JPS6296437A - Purification of allyl alcohol - Google Patents
Purification of allyl alcoholInfo
- Publication number
- JPS6296437A JPS6296437A JP23441285A JP23441285A JPS6296437A JP S6296437 A JPS6296437 A JP S6296437A JP 23441285 A JP23441285 A JP 23441285A JP 23441285 A JP23441285 A JP 23441285A JP S6296437 A JPS6296437 A JP S6296437A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- allyl alcohol
- water
- potassium
- organic phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明はアリルアルコールの精製法に関する。[Detailed description of the invention] [Industrial application field] This invention relates to a method for purifying allyl alcohol.
更に詳しく言えば、この発明はアリルアルコールの水溶
液から効率的に水を除去して高純度のアリルアルコール
を得る方法に関する。More specifically, the present invention relates to a method for efficiently removing water from an aqueous solution of allyl alcohol to obtain highly pure allyl alcohol.
アリルアルコールは、グリセリン、ジアリルフタレート
など多くの化学薬品、合成樹脂の合成中間体とI7て工
業的に有用な物質である。Allyl alcohol is an industrially useful substance that is used as a synthetic intermediate for many chemicals and synthetic resins, such as glycerin and diallyl phthalate.
アリルアルコールの製法としては、下記の反応式(1)
お」:び(2)に示すようにプロピレンの高温塩素化に
より塩化アリルな合成した後、これをアルカリ加水分解
する方法が知られている。As a method for producing allyl alcohol, the following reaction formula (1) is used.
As shown in (2), a method is known in which allyl chloride is synthesized by high-temperature chlorination of propylene and then subjected to alkaline hydrolysis.
CH2=CllCH3+Ct2→CH2−CHCH2C
L+HCt(1)CI■2−CHCH2Ct十NaOH
−+CH2−CHCH20H+NaCt(2)この方法
はコストの高い塩素を多量に消費すること、高温で塩素
と塩化水素ガスを取扱う必要があるために装置の腐食が
激しいこと等の問題がある。CH2=CllCH3+Ct2→CH2−CHCH2C
L + HCt (1) CI ■ 2-CHCH2Ct 10 NaOH
-+CH2-CHCH20H+NaCt (2) This method has problems such as consuming a large amount of expensive chlorine and the need to handle chlorine and hydrogen chloride gas at high temperatures, resulting in severe corrosion of the equipment.
近年、ゾロピレンを原料として、塩素や塩化水素を取扱
かわずにアリルアルコールを製造する方法が提案されて
いる。この方法は次式(3)および(4)で示すように
プロピレンを酸素または酸素含有ガスで酢酸の存在下で
、触媒としてアルカリアセテートおよびパラジウム、更
に所望により銅化合物を担体に担持した触媒を用いて気
相〔100〜300℃、0〜30気圧(ケ゛−〕圧)〕
で反応させてアリルアセテートを得だ後、生成したアリ
ルアセテートを冷却捕集(〜、酢酸水溶液を加えて均一
とし、この均一溶液を強酸性イオン交換樹脂を充填し、
熱媒体に、t:り力n ri、A L、 l管状f’l
−応益を1H(Hl、、イ5Iら7Itた反応液を蒸W
f L/−Cアリルアルコールを得るものである(例え
ば、特願昭!’> 8−137768シじ、同5〇−]
131725づ゛参照)。In recent years, a method has been proposed for producing allyl alcohol using zolopyrene as a raw material without handling chlorine or hydrogen chloride. This method uses propylene in the presence of acetic acid with oxygen or an oxygen-containing gas as shown in the following formulas (3) and (4), using a catalyst with alkali acetate and palladium, and optionally a copper compound supported on a carrier. gas phase [100-300℃, 0-30 atm (k-) pressure]
After reacting to obtain allyl acetate, the produced allyl acetate is collected by cooling (~, an acetic acid aqueous solution is added to make it homogeneous, this homogeneous solution is filled with a strongly acidic ion exchange resin,
To the heating medium, t: force n ri, A L, l tubular f'l
- Steam the reaction solution containing 1H (Hl, 5I and 7It)
f L/-C allyl alcohol is obtained (for example, Tokugansho!'> 8-137768, same 50-]
131725).
CH2= CTT−CH6+AcOH−1−’ T 0
2→CH−= CHCH20AC+ H2O(3)CH
2= Cl−CH20AC−+H2O−+ CH= C
H−CH20H+AcOH(4)これらの才、′1;り
t方法でな−1、アリルアルコールクー1水溶液として
得らJするが、アリルアルコール(沸点96〜97℃)
V1水と72.3 : 27.7で共沸混合物(沸点8
75℃)を形成するためにrliなる蒸留では水を除去
するととができない。CH2= CTT-CH6+AcOH-1-' T 0
2→CH-= CHCH20AC+ H2O(3)CH
2= Cl-CH20AC-+H2O-+ CH= C
H-CH20H+AcOH (4) These compounds can be obtained by the following method as an aqueous solution of allyl alcohol (boiling point 96-97°C).
V1 water and 72.3: azeotrope at 27.7 (boiling point 8
Water cannot be removed by rli distillation to form a temperature of 75°C.
〔発明が解決しようとする問題点〕
この発明の目的(r、F、水溶液として製造さI[るア
リルアルコールから水を除去し、高純度のアリルアルコ
ールを省することのできる精製法を提イ」(することに
ある。[Problems to be Solved by the Invention] The purpose of the invention is to provide a purification method that can remove water from allyl alcohol produced as an aqueous solution and omit high-purity allyl alcohol. ” (It’s about doing.
〔問題点を解決するだめの手段および作用〕アリルアル
コール水溶液から水を除去する力θミとして、エタノー
ルやイソプロ・Qノール等で実施されているように、ベ
ンゼンなどの第3成分をエン[・レーナーとして多量添
加して蒸留により分離する方法が考えられるが、アリル
アルコールでは共沸混合物中の水分が多いだめに多大の
エネルギーを要し、実際的ではない。[Means and actions to solve the problem] As a force for removing water from an aqueous solution of allyl alcohol, a third component such as benzene is used as a force for removing water from an aqueous solution of allyl alcohol. One possible method is to add a large amount of Lehner and separate it by distillation, but this method is impractical since allyl alcohol requires a large amount of energy due to the large amount of water in the azeotrope.
有機物と水の均一混合物に塩類を添加すると2相に分離
することのあることは古くから知られ、分液操作等で(
7ばしは利用されている。It has been known for a long time that when salts are added to a homogeneous mixture of organic matter and water, it may separate into two phases.
7bashi is used.
本発明者は、この現象を利用して、特に共沸組成に近い
アリルアルコール水溶液から効率的に水を除去1〜高純
度のアリルアルコールを得るべく鋭意研究を重ねた。The inventors of the present invention utilized this phenomenon to conduct intensive research in order to efficiently remove water from allyl alcohol aqueous solutions having particularly close azeotropic compositions to obtain high purity allyl alcohol.
通常よく使用されている食塩(NaCt)などを飽和吐
添加してみたところ、アリルアルコール中の水分は当初
の約30係が約20係に減少するにすぎず丁゛業的に利
用するには不十分であることが判明したが、リン酸三カ
リウム(K3PO4)、I−oロリン酸カリウム(K4
P2O7) 、およびトリポリリン酸カリウム(K5P
601o)がこの目的に極めて有効であることを見出し
〜、本発明を完成した。When we tried adding saturated salt (NaCt), which is commonly used, the water content in allyl alcohol decreased from about 30 parts at the beginning to only about 20 parts, making it difficult to use it commercially. Tripotassium phosphate (K3PO4), I-o potassium phosphate (K4
P2O7), and potassium tripolyphosphate (K5P
601o) was found to be extremely effective for this purpose, and the present invention was completed.
すなわち、本発明はリン酸三カリウノy 、 II!’
ロリン酸カリウム計りポリリン酸カリウムの少くとも1
種をアリルアルコール水溶液に添加して、水相と有機相
に分離せしめ、水相を除去し有機相を蒸留して高純度ア
リルアルコールを得ることを特徴とするアリルアルコー
ルの精製法である。That is, the present invention provides tripotassium phosphate, II! '
Potassium polyphosphate weighed at least 1
This method of purifying allyl alcohol is characterized by adding seeds to an aqueous solution of allyl alcohol, separating the aqueous phase and organic phase, removing the aqueous phase, and distilling the organic phase to obtain highly pure allyl alcohol.
本発明の精製法では、リン酸三カリウム、」!ロリン酸
カリウノ、および/捷たはトリポリリン酸カリウム(こ
れらは無水塩でも結晶水を含んでいてもよい。)を固体
捷だ1士濃厚水溶液の形でアリルアルコール水溶液i/
(添加1〜.9I<攪拌して溶解させた後静置して有機
相と水相とを分離する。In the purification method of the present invention, tripotassium phosphate, "! Potassium urophosphate and/or potassium tripolyphosphate (which may be an anhydrous salt or contain water of crystallization) are dissolved in allyl alcohol in the form of a concentrated aqueous solution.
(Addition 1-.9I< Stir to dissolve and then leave to stand to separate organic phase and aqueous phase.
添加するリン酸三カリウム、ビロリン酸カリウム、トリ
ポリリン酸カリウムの情は多いほど分液した有機相(ア
リルアルコール相)中の水分が少くなるので有利である
が、飽和量を越えて添加することは塩の析出に伴う障害
を生じるので工業的プロセスとしては好捷しく々い。It is advantageous to add more tripotassium phosphate, potassium birophosphate, and potassium tripolyphosphate because the water content in the separated organic phase (allyl alcohol phase) will decrease, but it is not recommended to add more than the saturation amount. It is difficult to use as an industrial process because it causes problems due to salt precipitation.
因みに水に対するリン酸三カリウムおよびピロリン酸カ
リウムの溶解度は衣■の通りであり、〔化学便覧、第3
版基礎編II −] 70貞(日本化学金輪)〕、また
、トリポリリン酸カリウムの溶解度は20℃で約67チ
であるから〔ウルマンニ1−業化学事典第18巻332
頁〕操作温度げ[従って飽和濃度を越えないよう社章す
べきである。Incidentally, the solubility of tripotassium phosphate and potassium pyrophosphate in water is as shown in [Chemical Handbook, Vol. 3].
Edition Basic Edition II -] 70 Sada (Nihon Kagaku Kanawa)], and the solubility of potassium tripolyphosphate is about 67 at 20°C [Ulmanni 1 - Encyclopedia of Industrial Chemistry, Vol. 18, 332
[Page] Operation temperature should be increased [Therefore, the company emblem should be made so that the saturation concentration is not exceeded.
表I 水に対する溶解度(lijlチ)傘)nは温度が
25〜50℃のとき7.50℃以上では3である。Table I Solubility in water (n) is 7 when the temperature is 25 to 50°C, and 3 at 50°C or higher.
本発明の′!#製法によれば、共沸組成に近いアリルア
ルコール水溶液(水分的3 (1% )から、水分を5
〜10チまで減少せしめることができるので、これを蒸
留すれば主貿分として高純度のアリルアルコールを得る
ことができる。また初期留出物の共沸混合物は再び精製
プロセスの原料として利用でき、更に水相からは水分を
蒸発せしめるととによって塩を濃厚塩あるいは固体とし
て回収して、これを再び循環使用することができる。The present invention'! #According to the manufacturing method, from an allyl alcohol aqueous solution (water level 3 (1%)) close to the azeotropic composition, water is reduced to 5%.
Since it can be reduced to ~10 g, high purity allyl alcohol can be obtained as the main product by distilling this. In addition, the azeotrope of the initial distillate can be used again as a raw material for the purification process, and the water can be evaporated from the aqueous phase to recover the salt as a concentrated salt or solid, which can be recycled again. can.
以下、実施例および比較例を挙げて本発明の精製方法を
説明する。下記の説明中、係は重量係を表わす。The purification method of the present invention will be explained below with reference to Examples and Comparative Examples. In the following explanation, the term "person" refers to the weight person.
実施例1
水30係アリルアルコール70係から々る溶液(A)
500 meに、リン酸三カリウム320gを水180
gに溶解した水溶液(1’()を添加し、はげしくかき
まぜた後、静置したところ、二相に分離した。Example 1 Karakaru solution (A) of 30 parts water and 70 parts allyl alcohol
To 500 me, add 320g of tripotassium phosphate to 180g of water.
An aqueous solution (1'()) dissolved in g was added, stirred vigorously, and left to stand, resulting in separation into two phases.
各相を分析したところ、上相は主としてアリルアルコー
ルからなり、水分が11.5%、リン酸三カリウムが0
.87%含捷れていた。一方下相は主としてリン酸三カ
リウムの水溶液で、アリルアルコールが0.72係含ま
れていた。Analysis of each phase revealed that the upper phase mainly consisted of allyl alcohol, had a water content of 11.5%, and had 0 tripotassium phosphate.
.. It contained 87% sludge. On the other hand, the lower phase was mainly an aqueous solution of tripotassium phosphate and contained 0.72 parts of allyl alcohol.
」二相をオールダーショー型蒸留装置を用いて蒸留した
ところ、搭頂部からはアリルアルコール74係、水26
係の、共沸組成に近い混合物が得られ、搭底部から殆ん
ど水を含ま々いアリルアルコールが得られた。搭底部か
ら得られた液は黄色く着色しているが、これを単蒸留に
より95係留出させたところ、留出物は無色の高純度ア
リルアルコールであり、着色物及びリン酸三カリウムは
釜残として残った。When the two phases were distilled using an Oldershaw type distillation apparatus, 74 parts of allyl alcohol and 26 parts of water were distilled from the top.
A mixture with a similar azeotropic composition was obtained, and allyl alcohol containing almost no water was obtained from the bottom of the column. The liquid obtained from the bottom of the column is yellow colored, but when 95% of this was distilled out by simple distillation, the distillate was colorless high-purity allyl alcohol, and the colored substances and tripotassium phosphate remained in the column. remained as.
実施例2
水33.8%アリルアルコール66.2%からなる溶液
50m1を分液ロー1・にとりリン酸三カリウムを少し
ずつ加えてはふりまぜながら、それ以上とけなくなるま
で加えて静置したところ、液は二相に分離した。−1=
相は主にアリルアルコールであり、水分が48係に減少
していた。Example 2 50 ml of a solution consisting of 33.8% water and 66.2% allyl alcohol was placed in a separating funnel 1, and tripotassium phosphate was added little by little, stirring until no more was dissolved, and the mixture was allowed to stand still. , the liquid separated into two phases. −1=
The phase was mainly allyl alcohol, and the water content had decreased to 48 parts.
実施例3
リン酸三カリウムの代りにピロリン酸カリウムを用いた
以外は、実施例2と同様の処理を行なったところ、上相
の水分は67係であった。Example 3 The same treatment as in Example 2 was carried out except that potassium pyrophosphate was used instead of tripotassium phosphate, and the moisture content of the upper phase was 67%.
実施例4〜6
実施例1と同様の実験で、(B)としてピロリン酸カリ
ウムの60係水溶液を用い、添加量を250I、500
g、1000 gと変えた時の結果を表2に示す。Examples 4 to 6 In an experiment similar to Example 1, a 60% aqueous solution of potassium pyrophosphate was used as (B), and the amounts added were 250I and 500I.
Table 2 shows the results when the weight was changed to 1000 g.
表 2
本はとんどがピロリン酸カリウムである〇実施例7
リン酸三カリウムの代りにトリポリリン酸カリウムを用
いた以外は実施例2と同様の処理を行なったところ、上
相中の水分は6.5%であった。Table 2 Most of the material is potassium pyrophosphate Example 7 The same treatment as in Example 2 was carried out except that potassium tripolyphosphate was used instead of tripotassium phosphate, and the water in the upper phase was It was 6.5%.
比較例1
リン酸三カリウムの代りに、塩化ナトリウムを飽和量に
比べて大過剰用いた他は実施例2と同様の処理を行なっ
たところ、アリルアルコール相中の水分は20チであっ
た。Comparative Example 1 The same treatment as in Example 2 was carried out except that sodium chloride was used in a large excess compared to the saturated amount instead of tripotassium phosphate, and the water content in the allyl alcohol phase was 20%.
比較例2
塩化ナトリウムの代りにリン酸三ナトリウムを用いた以
外は比較例1と同様の操作をしたが、液は二相に分れな
かった。Comparative Example 2 The same operation as Comparative Example 1 was carried out except that trisodium phosphate was used instead of sodium chloride, but the liquid did not separate into two phases.
本発明のアリルアルコール精製方法によれば、相分離後
のアリルアルコール相は水分含有量が5〜10%近くま
で減少しているので、その後の蒸留精製に必要なスチー
ム量が従来の蒸留法による精製に比べて格段に少なくて
すむ。According to the allyl alcohol purification method of the present invention, the water content of the allyl alcohol phase after phase separation is reduced to nearly 5 to 10%, so the amount of steam required for subsequent distillation purification is lower than that of the conventional distillation method. Compared to refining, it requires much less.
また相分離に使用する塩類は塩化物等のように腐食性で
はないので、安価な材料の装置を利用することができる
。Furthermore, since the salts used for phase separation are not corrosive like chlorides, equipment made of inexpensive materials can be used.
Claims (1)
ン酸カリウムの少なくとも1種をアリルアルコールと水
の混合物に添加して水相を分離し、有機相を蒸留するこ
とを特徴とする高純度アリルアルコールの精製法。A method for purifying high-purity allyl alcohol, which comprises adding at least one of tripotassium phosphate, potassium pyrophosphate, or potassium tripolyphosphate to a mixture of allyl alcohol and water, separating the aqueous phase, and distilling the organic phase. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23441285A JPS6296437A (en) | 1985-10-22 | 1985-10-22 | Purification of allyl alcohol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23441285A JPS6296437A (en) | 1985-10-22 | 1985-10-22 | Purification of allyl alcohol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6296437A true JPS6296437A (en) | 1987-05-02 |
JPS6360013B2 JPS6360013B2 (en) | 1988-11-22 |
Family
ID=16970605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23441285A Granted JPS6296437A (en) | 1985-10-22 | 1985-10-22 | Purification of allyl alcohol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6296437A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006093101A1 (en) * | 2005-02-28 | 2006-09-08 | Asahi Glass Company, Limited | Method for recovery of fluorinated alcohol |
-
1985
- 1985-10-22 JP JP23441285A patent/JPS6296437A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006093101A1 (en) * | 2005-02-28 | 2006-09-08 | Asahi Glass Company, Limited | Method for recovery of fluorinated alcohol |
JP4905349B2 (en) * | 2005-02-28 | 2012-03-28 | 旭硝子株式会社 | Method for recovering fluorine-containing alcohol |
Also Published As
Publication number | Publication date |
---|---|
JPS6360013B2 (en) | 1988-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7062686B2 (en) | Methods and systems for recovering methanesulphonic acid in purified form | |
AT507260B1 (en) | PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN FROM GLYCERIN | |
JPH0456833B2 (en) | ||
CN105271143B (en) | The recovery processing technique of hydroxylamine hydrochloride mother liquor | |
US3231605A (en) | Method for distilling and recovering organic peroxy acids | |
US7045111B1 (en) | High yield co-production of anhydrous hydrogen bromide and sodium bisulfate | |
JPS6296437A (en) | Purification of allyl alcohol | |
EP0249648B1 (en) | Process for purifying allyl alcohol | |
JP2845745B2 (en) | Production method of high purity methanesulfonyl fluoride | |
JPH08225485A (en) | Method of obtaining adipic acid | |
CA1175445A (en) | Process for the preparation of pyrocatechol and hydroquinone | |
JP6794319B2 (en) | A composition containing C8F17Br and a method for producing C8F17Br. | |
RU2339610C2 (en) | Method of production of formic acid formates | |
JP2004026832A (en) | Method for producing 2-acetyl-2-chloro-gamma-butyrolactone by reacting 2-acetyl-gamma-butyrolactone salt with chloride in the presence of water | |
JPS5929633A (en) | Method for recovering acetic acid from aqueous solution of acetate | |
CA2040109A1 (en) | Process for producing potassium sulfate and hydrochloric acid | |
EP0479664B1 (en) | Process for the preparation of monohalogeno alkanoyl ferrocenes | |
JPS5941924B2 (en) | Purification method of thionyl chloride | |
RU2135463C1 (en) | Method of synthesis of trifluoromethane sulfoacid | |
US1863698A (en) | Process of purifying and concentrating acetic acid | |
JPH11315045A (en) | Production of cyclopropyl alkyl ketone | |
JPH0437066B2 (en) | ||
JP3932791B2 (en) | Method for producing vinylidene chloride | |
CN106431878A (en) | Method for purifying 10-chlorocapraldehyde | |
JPS61167633A (en) | Purification of allyl alcohol |