JPS6297133A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS6297133A JPS6297133A JP23800485A JP23800485A JPS6297133A JP S6297133 A JPS6297133 A JP S6297133A JP 23800485 A JP23800485 A JP 23800485A JP 23800485 A JP23800485 A JP 23800485A JP S6297133 A JPS6297133 A JP S6297133A
- Authority
- JP
- Japan
- Prior art keywords
- film
- hydrogen
- oxygen
- magnetic recording
- polymer film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は基板面に対して垂直方向に磁化可能な高密度磁
気記録用磁気記録媒体の製造方法に関する0
従来の技術
近年、磁気記録媒体は従来の塗布型磁気記録層から、強
磁性金属薄膜磁気記録層の実用化が検討されている。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a magnetic recording medium for high-density magnetic recording that can be magnetized perpendicularly to the surface of a substrate. The practical application of ferromagnetic metal thin film magnetic recording layers from coated magnetic recording layers is being considered.
これに伴い、製造方法も強磁性金属薄膜を形成するに適
した真空蒸着法を中心に検討が加えられている。Along with this, studies are also being conducted on manufacturing methods, focusing on vacuum evaporation methods suitable for forming ferromagnetic metal thin films.
第2図は従来のCo−0系、又はCo−Ni−○系の垂
直磁化膜を磁気記録層とする磁気記録媒体の製造を行う
のに利用する真空蒸着装置の内部構成略図である。FIG. 2 is a schematic diagram of the internal configuration of a vacuum evaporation apparatus used to manufacture a magnetic recording medium having a conventional Co-0 based or Co-Ni-○ based perpendicularly magnetized film as a magnetic recording layer.
第2図において、1は高分子フィルム等の基板、2は送
シ出し軸、3は巻取υ軸、4は回転支持体、6は蒸発源
、6は真空容器、7は遮へい板、8はスリット、9はガ
ス導入ノズル、1oは真空ポンプである。In FIG. 2, 1 is a substrate such as a polymer film, 2 is a feeding shaft, 3 is a winding shaft, 4 is a rotating support, 6 is an evaporation source, 6 is a vacuum container, 7 is a shielding plate, 8 9 is a slit, 9 is a gas introduction nozzle, and 1o is a vacuum pump.
第2図の装置を用い、ガス導入ノズル9より酸素ガスを
導入しながら、蒸発源6よりCO又はCoNi(Ni
は5%・〜30%)を蒸発させ、その蒸発源子の一部を
スリット8によりほぼ基板1に垂直に入射する成分で蒸
着を行うことで、Co−〇、又はCo −N i−0か
ら成る垂直磁化膜を高分子フィルム上に連続して形成す
ることが出来る。Using the apparatus shown in FIG. 2, CO or CoNi (Ni) is introduced from the evaporation source 6 while introducing oxygen gas from the gas introduction nozzle 9.
By evaporating a part of the evaporation source with a component that is incident almost perpendicularly to the substrate 1 through the slit 8, Co-〇 or Co-N i-0 is evaporated. It is possible to continuously form a perpendicularly magnetized film on a polymer film.
この方法は、量産性の点で、Co−Cr等のスパッタ垂
直磁化膜9可転支持体を高温に保持してのGo−Cr電
子ビーム蒸着膜に比較して優れており、高密度磁気記録
媒体の製造方法として有望である。In terms of mass production, this method is superior to the Go-Cr electron beam evaporation film made by maintaining a sputtered perpendicular magnetization film 9 of Co-Cr at a high temperature on a rotatable support, and is suitable for high-density magnetic recording. This is a promising method for producing media.
発明が解決しようとする問題点
しかしながら、上記したような構成では、得ら体を製造
した時にスペーシング損失の変動に原因があると考えら
れる出力変動が大きく、実用上問題となる。Problems to be Solved by the Invention However, with the above-described configuration, when the obtained body is manufactured, output fluctuations, which are thought to be caused by fluctuations in spacing loss, are large, which poses a practical problem.
本発明は上記事情に鑑みてなされたもので、長尺の媒体
を、短波長出力の大きい状態で安定に得ることの出来る
方法を提供するものである。The present invention has been made in view of the above circumstances, and provides a method that can stably obtain a long medium with a high short wavelength output.
問題点を解決するための手段
上記問題点を解決するために本発明の磁気記録媒体の製
造方法は、高分子フィルムの移動方向側に酸素を、反対
側に水素を導入し、ほぼ高分子フィルムに垂直入射する
ようにco又はCo N i蒸気を差し向けるようにし
たものである。Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention introduces oxygen to the side of the polymer film in the direction of movement and hydrogen to the opposite side, so that almost all polymer films are formed. The co or Co Ni vapor is directed so that it is perpendicularly incident on the .
作 用
本発明の磁気記録媒体の製造方法は、上記した構成によ
り、垂直磁化膜の条件を満足せしめるのに酸素が作用し
、垂直磁化膜のへンドアクセス側、即ち膜の表面側の酸
化膜が導入水素の還元作用に基すいて薄くできることか
ら、短波長出力の大きい状態で長尺の媒体を製造できる
ので・ある。Function: In the method for manufacturing a magnetic recording medium of the present invention, with the above-described configuration, oxygen acts to satisfy the conditions of the perpendicularly magnetized film, and the oxide film on the hand access side of the perpendicularly magnetized film, that is, on the surface side of the film. Since it can be made thinner based on the reducing action of introduced hydrogen, it is possible to produce long media with high short wavelength output.
実施例
以下、図面を参照しながら、本発明の実施例について説
明する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は、本発明を実施するために用いた蒸着装置の内
部構成図である。FIG. 1 is an internal configuration diagram of a vapor deposition apparatus used to carry out the present invention.
第1図において、11は高分子フィルム、12は送り出
し軸、13は巻取り軸、14は回転支持体、16は蒸発
源、16は真空容器、17は遮へい板、18はスリット
、19は水素導入ノズル、2oは酸素導入ノズル、21
は真空ポンプである。In FIG. 1, 11 is a polymer film, 12 is a feeding shaft, 13 is a winding shaft, 14 is a rotating support, 16 is an evaporation source, 16 is a vacuum container, 17 is a shielding plate, 18 is a slit, and 19 is hydrogen Introduction nozzle, 2o is oxygen introduction nozzle, 21
is a vacuum pump.
第1図において、蒸発源16の中心から真上の高分子フ
ィルム11までの距離を34.6 cm 、回転支持体
の直径を66α、スリ、、 ト18の幅を4tyn。In FIG. 1, the distance from the center of the evaporation source 16 to the polymer film 11 directly above is 34.6 cm, the diameter of the rotating support is 66α, and the width of the slot 18 is 4 tyn.
酸素導入ノズル2oと水素導入ノズル19の先端間の距
離を12 cm 、夫々の先端と蒸発源中心間距離を3
11:rnとして以下の実施例で本発明の効果を確かめ
た。The distance between the tips of the oxygen introduction nozzle 2o and the hydrogen introduction nozzle 19 is 12 cm, and the distance between each tip and the center of the evaporation source is 3 cm.
The effects of the present invention were confirmed in the following examples as No. 11:rn.
回転支持体の表面温度は26℃一定とし、真空度は、ガ
ス導入前I X 10−6(Torr )まで到達して
から、ガス導入を行った。The surface temperature of the rotating support was kept constant at 26° C., and the degree of vacuum reached I x 10 −6 (Torr) before gas introduction, and then gas was introduced.
厚みIQ、4mのポリエチレンテレフタレートフィルム
を移動させながら、膜厚0.2μmのCo −○、Co
−Ni−0膜を形成し、平坦化処理後、ステアリン酸を
約30人真空蓋着し、その後、8mm幅にスリ゛ノドし
、各種の磁気テープを試作した。While moving a polyethylene terephthalate film with a thickness IQ of 4 m, Co -○, Co with a film thickness of 0.2 μm
A -Ni-0 film was formed, and after planarization, stearic acid was applied with a vacuum lid by about 30 people.Then, the film was slit to a width of 8 mm, and various magnetic tapes were produced as prototypes.
性能比較は、ギャップ長0.16μmのフェライトリン
グヘッドを用いて、0.4/imの記録波長の再生出力
を、全長1000mのうち任意の10点を選び、各点1
0mを測定し出力の最大値、最小値を相対比較した。The performance comparison was performed using a ferrite ring head with a gap length of 0.16 μm, and selected 10 arbitrary points out of a total length of 1000 m to reproduce the reproduction output at a recording wavelength of 0.4/im.
0m was measured and the maximum and minimum output values were compared relative to each other.
垂直方向の保磁力は振動試料型磁束計で測定した。The coercive force in the vertical direction was measured using a vibrating sample magnetometer.
製造条件と性能の比較を次表にまとめて示した。A comparison of manufacturing conditions and performance is summarized in the table below.
以上より明らかに本発明により得られた磁気記録媒体は
、長手においても再生出力が良好で且つ安定しているこ
とが理解できる。From the above, it can be clearly seen that the magnetic recording medium obtained according to the present invention has good and stable reproduction output even in the longitudinal direction.
本実施例では磁気テープについて説明したが、本発明に
より磁気ディスク、磁気シートを製造することも可能で
あり、均一で、高性能な媒体を大量に製造できるもので
ある。Although a magnetic tape has been described in this embodiment, it is also possible to manufacture magnetic disks and magnetic sheets according to the present invention, and uniform, high-performance media can be manufactured in large quantities.
発明の効果
以上のように本発明によれば、垂直方向に磁化可能な磁
気記録媒体を大量に生産することができるといったすぐ
れた効果が得られるものである。Effects of the Invention As described above, according to the present invention, excellent effects such as the ability to mass-produce magnetic recording media that can be magnetized in the perpendicular direction can be obtained.
第1図は本発明の磁気記録媒体の製造方法の実、施に用
いた蒸着装置の一例の内部構成図、第2図は従来の蒸着
装置の内部構成図である。
11・・・・・・高分子フィルム、16・・・・・・蒸
発源、18・・・・・・スリット、19・・・・・・水
素導入ノズル、2o・・・・・・酸素導入ノズル。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名U−
一一高分子フイルムFIG. 1 is an internal configuration diagram of an example of a vapor deposition apparatus used for carrying out the method of manufacturing a magnetic recording medium of the present invention, and FIG. 2 is an internal configuration diagram of a conventional vapor deposition apparatus. 11... Polymer film, 16... Evaporation source, 18... Slit, 19... Hydrogen introduction nozzle, 2o... Oxygen introduction nozzle. Name of agent: Patent attorney Toshio Nakao and one other person U-
11 Polymer film
Claims (1)
導入し、ほぼ高分子フィルムに垂直入射する成分のCo
又はCo−Ni蒸気流を差し向けることを特徴とする磁
気記録媒体の製造方法。Oxygen is introduced on the moving direction side of the polymer film, hydrogen is introduced on the opposite side, and the component Co is introduced almost perpendicularly into the polymer film.
Alternatively, a method for manufacturing a magnetic recording medium, comprising directing a Co--Ni vapor flow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23800485A JPH0687306B2 (en) | 1985-10-24 | 1985-10-24 | Method of manufacturing magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23800485A JPH0687306B2 (en) | 1985-10-24 | 1985-10-24 | Method of manufacturing magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6297133A true JPS6297133A (en) | 1987-05-06 |
JPH0687306B2 JPH0687306B2 (en) | 1994-11-02 |
Family
ID=17023704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23800485A Expired - Lifetime JPH0687306B2 (en) | 1985-10-24 | 1985-10-24 | Method of manufacturing magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0687306B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63285725A (en) * | 1987-05-16 | 1988-11-22 | Sony Corp | Production of perpendicular magnetic recording medium |
JPH0499166A (en) * | 1990-08-03 | 1992-03-31 | Matsushita Electric Ind Co Ltd | Production of double vacuum-deposited film |
JPH05339704A (en) * | 1992-06-05 | 1993-12-21 | Toray Ind Inc | Production of transparent gas barrier film |
-
1985
- 1985-10-24 JP JP23800485A patent/JPH0687306B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63285725A (en) * | 1987-05-16 | 1988-11-22 | Sony Corp | Production of perpendicular magnetic recording medium |
JPH0499166A (en) * | 1990-08-03 | 1992-03-31 | Matsushita Electric Ind Co Ltd | Production of double vacuum-deposited film |
JPH05339704A (en) * | 1992-06-05 | 1993-12-21 | Toray Ind Inc | Production of transparent gas barrier film |
Also Published As
Publication number | Publication date |
---|---|
JPH0687306B2 (en) | 1994-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2563425B2 (en) | Method of manufacturing magnetic recording medium | |
JPS6297133A (en) | Production of magnetic recording medium | |
JPS62185246A (en) | Production of magnetic recording medium | |
JPS6174143A (en) | Production of magnetic recording medium | |
JP2946748B2 (en) | Manufacturing method of magnetic recording medium | |
JP2987406B2 (en) | Film forming method and film forming apparatus | |
JP2833444B2 (en) | Manufacturing method of magnetic recording medium | |
JPS59178626A (en) | Manufacture of magnetic recording medium | |
JP2830478B2 (en) | Vacuum deposition equipment | |
JPS61284829A (en) | Magnetic recording medium | |
JPH06333225A (en) | Thin film magnetic recording medium | |
JPH06116729A (en) | Production of magnetic recording medium | |
JPS6378336A (en) | Production of magnetic recording medium | |
JPH04248126A (en) | Production of magnetic recording medium | |
JPS619823A (en) | Magnetic recording medium | |
JPS60211619A (en) | Magnetic recording medium | |
JPH0334611B2 (en) | ||
JPH01118219A (en) | Production of magnetic recording medium | |
JPH08325718A (en) | Film formation | |
JPH0626021B2 (en) | Method of manufacturing magnetic recording medium | |
JPH0442730B2 (en) | ||
JPH0226294B2 (en) | ||
JPH11161952A (en) | Production of magnetic recording medium | |
JPH06231457A (en) | Production of magnetic recording medium | |
JPS615426A (en) | Magnetic recording medium |