[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6279843A - Gas dispersion plate for fluidized layer synthesizing apparatus - Google Patents

Gas dispersion plate for fluidized layer synthesizing apparatus

Info

Publication number
JPS6279843A
JPS6279843A JP21912985A JP21912985A JPS6279843A JP S6279843 A JPS6279843 A JP S6279843A JP 21912985 A JP21912985 A JP 21912985A JP 21912985 A JP21912985 A JP 21912985A JP S6279843 A JPS6279843 A JP S6279843A
Authority
JP
Japan
Prior art keywords
gas
powder
plate
fluidized bed
distribution plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21912985A
Other languages
Japanese (ja)
Inventor
Masaaki Mori
正章 森
Sho Sano
佐野 省
Yushi Horiuchi
雄史 堀内
Yoshihiro Okumura
奥村 吉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21912985A priority Critical patent/JPS6279843A/en
Priority to US06/838,566 priority patent/US4640023A/en
Priority to DE19863608972 priority patent/DE3608972A1/en
Publication of JPS6279843A publication Critical patent/JPS6279843A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/44Fluidisation grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To prevent the formation of the immobile part of powder and to accelerate reaction by expanding the gas ejection port of a gas diffusion plate of a fluidized layer type apparatus for producing silicon nitride powder by silica reduction method to a funnel shape in the upper part on the synthesizing chamber side. CONSTITUTION:The gas diffusion plate 6 having the gas ejection ports 9 is provided in the lower part of the synthesizing chamber 8. Many pieces of the ports 9 are spaced from each other and are disposed over the entire part of the plate 6 and the upper parts 13 thereof expand like a funnel. The top edges 14 thereof are contiguous to each other and the upper parts 13 expand linearly. The angle theta of inclination thereof has an angle above the angle of repose of the powder 12. The powder (e.g.: silica granules, etc.) is put into the chamber 8 constituted in such a manner and gas (e.g.: gaseous N2, etc.) is blown through the ports 9 from below, then the powder 12 is fluidized by the gas and reacts at the same instant. There are substantially no surface parts where the powder 12 forms the immobile part atop 11 the plate 6 and therefore, the powder 12 and the gas contact satisfactorily with each other and make the reaction uniform.

Description

【発明の詳細な説明】 産業上の1  ! この発明は、流動層合成装置のガス分散板の改良に関す
る。
[Detailed description of the invention] Industrial 1! This invention relates to improvements in gas distribution plates for fluidized bed synthesis equipment.

LL匹LL 流動層合成装置は、たとえばSi 3 N4粉末などを
N2ガスにより高温で合成するのに使われる。第11図
に示すようにこの種の装置には、原料を投入する合成室
1の下方にガスを合成室1に吹きこむためのガス分散板
2が取付けである。
A fluidized bed synthesis apparatus is used to synthesize, for example, Si 3 N 4 powder using N 2 gas at high temperatures. As shown in FIG. 11, this type of apparatus is equipped with a gas dispersion plate 2 for blowing gas into the synthesis chamber 1 below the synthesis chamber 1 into which raw materials are introduced.

ガス分散板2は、高温かつN2ガスやCO2ガス雲囲気
に耐えられるように、カーボン材質で作られている。こ
のため複雑な形状にすることができず、またある程度の
強度を維持しなくてはならない。
The gas distribution plate 2 is made of carbon material so that it can withstand high temperatures and N2 gas or CO2 gas cloud surroundings. For this reason, it cannot be made into a complicated shape, and a certain level of strength must be maintained.

このため、従来のガス分散板2は、カーボンの平板に一
定間かくで垂直の丸い穴3を開けた形状となっている。
For this reason, the conventional gas distribution plate 2 has a shape in which vertical round holes 3 are bored at a certain distance in a carbon flat plate.

一口が )!シようとする。 1、 しかし、この構造のガス分散板2を使用すると、合成室
1へ噴出したガスはあまり広がらず、噴出口4のほぼ直
−りへ吹き上がるのみである。したがって、噴出口4と
噴出口4との間では、原料粉体は流動化せず、不動部5
を形成し、これが未反応粒子として残留したり、N2ガ
スとの接触が悪いため、分析値が悪い合成粉となること
がある。
A bite )! try to do it. 1. However, when the gas dispersion plate 2 having this structure is used, the gas ejected into the synthesis chamber 1 does not spread much, and only blows up almost directly from the ejection port 4. Therefore, the raw material powder is not fluidized between the spout ports 4 and the stationary portion 5
These may remain as unreacted particles or may have poor contact with N2 gas, resulting in a synthetic powder with poor analytical values.

1にlユ この発明は、上記問題点を解決するためになされたもの
であり、粉体の不動部がなくなり、均一な合成粉が得ら
れ、N2ガスが均一に分散することで合成反応が効率よ
く行なわれ、反応促進できる流動層合成装置のガス分散
板を提供することを目的としている。
1 This invention was made to solve the above-mentioned problems. It eliminates the immobile part of the powder, obtains a uniform synthetic powder, and improves the synthesis reaction by uniformly dispersing N2 gas. It is an object of the present invention to provide a gas distribution plate for a fluidized bed synthesis apparatus that can efficiently perform reactions and promote reactions.

凡に11 したがってこの発明はシリカ還元法窒化ケイ素粉末の流
動層方式製造装置における合成室の粉体にガスを吹きこ
むガス分散板において、多数配置されたガス噴出口は、
その合成室側の上部が漏斗状に広げられている流動層合
成装置のガス分散板を要旨としている。
11 Therefore, the present invention provides a gas dispersion plate for blowing gas into powder in a synthesis chamber in a fluidized bed manufacturing apparatus for producing silicon nitride powder using a silica reduction method.
The gist of this paper is a gas distribution plate of a fluidized bed synthesis apparatus whose upper part on the side of the synthesis chamber is expanded into a funnel shape.

p 1、を 決するための− 合成室8の粉体12にガスを吹きこむためのガス分散板
6は、多数配置されたガス噴出口9を有し、その合成室
8側の上部が漏−St状に広げられている。
The gas dispersion plate 6 for blowing gas into the powder 12 in the synthesis chamber 8 has a large number of gas ejection ports 9, and the upper part on the synthesis chamber 8 side is leak-proof. It is spread out in a St-shape.

具体的には、隣接するガス噴出口9は、それぞれの上縁
部14が互いに隣接している。
Specifically, the upper edges 14 of adjacent gas jet ports 9 are adjacent to each other.

あるいは隣接するガス噴出口9は、それぞれの上縁部1
4が重なっている。
Alternatively, adjacent gas outlets 9 are connected to each other at the upper edge 1
4 are overlapping.

LJL ガス分散板6の上面には、粉体不動部を形成するような
部分がなく、粉体不動部がガス分散板6の上面に形成し
ない。
LJL There is no part on the upper surface of the gas distribution plate 6 that forms a powder stationary portion, and no powder stationary portion is formed on the top surface of the gas distribution plate 6.

支11 第1図〜第4図はこの発明の実施例1を示している。ガ
ス分散板6は、円筒状の側壁7の下部に設【プられてい
る。この側壁7の内部は、原料の粉体12を投入して合
成する合成室8である。
Support 11 FIGS. 1 to 4 show a first embodiment of the present invention. The gas distribution plate 6 is provided at the bottom of the cylindrical side wall 7. Inside this side wall 7 is a synthesis chamber 8 in which raw material powder 12 is charged and synthesized.

ガス分散板6は、多数のガス噴出口9が配置されている
。このガス噴出口9は、ガス分散板6の下面10側から
上面11側へ貫通されている。このガス分散板6は、合
成室8内の粉体12に対したとえばN2ガスを吹きこむ
ためにある。
The gas distribution plate 6 has a large number of gas ejection ports 9 arranged therein. This gas outlet 9 penetrates from the lower surface 10 side of the gas distribution plate 6 to the upper surface 11 side. This gas distribution plate 6 is provided to blow, for example, N2 gas into the powder 12 in the synthesis chamber 8.

ガス噴出口9は、所定間隔をおいてガス分散板6の全体
にわたり配置されている。ガス噴出口9は、第1図と第
2図に示すように合成室8側の上部13が漏斗状に広げ
られている。
The gas jet ports 9 are arranged over the entire gas distribution plate 6 at predetermined intervals. As shown in FIGS. 1 and 2, the upper portion 13 of the gas outlet 9 on the side of the synthesis chamber 8 is widened into a funnel shape.

この実施例では、隣接するガス噴出口9は、それぞれの
上縁部14が互いに隣接した状態にある。上部13は、
第1図で示ザように直線状に広がっており、その傾斜角
度θは、粉体12の安息角以上となっており、たとえば
70″である。
In this embodiment, the upper edges 14 of adjacent gas outlets 9 are adjacent to each other. The upper part 13 is
As shown in FIG. 1, it spreads out in a straight line, and its inclination angle θ is greater than the angle of repose of the powder 12, for example 70''.

ガス噴出口9の中火部15は、第1図と第3図に示寸よ
うにその内径が小さくなっている。またガス噴出口9の
下部16は、第1図と第4図に示すように、中央部15
と同じ内径になっている。
The medium-heat portion 15 of the gas outlet 9 has a small inner diameter as shown in FIGS. 1 and 3. Further, the lower part 16 of the gas outlet 9 is connected to the central part 15 as shown in FIGS. 1 and 4.
It has the same inner diameter.

このよう<【構造のガス分散板6は、カーボンにより作
られている。
The gas distribution plate 6 having this structure is made of carbon.

使用に際しては、合成室8内に粉体12としてたとえば
シリカ、カーボン、窒化ケイ素の造粒体を入れる。そし
て、ガス分散板6の下方からたとえばN2ガスをガス噴
出口9を介して粉体12に吹きこむ。
In use, granules of silica, carbon, or silicon nitride, for example, are placed in the synthesis chamber 8 as the powder 12. Then, for example, N2 gas is blown into the powder 12 from below the gas distribution plate 6 through the gas outlet 9.

この際粉体12およびN2ガスは、それぞれ図示しない
熱源により所定温度に加熱されている。
At this time, the powder 12 and the N2 gas are each heated to a predetermined temperature by a heat source (not shown).

このようにすることにより、粉体12はN2ガスにより
流動化されるとともに窒化反応する。
By doing so, the powder 12 is fluidized by the N2 gas and undergoes a nitriding reaction.

ところで、ガス分散板6は、その上面11側には、粉体
12の不動部が形成するような表面部分はほとんどない
。したがって、粉体12が反応中に粉体12の不動部が
ガス分散板6の上に形成されるおそれはない。
By the way, the gas dispersion plate 6 has almost no surface portion on the upper surface 11 side where the immovable portion of the powder 12 is formed. Therefore, there is no possibility that an immobile part of the powder 12 will be formed on the gas distribution plate 6 during the reaction of the powder 12.

このようなことから、粉体12とN2ガスとの接触が良
好となり、N2ガスが均一にゆきわたり均一な合成粉体
が得られることになる。そしてN2ガスが均一に分散す
るので、合成反応が効率よく行なえ、反応促進効果が上
がる。
For this reason, the powder 12 and the N2 gas are in good contact, and the N2 gas is uniformly distributed, resulting in a uniform synthetic powder. Since the N2 gas is uniformly dispersed, the synthesis reaction can be carried out efficiently and the effect of promoting the reaction is increased.

ここで、α−8i3 N4粉末を合成した場合の、反応
時間および生成粉体中の全酸素量および全炭素量を表(
後掲)に示しておく。
Here, when α-8i3 N4 powder is synthesized, the reaction time and the total oxygen content and total carbon content in the produced powder are shown in the table (
(See below).

表の従来例とこの発明の実施例(ただし傾斜角度θ=7
0°)の粉体の合成条件は、次のとおりである。
The conventional example and the embodiment of the present invention in the table (however, the inclination angle θ=7
The conditions for synthesizing the powder (0°) are as follows.

原料粉体調合比・・・・・・1Si 02−0.50−
0.ISi 3 N4 (重量化) 原料粉体の重量・・・・・・・・・8kgN2ガスの流
量・・・・・・・・・100−0!Q/分合 戒 瀧 
度・・・・・・・・・1480℃この場合、反応時間は
、この発明の実施例のほうが1時間短縮されている。ま
た全酸素量および全炭素量はともにこの発明の実施例の
ほうが少なくなっている。
Raw material powder mixture ratio...1Si 02-0.50-
0. ISi 3 N4 (Weight) Weight of raw material powder......8kgN2 gas flow rate...100-0! Q/Bunai Kai Taki
Temperature: 1480°C In this case, the reaction time in the example of this invention is shorter by 1 hour. Further, both the total oxygen amount and the total carbon amount are smaller in the embodiment of the present invention.

1悲丸11 第5図はこの発明の実施例2を示している。1 sad circle 11 FIG. 5 shows a second embodiment of the invention.

この実施例のガス分散板6は、ガス噴出口1つの形状が
第1図の実施例1とは異なっている。すなわちガス噴出
口1つの上部20は、漏斗状ではあるが、曲線状に広が
っているのである。そして、中央部21および下部22
は、その内径が細くなっている。その他の側壁7等は第
1図の実施例1と同様の構成である。
The gas distribution plate 6 of this embodiment is different from the embodiment 1 shown in FIG. 1 in the shape of one gas outlet. That is, the upper part 20 of one gas outlet is funnel-shaped, but spreads out in a curved shape. Then, the central part 21 and the lower part 22
has a narrower inner diameter. The other side walls 7 and the like have the same structure as in the first embodiment shown in FIG.

第6図はこの発明の実施例3を示している。FIG. 6 shows a third embodiment of the invention.

第1図と第5図で示した実施例1.2は、ガス噴出口の
上部が円形であったのに対し、第6図では正六角形とな
っている。ガス噴出口29の上部30は、正六角形であ
り、隣接するガス噴出口2つのそれぞれの上縁部31は
重なっており共通化している。このような構造であると
、ガス分散板6の上面11は、粉体の不動部が形成する
ような表面部が全くない。
In Example 1.2 shown in FIGS. 1 and 5, the upper part of the gas outlet was circular, whereas in FIG. 6 it was a regular hexagon. The upper part 30 of the gas outlet 29 is a regular hexagon, and the upper edges 31 of two adjacent gas outlets overlap and are common. With such a structure, the upper surface 11 of the gas distribution plate 6 has no surface portion that would be formed by an immovable part of the powder.

このような正六角形の上部形状は、第1図および第5図
に示した実施例1.2に採用することもできる。
Such a regular hexagonal upper shape can also be adopted in Embodiment 1.2 shown in FIGS. 1 and 5.

第7図〜第10図はこの発明の実施例4〜7を示してい
る。第7図のガス分散板6は、ガス噴出口3つの上部4
0が漏斗状で直線状となっており、下部41は上部より
細い内径どなっている。第8図は、ガス分散板6が均一
な厚さの平板ではなく両端部の厚みが小さくなっている
。ガス噴出口39の形状は第7図のものど同様である。
7 to 10 show Examples 4 to 7 of the present invention. The gas distribution plate 6 in FIG.
0 is funnel-shaped and straight, and the lower part 41 has a narrower inner diameter than the upper part. In FIG. 8, the gas distribution plate 6 is not a flat plate with a uniform thickness, but has a smaller thickness at both ends. The shape of the gas outlet 39 is similar to that shown in FIG.

第9図はガス噴出口49の上部50は、河川状でかつ曲
線状になっている。下部51は細い内径となっている。
In FIG. 9, the upper part 50 of the gas outlet 49 is river-like and curved. The lower part 51 has a narrow inner diameter.

第10図はガス分散板6はその周囲の厚みが小さくなっ
ている。ガス噴出口49の形状は第9図に示したものと
同様である。
In FIG. 10, the gas distribution plate 6 has a smaller thickness around it. The shape of the gas outlet 49 is similar to that shown in FIG.

ところでこの発明は上述した実施例に限定されるもので
はへい。たとえば上部は正六角形や円形に限らずその他
の形状であってもよい。
However, the present invention is not limited to the embodiments described above. For example, the upper part is not limited to a regular hexagon or a circle, but may have other shapes.

1皿」」しL 以上説明したように、この発明によればガス分散板の上
面は粉体の不動部が形成されるような部分がなくなり、
粉体の不動部が形成されないことから、合成室内ではガ
スが均一にゆきわたり均一な合成粉が得られる。そして
N2ガスが均一に分散することで、合成反応が効率よく
行なえ、反応促進ができる。
As explained above, according to the present invention, there is no part on the upper surface of the gas distribution plate where a stationary part of the powder is formed.
Since no stationary part of the powder is formed, gas is uniformly distributed within the synthesis chamber, and uniform synthetic powder can be obtained. By uniformly dispersing the N2 gas, the synthesis reaction can be carried out efficiently and the reaction can be promoted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の流動層合成装置のガス分散板の実施
例1を示すr!fI面図、第2図はガス分散板の上面の
一部分を示す図、第3図はガス分散板の中間部分の一部
を示づ断面図、第4図はガス分散板の下面の一部を示す
図、第5図はこの発明の実施例2を示す断面図、第6図
はこの発明の実施例3であるガス分散板の上面を一部を
示す図、第7図〜第10図は、この発明の実施例の4〜
7を示す断面図、7E11図は従来のガス分散板の不都
合を説明するだめの断面図である。 6・・・ガス分散板 8・・・合成室 9・・・ガス噴出口 13・・・上部 15・・・中央部 16・・・下部 第1図 第2図 第3図 第4図 第5図 第7図     第8図 第11図
FIG. 1 shows Example 1 of the gas distribution plate of the fluidized bed synthesis apparatus of the present invention. fI side view, Figure 2 is a diagram showing a part of the upper surface of the gas distribution plate, Figure 3 is a sectional view showing a part of the middle part of the gas distribution plate, and Figure 4 is a part of the lower surface of the gas distribution plate. FIG. 5 is a sectional view showing a second embodiment of the invention, FIG. 6 is a partial view of the upper surface of a gas distribution plate according to a third embodiment of the invention, and FIGS. 7 to 10 are the fourth to fourth embodiments of this invention.
7 and 7E11 are cross-sectional views for explaining the disadvantages of the conventional gas distribution plate. 6... Gas distribution plate 8... Synthesis chamber 9... Gas outlet 13... Upper part 15... Center part 16... Lower part Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Figure 7 Figure 8 Figure 11

Claims (5)

【特許請求の範囲】[Claims] (1)シリカ還元法窒化ケイ素粉末の流動 層方式製造装置における合成室の粉体にガスを吹きこむ
ガス分散板において、多数配置されたガス噴出口は、そ
の合成室側の上部が漏斗状に広げられている流動層合成
装置のガス分散板。
(1) Silica reduction method In the gas dispersion plate that blows gas into the powder in the synthesis chamber in a fluidized bed manufacturing device for silicon nitride powder, the upper part of the numerous gas outlets on the synthesis chamber side is shaped like a funnel. Gas distribution plate of a fluidized bed synthesis equipment being expanded.
(2)隣接するガス噴出口は、それぞれの 上縁部が互いに隣接している特許請求の範囲第1項記載
の流動層合成装置のガス分散板。
(2) The gas distribution plate of the fluidized bed synthesis apparatus according to claim 1, wherein the upper edges of the adjacent gas jet ports are adjacent to each other.
(3)隣接するガス噴出口は、それぞれの 上縁部が重なっている特許請求の範囲第1項記載の流動
層合成装置のガス分散板。
(3) A gas dispersion plate for a fluidized bed synthesis apparatus according to claim 1, wherein the upper edges of adjacent gas outlets overlap each other.
(4)ガス噴出口は、直線状に広がってい る特許請求の範囲第1項記載の流動層合成装置のガス分
散板。
(4) The gas dispersion plate of the fluidized bed synthesis apparatus according to claim 1, wherein the gas jet ports extend linearly.
(5)ガス噴出口は、曲線状に広がっている特許請求の
範囲第1項記載の流動層合成装置のガス分散板。
(5) The gas dispersion plate of the fluidized bed synthesis apparatus according to claim 1, wherein the gas ejection ports are spread out in a curved shape.
JP21912985A 1985-07-05 1985-10-03 Gas dispersion plate for fluidized layer synthesizing apparatus Pending JPS6279843A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21912985A JPS6279843A (en) 1985-10-03 1985-10-03 Gas dispersion plate for fluidized layer synthesizing apparatus
US06/838,566 US4640023A (en) 1985-07-05 1986-03-11 Apparatus for manufacturing powdered silicon nitride
DE19863608972 DE3608972A1 (en) 1985-07-05 1986-03-18 DEVICE FOR PRODUCING PULVERIZED SILICON NITRIDS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21912985A JPS6279843A (en) 1985-10-03 1985-10-03 Gas dispersion plate for fluidized layer synthesizing apparatus

Publications (1)

Publication Number Publication Date
JPS6279843A true JPS6279843A (en) 1987-04-13

Family

ID=16730691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21912985A Pending JPS6279843A (en) 1985-07-05 1985-10-03 Gas dispersion plate for fluidized layer synthesizing apparatus

Country Status (1)

Country Link
JP (1) JPS6279843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324479A1 (en) * 2008-06-30 2009-12-31 Memc Electronic Materials, Inc. Fluidized bed reactor systems and methods for reducing the deposition of silicon on reactor walls
US20110158857A1 (en) * 2009-12-29 2011-06-30 Memc Electronic Materials, Inc. Fluidized bed reactor systems and distributors for use in same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620064A (en) * 1979-07-27 1981-02-25 Bayer Ag Anthraquinoneeazo compounds* their manufacture and their use as pigment
JPS5847216A (en) * 1981-09-16 1983-03-18 Yokogawa Hokushin Electric Corp Mass flow meter
JPS5891012A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Method and apparatus for manufacturing silicon nitride powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620064A (en) * 1979-07-27 1981-02-25 Bayer Ag Anthraquinoneeazo compounds* their manufacture and their use as pigment
JPS5847216A (en) * 1981-09-16 1983-03-18 Yokogawa Hokushin Electric Corp Mass flow meter
JPS5891012A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Method and apparatus for manufacturing silicon nitride powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324479A1 (en) * 2008-06-30 2009-12-31 Memc Electronic Materials, Inc. Fluidized bed reactor systems and methods for reducing the deposition of silicon on reactor walls
US8728574B2 (en) 2008-06-30 2014-05-20 Memc Electronic Materials, Inc. Methods for introducing a first gas and a second gas into a reaction chamber
US8906313B2 (en) * 2008-06-30 2014-12-09 Sunedison, Inc. Fluidized bed reactor systems
US20110158857A1 (en) * 2009-12-29 2011-06-30 Memc Electronic Materials, Inc. Fluidized bed reactor systems and distributors for use in same
US8828324B2 (en) * 2009-12-29 2014-09-09 Sunedison, Inc. Fluidized bed reactor systems and distributors for use in same

Similar Documents

Publication Publication Date Title
EP0471117A1 (en) Quench box assembly
US4035152A (en) Distribution plate for recirculating fluidized bed
JPH04227040A (en) Improved interband mixing device
US4229109A (en) System for producing bituminous paving mixtures
JPS6279843A (en) Gas dispersion plate for fluidized layer synthesizing apparatus
US8557211B2 (en) Reaction apparatus for producing trichlorosilane and method for producing trichlorosilane
JPS62210048A (en) Production of nonoxide powder
US2863738A (en) Apparatus for conducting chemical reactions
JPS57156319A (en) Production of trichlorosilane
JPS6279844A (en) Gas diffusion plate for fluidized bed synthesizing apparatus
JPS5891012A (en) Method and apparatus for manufacturing silicon nitride powder
JPH0220188Y2 (en)
JPH06320634A (en) Mold for thermoplastic resin in-mold foam molding and thermoplastic resin in-mold foamed molded object
US3467504A (en) Apparatus for hydrocarbon reforming
US2507823A (en) Pebble heater design
CN214193517U (en) Device for growing silicon carbide powder
US4617742A (en) Heat treat apparatus
US3847752A (en) Air diffusion in rotary hearth calciner
JPH1151570A (en) Vertical kiln
JPS5832565A (en) Manufacture of noncombustible composition plate having light weight
TWI479112B (en) Vacuum heat treatment apparatus
US2986773A (en) Apparatus for making light weight aggregate
JPS5622618A (en) Continuous manufacture of sic
JP2694541B2 (en) Continuous particle treatment equipment consisting of fluidized bed and moving bed
JPS5717499A (en) Manufacture of silicon nitride whisker