[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2833444B2 - Manufacturing method of magnetic recording medium - Google Patents

Manufacturing method of magnetic recording medium

Info

Publication number
JP2833444B2
JP2833444B2 JP26081893A JP26081893A JP2833444B2 JP 2833444 B2 JP2833444 B2 JP 2833444B2 JP 26081893 A JP26081893 A JP 26081893A JP 26081893 A JP26081893 A JP 26081893A JP 2833444 B2 JP2833444 B2 JP 2833444B2
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic recording
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26081893A
Other languages
Japanese (ja)
Other versions
JPH07114731A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26081893A priority Critical patent/JP2833444B2/en
Publication of JPH07114731A publication Critical patent/JPH07114731A/en
Application granted granted Critical
Publication of JP2833444B2 publication Critical patent/JP2833444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性と記録特性に優れ
た磁気記録媒体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having excellent durability and recording characteristics using a ferromagnetic metal thin film suitable for high-density magnetic recording as a magnetic layer.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化、狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、現在実用に供さ
れているものは特開昭53−58206号公報に開示さ
れているような強磁性金属自身の酸化物で柱状微粒子の
表面が被覆された構造をもち記録特性と耐久性をバラン
ス良く改善したもので、構成元素はCo,Ni,Oから
なり(特開昭56−15014号公報)、これらの磁気
記録層を形成するのは、酸素ガスを介在させながらC
o,Co−Niを電子ビーム蒸着する方法が代表的で酸
素の導入については幾つかの提案があるが基材近傍で、
入射角規制を行う部分に近い位置が良く用いられている
(特開昭54−19199号公報、特開昭58−322
34号公報)。
2. Description of the Related Art With the development of the information-oriented society, the amount of information to be recorded has increased remarkably, and it has been required to increase the recording density of magnetic recording as much as possible. The development of magnetic recording media has become active. Although many proposals have been made, the one currently in practical use has a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has improved recording characteristics and durability in a well-balanced manner. The constituent elements are composed of Co, Ni, and O (Japanese Patent Application Laid-Open No. 56-15014), and these magnetic recording layers are formed by oxygen gas. C with intervening
The method of e-beam evaporation of o, Co-Ni is typical, and there are several proposals for the introduction of oxygen.
A position close to the part for controlling the incident angle is often used (Japanese Patent Application Laid-Open Nos. 54-19199 and 58-322).
No. 34).

【0003】以下に従来の磁気記録媒体の製造方法につ
いて説明する。図3は従来の磁気記録媒体の製造に用い
られている蒸着装置の要部構成図である。
Hereinafter, a conventional method for manufacturing a magnetic recording medium will be described. FIG. 3 is a main part configuration diagram of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【0004】図3で1はポリエステル等の高分子フィル
ムで、2は一定の温度に制御された回転支持体で、3は
フィルム送り出し軸、4はフィルム巻き取り軸、5は蒸
発源容器、6は蒸着材料、7は加速電子ビーム、8は蒸
気流、9はマスク、10は酸素導入ノズルで、11はグ
ロー放電電極である。図3の装置を用いて、磁気記録媒
体を製造する方法は以下の如くである。例えば粒状性の
表面をもったポリエチレンテレフタレート、ポリエチレ
ンナフタレート等を巻き取り系にセットし、真空排気
し、CoやCo−Ni等の蒸着材料を加速電子線により
加熱蒸発させて、接線方向から蒸着を進めマスクで遮断
する入射角(最小入射角と呼んでいる)で蒸着を完了
し、その際に最小入射角近くで酸素ガスを導入し、部分
酸化膜からなる磁気記録層の形成を回転支持体に沿った
状態で移動するフィルム上に行った後、回転支持体より
離されて静電気を見かけ上打ち消すようにグロー放電処
理されたあと巻取られることで製造される。
In FIG. 3, 1 is a polymer film of polyester or the like, 2 is a rotary support controlled at a constant temperature, 3 is a film feed shaft, 4 is a film winding shaft, 5 is an evaporation source container, 6 Is a vapor deposition material, 7 is an accelerated electron beam, 8 is a vapor flow, 9 is a mask, 10 is an oxygen introduction nozzle, and 11 is a glow discharge electrode. A method of manufacturing a magnetic recording medium using the apparatus of FIG. 3 is as follows. For example, polyethylene terephthalate, polyethylene naphthalate, etc. having a granular surface are set in a winding system, evacuated, and a vapor deposition material such as Co or Co-Ni is heated and evaporated by an accelerated electron beam, and is vapor-deposited from a tangential direction. The vapor deposition is completed at the angle of incidence (called the minimum angle of incidence) that is cut off by the mask. At that time, oxygen gas is introduced near the minimum angle of incidence, and the formation of the magnetic recording layer consisting of the partial oxide film is supported by rotation. After the film is moved along the body, the film is separated from the rotating support, is subjected to a glow discharge treatment so as to apparently cancel static electricity, and is wound.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、フィルムが薄型化して、しわになりやす
くなり静電気の影響を小さくするためにグロー放電処理
を強化すると平滑面と微小部分で接着現象が起きて、高
密度ディジタル記録で、エラー発生率が不十分である媒
体しか製造できないといった問題点を有していた。
However, in the above-mentioned conventional structure, when the glow discharge treatment is strengthened to reduce the influence of static electricity by reducing the thickness of the film and making it wrinkle, the adhesion phenomenon occurs between the smooth surface and the minute portion. As a result, there has been a problem that only a medium having an insufficient error rate can be manufactured in high-density digital recording.

【0006】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度ディジタル記録を可能にする、耐
久性と高出力特性を兼ね備えた薄型の磁気記録媒体の製
造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables high-density narrow-track digital recording. Aim.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は、移動するフィル
ムに強磁性金属を電子ビーム蒸着した後、回転支持体よ
りフィルムを引き離す部分に、磁性流体を配するように
したものである。
In order to achieve the above object, a method of manufacturing a magnetic recording medium according to the present invention comprises the steps of: depositing a ferromagnetic metal on a moving film by an electron beam; , And a magnetic fluid.

【0008】[0008]

【作用】この構成によって磁性層形成後において、回転
支持体から帯電したフィルムの表面電位が磁性流体を通
しての放電現象でさがることになり、且つその均一性も
良好にできるから薄型化した機械強度の弱いフィルムを
幅方向に均一な張力で巻取れるから、過剰なグロー放電
処理を行う必要がなく、微視的な接着現象をなくせるこ
とになり薄型の磁気記録媒体を再現よく製造できるよう
になる。
With this structure, after the formation of the magnetic layer, the surface potential of the film charged from the rotating support is reduced by the discharge phenomenon through the magnetic fluid, and the uniformity can be improved. Since a weak film can be wound with a uniform tension in the width direction, it is not necessary to perform an excessive glow discharge treatment, and a microscopic adhesion phenomenon can be eliminated, so that a thin magnetic recording medium can be manufactured with good reproducibility. .

【0009】[0009]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1において、図3と同一の構成で良い要
素は同一の番号を付与した。図1において12は磁性流
体で磁性微粒子は粒径が5〜30nmの合金粒子が好ま
しく、液体物質は真空内で用いられることから蒸気圧の
低いもので回転支持体が冷却して用いられる場合はその
温度での動粘度が5Cst(20℃)以下になる様に設
計することが好ましい。合金粒子の濃度は10〜60%
が良いが、合金粒子の代わりに酸化鉄を用いる場合は金
属イオンを吸着させる必要がある。13は磁性流体をフ
ィルムを回転支持体から処理が終わって引き離す部分に
局在化させるための隔壁でマグネット自体かマグネット
を内蔵した構造物からなるものである。14はフリーロ
ーラーである。
In FIG. 1, the same elements as those shown in FIG. 3 have the same reference numerals. In FIG. 1, reference numeral 12 denotes a magnetic fluid, and magnetic fine particles are preferably alloy particles having a particle diameter of 5 to 30 nm. Since the liquid substance is used in a vacuum, the liquid substance has a low vapor pressure and is used when the rotating support is cooled and used. It is preferable to design the kinematic viscosity at that temperature to be 5 Cst (20 ° C.) or less. Alloy particle concentration is 10-60%
However, when iron oxide is used instead of alloy particles, it is necessary to adsorb metal ions. Reference numeral 13 denotes a partition wall for localizing the magnetic fluid to a portion where the film is separated from the rotating support after the processing is completed, and is composed of a magnet itself or a structure having a built-in magnet. 14 is a free roller.

【0011】以下更に本実施例の効果について明確にす
るために具体的に磁気記録媒体を試作し、従来法で得ら
れたものと特性比較を行った結果について詳しく述べ
る。
Hereinafter, in order to clarify the effect of the present embodiment, a magnetic recording medium is experimentally manufactured, and the results of comparison of characteristics with those obtained by a conventional method will be described in detail.

【0012】厚み4.1μmで、長手方向、幅方向夫々
740,890[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンナフタレートフィルム(直径150
ÅのSiO2の超微粒子を平均密度20個/μm2を樹脂
固定した塗布層をあらかじめ配したものを用いた)を直
径1mの20℃に冷却した回転キャンに沿わせて巻き取
りながら酸素を導入してCoを電子ビーム蒸着して磁性
層を0.18μm形成した。蒸着後フィルムを引き離す
部分にマグネットで囲って磁性流体を配した。
The thickness is 4.1 μm, the Young's modulus is 740 and 890 [Kg / mm 2 ] in the longitudinal and width directions, respectively, and the average roughness is 3
0Å polyethylene naphthalate film (diameter 150
( 2 ) Ultrafine particles of SiO 2 (preliminarily provided with a coating layer having a resin fixed at an average density of 20 / μm 2 ) were wound along a 1 m diameter rotating can cooled at 20 ° C. to remove oxygen. Then, Co was deposited by electron beam evaporation to form a magnetic layer of 0.18 μm. After vapor deposition, a magnetic fluid was placed around the part where the film was separated by a magnet.

【0013】磁性流体は磁気テープに用いられる鉄、コ
バルト・鉄等の合金微粒子を蒸気圧の低い天然油や、合
成油である高級アルキルベンゼン、高級アルキルナフタ
レン、ポリブテン等に分散したものを用いた。いずれの
材料も特に差は見られなかった。磁性流体に触れさせた
後に、弱いグロー放電をかけた場合とかけない場合につ
いて実施結果に差異は見られなかったので、後述する結
果のデータはない場合で統一し、従来例のみ強化グロー
処理と、通常グロー処理の2種類を確認した。夫々につ
いてプラズマCVD法により厚み15nmの硬質炭素膜
を形成し、更にパーフルオロステアリン酸を4nm塗布
し、反対面に厚み0.5μmのバックコート層を配し、
6.35mm幅の磁気テープにして評価した。評価は8mm
ビデオデッキを6.35mm幅の磁気テープ評価用に改造
してビット長0.24μm,トラックピッチ9μmでビ
ットエラーレートの相対比較で行った。磁気テープの長
さは100mとし、ランダムに5巻選び出して5巻の平
均値で表示した。本実施例による磁気記録媒体の特性と
比較例の磁気記録媒体の特性を(表1)に比較して示し
ている。
The magnetic fluid used was a dispersion of fine particles of an alloy of iron, cobalt, iron or the like used for a magnetic tape in a natural oil having a low vapor pressure or in a higher oil such as a higher alkylbenzene, a higher alkylnaphthalene or a polybutene which is a synthetic oil. No difference was found in any of the materials. After touching the magnetic fluid, there was no difference in the execution results between the case where a weak glow discharge was applied and the case where the weak glow discharge was not applied. Two types of normal glow processing were confirmed. A hard carbon film having a thickness of 15 nm is formed on each of them by a plasma CVD method, 4 nm of perfluorostearic acid is further applied, and a 0.5 μm-thick back coat layer is provided on the opposite surface.
A magnetic tape having a width of 6.35 mm was evaluated. Evaluation is 8mm
The VCR was modified for evaluation of a 6.35 mm-wide magnetic tape, and the bit length was 0.24 μm and the track pitch was 9 μm. The length of the magnetic tape was 100 m, and five volumes were randomly selected and displayed as an average value of five volumes. Table 1 shows the characteristics of the magnetic recording medium according to the present embodiment and the characteristics of the magnetic recording medium of the comparative example.

【0014】[0014]

【表1】 [Table 1]

【0015】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、従来例がしわ
や、材料転写でビットエラーレートがばらつき、平均値
も大きいのに比し、狭トラック記録での高密度ディジタ
ル記録でビットエラーの少ないものを実現できるといっ
た優れた効果が得られる。
As is clear from Table 1, the magnetic recording medium manufactured according to the present embodiment has a wrinkle, a bit error rate varies due to material transfer, and a large average value, compared to the conventional example. An excellent effect is obtained that high-density digital recording with narrow track recording can be realized with little bit error.

【0016】以上の様に本実施例の製造方法によれば、
移動するフィルムに強磁性金属を電子ビーム蒸着した
後、回転支持体よりフィルムを引き離す部分に、磁性流
体を配することにより、フィルム上の静電気が磁性流体
を通して放電するか、補償されて見かけ上中和されて均
一な張力で搬送されることから薄くなっても皺などの表
面欠点がなくなって狭トラック記録での高密度ディジタ
ル記録でビットエラーの少ないものを実現できるといっ
た優れた効果が得られる。
As described above, according to the manufacturing method of this embodiment,
After depositing the ferromagnetic metal on the moving film by electron beam evaporation, the magnetic fluid is placed on the part that separates the film from the rotating support, so that the static electricity on the film is discharged through the magnetic fluid or compensated, and apparently medium Since the sheets are summed and conveyed with a uniform tension, an excellent effect of eliminating surface defects such as wrinkles even when thinned and achieving high-density digital recording in narrow track recording with few bit errors can be obtained.

【0017】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図2は本発明の第
2の実施例の磁気記録媒体の製造方法を実施するための
磁気記録媒体の製造装置の要部構成図である。図2にお
いて図1と同一の構成要素で良い部分は同一の番号を付
与している。15は磁性流体で、16は磁性流体保持用
の磁界発生器で、17はプラズマ発生容器、18は放電
電極で、19は電源装置である。尚プラズマ発生容器内
はあらかじめ排気し、(必要に応じて連続的に排気する
こともできる)外部より放電ガスを導入できるように構
成される。上記した構成により放電状態が極めて安定に
なることから、得られる薄膜の物性も均一で良好にな
る。
(Embodiment 2) Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a main part configuration diagram of an apparatus for manufacturing a magnetic recording medium for performing the method of manufacturing a magnetic recording medium according to the second embodiment of the present invention. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals. Reference numeral 15 denotes a magnetic fluid, 16 denotes a magnetic field generator for holding the magnetic fluid, 17 denotes a plasma generating container, 18 denotes a discharge electrode, and 19 denotes a power supply device. The inside of the plasma generation container is evacuated in advance, and the discharge gas can be introduced from the outside (it can be evacuated continuously if necessary). Since the discharge state becomes extremely stable with the above-described configuration, the physical properties of the obtained thin film are uniform and good.

【0018】上記した構成の装置により本発明を実施し
た。実際に製造された磁気記録媒体の特性を従来例、比
較例と対比することで本発明について具体的に詳しく説
明する。
The present invention was implemented by the apparatus having the above configuration. The present invention will be specifically described in detail by comparing the characteristics of actually manufactured magnetic recording media with those of a conventional example and a comparative example.

【0019】厚み6μmのポリイミドフィルム(平均粗
さ20Å、ヤング率長手600、幅650Kg/mm2)上
に平均粒子径200ÅのSiO2を平均密度50個/μ2
で塗布固定し、その上にメタンガスを用いプラズマ重合
膜を1nm(2A),3nm(2B)形成した。プラズ
マ発生容器(内容積;0.04m3)とキャン(直径5
0cm)の間を初期設定として2mmとし、磁性流体でシー
ルした実施例と、磁性流体を配さずに試作した比較例を
準備した。放電電極には20kHz、1.2〜2.1KW
を印加し、メタンガスを0.021/min,導入し排
気は実施例のみ51/secで行った。夫々に以下の条
件でCo−O垂直磁化膜を形成した。Coはマグネシア
容器内で加速電子ビームによって加熱蒸発させて、入射
角が44度から20度の範囲で入射角が44度側のマス
クの内側に酸素ガス導入ノズルを配し、0.71/mi
n導入し0.2μm蒸着した。それぞれ磁性膜の上にス
パッタリング法でダイヤモンド状硬質炭素膜を70Å形
成した後パーフルオロアラキン酸を30Å配し、0.5
μmのバックコート層を配して夫々6.35mm幅の磁気
テープに加工した。これらのテープを試験用のビデオに
よって6μトラック、ビット長0.2μのディジタル記
録を行いエラーレートを相対比較した。耐久性について
も45℃、85%RHで100パス履歴を加えた後のエ
ラーレートで評価した。本実施例による磁気記録媒体の
特性と従来磁気記録媒体の特性を(表2)に比較して示
している。
On a polyimide film having a thickness of 6 μm (average roughness: 20 °, Young's modulus: 600, width: 650 Kg / mm 2 ), SiO 2 having an average particle diameter of 200 ° was applied at an average density of 50 / μ 2.
And a plasma-polymerized film was formed thereon by using methane gas at 1 nm (2A) and 3 nm (2B). Plasma generation vessel (internal volume; 0.04 m 3 ) and can (diameter 5)
(0 cm) was set to 2 mm as an initial setting and sealed with a magnetic fluid, and a comparative example in which a magnetic fluid was not provided and a prototype was prepared. 20 kHz, 1.2 to 2.1 kW for the discharge electrode
Was applied, methane gas was introduced at a rate of 0.021 / min, and exhaust was performed at a rate of 51 / sec only in the examples. A Co-O perpendicular magnetization film was formed under the following conditions. Co is heated and evaporated by an accelerating electron beam in a magnesia container, and an oxygen gas introduction nozzle is arranged inside a mask having an incident angle of 44 degrees from an incident angle of 44 to 20 degrees, and 0.71 / mi.
n was introduced and 0.2 μm was deposited. A diamond-like hard carbon film was formed on the magnetic film by sputtering at 70 °, and perfluoroarachinic acid was distributed at 30 ° to obtain
A backcoat layer of μm was arranged and processed into magnetic tapes each having a width of 6.35 mm. These tapes were digitally recorded on a 6 μ track and a bit length of 0.2 μ with a test video, and the error rates were compared relatively. The durability was also evaluated based on the error rate after adding 100 passes at 45 ° C. and 85% RH. Table 2 shows the characteristics of the magnetic recording medium according to the present embodiment and those of the conventional magnetic recording medium.

【0020】[0020]

【表2】 [Table 2]

【0021】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
できるといった優れた効果がある。
As is apparent from Table 2, the magnetic recording medium manufactured according to the present embodiment has an excellent effect that high-density digital recording under a narrow track condition can be performed with a good error rate. is there.

【0022】実施例は磁性層を形成する前にプラズマ蒸
着する場合の効果について述べたが、磁性層の形成後に
プラズマ蒸着し、炭素膜、酸化膜、プラズマ重合膜を形
成する場合も同様に顕著な改善効果があるのは言うまで
もない。
Although the embodiment has described the effect of plasma deposition before forming the magnetic layer, the case where plasma deposition is performed after the formation of the magnetic layer to form a carbon film, an oxide film, and a plasma polymerized film is also remarkable. It goes without saying that there is a significant improvement effect.

【0023】以上のように本実施例によれば移動するフ
ィルム上にプラズマ蒸着する際プラズマ発生容器とフィ
ルムの隙間部分に磁性流体を配することで、製造された
磁気記録媒体は、狭トラック条件での高密度ディジタル
記録を良好なエラー率で行うことができるといった優れ
た効果がある。
As described above, according to this embodiment, the magnetic recording medium manufactured by disposing the magnetic fluid in the gap between the plasma generating container and the film when performing the plasma deposition on the moving film can be used in a narrow track condition. There is an excellent effect that high-density digital recording can be performed with a good error rate.

【0024】[0024]

【発明の効果】以上の様に本発明によれば、移動するフ
ィルムに強磁性金属を電子ビーム蒸着した後、回転支持
体よりフィルムを引き離す部分に、磁性流体を配するこ
とにより、フィルム上の静電気が磁性流体を通して放電
するか、補償されて見かけ上中和されて均一な張力で搬
送されることから薄くなってもしわなどの表面欠点がな
くなって狭トラック記録での高密度ディジタル記録でビ
ットエラーの少ないものを実現できるといった優れた効
果が得られる。
As described above, according to the present invention, a ferromagnetic metal is deposited on a moving film by electron beam evaporation, and then a magnetic fluid is disposed on a portion where the film is separated from the rotating support. Static electricity is discharged through the magnetic fluid, or compensated and apparently neutralized and transported with uniform tension.Therefore, even when thinner, surface defects such as wrinkles are eliminated and high-density digital recording with narrow track recording is performed. An excellent effect that an error-free one can be realized is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における磁気記録媒体の
製造に用いた蒸着装置の要部拡大断面図
FIG. 1 is an enlarged sectional view of a main part of a vapor deposition apparatus used for manufacturing a magnetic recording medium according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における磁気記録媒体の
製造に用いた装置の要部拡大断面図
FIG. 2 is an enlarged sectional view of a main part of an apparatus used for manufacturing a magnetic recording medium according to a second embodiment of the present invention.

【図3】従来の磁気記録媒体の製造に用いた蒸着装置の
要部拡大断面図
FIG. 3 is an enlarged sectional view of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

12 磁性流体 13 隔壁 15 磁性流体 16 保持用磁界発生器 12 Magnetic fluid 13 Partition wall 15 Magnetic fluid 16 Magnetic field generator for holding

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 移動するフィルムに強磁性金属を電子ビ
ーム蒸着した後、回転支持体よりフィルムを引き離す部
分に、磁性流体を配することを特徴とする磁気記録媒体
の製造方法。
1. A method for manufacturing a magnetic recording medium, comprising: depositing a ferromagnetic metal on a moving film by electron beam, and then disposing a magnetic fluid at a portion where the film is separated from a rotating support.
【請求項2】 移動する磁性金属を配したフィルム上に
プラズマ蒸着する際プラズマ発生容器とフィルムの隙間
部分に磁性流体を配することを特徴とする磁気記録媒体
の製造方法。
2. A method of manufacturing a magnetic recording medium, comprising: disposing a magnetic fluid in a gap between a plasma generating container and a film when performing plasma deposition on a film on which a moving magnetic metal is disposed.
JP26081893A 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium Expired - Fee Related JP2833444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26081893A JP2833444B2 (en) 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26081893A JP2833444B2 (en) 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH07114731A JPH07114731A (en) 1995-05-02
JP2833444B2 true JP2833444B2 (en) 1998-12-09

Family

ID=17353188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26081893A Expired - Fee Related JP2833444B2 (en) 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2833444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826907B2 (en) * 2006-09-25 2011-11-30 凸版印刷株式会社 Winding type vacuum deposition method and apparatus

Also Published As

Publication number Publication date
JPH07114731A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
US6110584A (en) Magnetic recording medium
JP2833444B2 (en) Manufacturing method of magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
JP2597685B2 (en) Magnetic recording media
JPS6378336A (en) Production of magnetic recording medium
JPH10237659A (en) Formation of coating and device therefor
JPS6297133A (en) Production of magnetic recording medium
JPS63251929A (en) Production of magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium
JPH01211235A (en) Manufacture of magnetic recording medium
JPH10280156A (en) Plasma cvd device
JPH10310869A (en) Production of magnetic recording medium and device for producing magnetic recording medium
JPH103650A (en) Magnetic recording medium
JPH0845052A (en) Magnetic recording medium
JPH10106834A (en) Magnetic recording medium
JPH09212857A (en) Production of magnetic recording medium
JPH10255263A (en) Magnetic recording medium
JPH11279765A (en) Thin film forming apparatus and method, and cylindrical can
JPH02141928A (en) Production of magnetic recording medium
JPH10195664A (en) Film forming method and its device
JPS6156563B2 (en)
JPH10105951A (en) Magnetic recording medium
JPS6391822A (en) Perpendicular magnetic recording medium
JPH09293238A (en) Production of magnetic recording medium
JP2002183937A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees