電流値
(CT621Cより電流値が検出される)の零クロス点
までの時間を前述と同様に検出する。そしてデジタルコ
ンパレータ60により、あらかじめ求めである電磁弁が
正常に動作した場合の時間と比較して正常か異常かを判
別している。FIG. 3 shows another embodiment of the present invention, in which a c'r (current transformer) 62 is used to detect the current value from a resonant circuit consisting of a capacitor 53 and solenoids 3 and 4.
It is a crest. In FIG. 3, parts equivalent to those in FIG. 1 are given the same reference numerals and explanations are omitted, but the operation and effect of detecting an OFF fault are the same. In other words, from the time when the trip switch 528 is turned off (actually, the time of zero potential converted by the zero potential cross comparator 57), t
The time to the zero cross point of the current value (the current value is detected by the CT621C) after = nπ−χ seconds (n is 1, 2, 3−) is detected in the same manner as described above. Then, the digital comparator 60 compares the time with the predetermined time when the solenoid valve operates normally to determine whether it is normal or abnormal.
なお、第3図に示すブロック図の主要部の電流。In addition, the current of the main part of the block diagram shown in FIG.
電圧波形は第2図に示すものと一致する〇また、電流値
を検出する手段としてはCT(カレントトランス)に限
定されない。The voltage waveform matches that shown in FIG. 2. Also, the means for detecting the current value is not limited to a CT (current transformer).
第6図と第7図は、本発明の変形例を示すもので、5S
R151を一つで全ての回路に共通にしたもので、抵抗
71を介してタンク回路に接続されている。FIG. 6 and FIG. 7 show a modification of the present invention, in which 5S
One R151 is common to all circuits, and is connected to the tank circuit via a resistor 71.
また上述の実施例では、デジタルコンパレータ60を用
いて測定した時間と正常時の時間を比較しているが、カ
ウンター等を用いて基準時間信号発生器58からの時間
基準信号の周波数を高(すれば分解能が増し、可動鉄片
31の途中停止位置の表示も相変良く表示することがで
きる。したがって電磁弁の動作が途中で停止した場合の
故障も確認できる。Further, in the above embodiment, the time measured using the digital comparator 60 and the normal time are compared, but the frequency of the time reference signal from the reference time signal generator 58 is increased (beyond the threshold) using a counter or the like. As a result, the resolution is increased and the intermediate stop position of the movable iron piece 31 can be displayed very well.Therefore, it is also possible to confirm a failure in the case where the operation of the solenoid valve stops halfway.
以上は、原子炉緊急停止系に採用されている電磁弁を例
にとって説明したが、これに限定されるものではなく電
磁弁の動作の判別が必要な装置にはすべて適用できると
共に、主蒸気逃し安全弁、直流、弁にも適用できる。The above explanation has been given using the solenoid valve used in the reactor emergency shutdown system as an example, but it is not limited to this and can be applied to any device that requires the determination of the operation of the solenoid valve. Also applicable to safety valves, direct current, and valves.
以上詳述したように本発明によれば、既存の電磁弁に改
造を加えることなく、プラント運転中に瞬時に電磁弁の
動作を確実に確認できるものである、As detailed above, according to the present invention, the operation of the solenoid valve can be instantly and reliably confirmed during plant operation without modifying the existing solenoid valve.
第1図は、本発明の電磁弁の動作検出装置の一実施例を
示すプロ、り図、第2図は、第1図及び第3図のブロッ
ク図の各部の電圧波形を示す波形図、第3図は、本発明
の他の実施例を示すブロック図、第4図は、電子力発電
所の原子炉緊急停止系の系統図、WJ5図は、ソレノイ
ドと可動鉄片の相関関係を示す概念図、第6図と第7図
は、本発明の変形例を示すブロック図、第8図は、従来
例を示す電磁弁の動きと電流の関係を示す概念図である
。
3.4・・・ソレノイドコイル、5,6・・・電磁弁、
31・・・可動鉄片、50・・・電源、51・・・SS
R,53・・・コンデンサー、55・・・検出回路、5
6・・・単安定マルチバイブレータ、57・・・零電位
クロスコンパレータ(変換手段)、58・・・基準信号
発生器、59・・・AND回路(測定手段)、60・・
・デジタルコンパレータ(比較判別手段)、61・・・
0几判別表示回路(表示手段)、62・・・CToFIG. 1 is a diagram showing one embodiment of the electromagnetic valve operation detection device of the present invention, and FIG. 2 is a waveform diagram showing voltage waveforms at various parts of the block diagrams of FIGS. 1 and 3. Fig. 3 is a block diagram showing another embodiment of the present invention, Fig. 4 is a system diagram of a nuclear reactor emergency shutdown system of an electronic power plant, and Fig. WJ5 is a conceptual diagram showing the correlation between the solenoid and the movable iron piece. 6 and 7 are block diagrams showing modified examples of the present invention, and FIG. 8 is a conceptual diagram showing the relationship between movement and current of a solenoid valve showing a conventional example. 3.4...Solenoid coil, 5,6...Solenoid valve,
31... Movable iron piece, 50... Power supply, 51... SS
R, 53... Capacitor, 55... Detection circuit, 5
6... Monostable multivibrator, 57... Zero potential cross comparator (conversion means), 58... Reference signal generator, 59... AND circuit (measuring means), 60...
・Digital comparator (comparison/discrimination means), 61...
0-liter discrimination display circuit (display means), 62...CTo
Claims (2)
動作を行なう可動鉄片と、この可動鉄片の近傍に設けら
れたソレノイドコイルと、このソレノイドコイルに励磁
電流を供給する電源と、この電源のオン−オフを零電位
クロス点のオン−オフに変換する変換手段と、前記ソレ
ノイドコイルと並列にコンデンサーを接続して形成され
る共振回路と、前記変換手段により零電位クロス点にて
オフした時点から前記共振回路により共振する電圧値若
しくは電流値の任意の零電位クロス点までの時間を測定
する測定手段と、この測定手段により測定した時間と、
前記電磁弁の正常動作時の基準時間とを比較し、前記電
磁弁の正常異常を判別する比較判別手段とを具備するこ
とを特徴とする電磁弁の動作検出装置。(1) A movable iron piece that is movably installed in the main body of the solenoid valve and opens and closes the solenoid valve, a solenoid coil that is installed near the movable iron piece, and a power source that supplies exciting current to the solenoid coil; a conversion means for converting the on-off of the power supply into on-off at the zero potential cross point; a resonant circuit formed by connecting a capacitor in parallel with the solenoid coil; A measuring means for measuring the time from the time of turning off to an arbitrary zero potential cross point of the voltage value or current value resonated by the resonant circuit, and the time measured by the measuring means;
An operation detection device for an electromagnetic valve, characterized in that it comprises a comparison/determination means for comparing a reference time during normal operation of the electromagnetic valve to determine whether the electromagnetic valve is normal or abnormal.
信号を表示する表示手段を具備することを特徴とする特
許請求の範囲第1項記載の電磁弁の動作検出装置。(2) The electromagnetic valve operation detection device according to claim 1, further comprising display means for displaying the normal or abnormal signal detected by the comparison and discrimination means.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-106720 | 1986-05-12 | ||
JP10672086 | 1986-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63106485A true JPS63106485A (en) | 1988-05-11 |
Family
ID=14440788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61305191A Pending JPS63106485A (en) | 1986-05-12 | 1986-12-23 | Detector for operation of solenoid valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63106485A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105370960A (en) * | 2015-10-23 | 2016-03-02 | 国核自仪系统工程有限公司 | Control method of control system for nuclear power plant total-travel electrically operated valve |
-
1986
- 1986-12-23 JP JP61305191A patent/JPS63106485A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105370960A (en) * | 2015-10-23 | 2016-03-02 | 国核自仪系统工程有限公司 | Control method of control system for nuclear power plant total-travel electrically operated valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9835265B2 (en) | Valve with actuator diagnostics | |
US5583434A (en) | Method and apparatus for monitoring armature position in direct-current solenoids | |
AU2012366764B2 (en) | Field device with self-testing of a piezoelectric transducer | |
US8265794B2 (en) | Knowledge based valve control method | |
KR900014194A (en) | Electronic braking system | |
CN208294882U (en) | Via the device of the solenoid valve of locator test emergency valve | |
EP2707731B1 (en) | Method and apparatus for detection of lvdt core fallout condition | |
EP1379803A1 (en) | Method for detecting broken valve stem | |
US20020139180A1 (en) | Surge bleed valve fault detection | |
CN110360375B (en) | Valve maintenance status detection | |
JPS61170246A (en) | Power supply interface circuit | |
US5204633A (en) | Electromagnetic contactor with closure fault indicator | |
JPS63106485A (en) | Detector for operation of solenoid valve | |
JPS63135679A (en) | Detecting device for operation of solenoid valve | |
JPH0666388A (en) | Isolation valve monitor | |
JP6357635B1 (en) | Drain trap | |
RU2681553C1 (en) | Method for remote control of pneumatic actuator of main pipeline | |
JPH06281708A (en) | Tester for battery life | |
JPH0396871A (en) | On-line diagnostic device for electromagnetic apparatus and its driving circuit | |
NO346531B1 (en) | Detection of safe activation of shutdown valves and blowdown valves | |
Knegtering | Safety-PLC’s striking role for partial valve stroke testing | |
JPS62180182A (en) | Performance confirmation device for solenoid valve | |
WO1997030305A1 (en) | Safety valve arrangement | |
JPS6215982B2 (en) | ||
SU1325542A1 (en) | Device for limiting maximum processing parameters |