JPS6269408A - Surface roughing of transparent conducting film - Google Patents
Surface roughing of transparent conducting filmInfo
- Publication number
- JPS6269408A JPS6269408A JP60209372A JP20937285A JPS6269408A JP S6269408 A JPS6269408 A JP S6269408A JP 60209372 A JP60209372 A JP 60209372A JP 20937285 A JP20937285 A JP 20937285A JP S6269408 A JPS6269408 A JP S6269408A
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- transparent conductive
- island
- film
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
本発明はSnO,,1nlOs或いはそれらの混合物で
あるインジウム錫酸化物(ITO)に代表される透光性
導電酸化物(T CO)からなる透明導電膜の粗面化方
法に関し、斯る方法により粗面化きれた透明導電膜は例
えば光起電力装置の受光面電極として利用される。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is based on a transparent conductive oxide (TCO) typified by indium tin oxide (ITO), which is SnO, 1nlOs, or a mixture thereof. Regarding the method for roughening a transparent conductive film, the transparent conductive film roughened by this method is used, for example, as a light-receiving surface electrode of a photovoltaic device.
(ロ) 従来の技術
半導体接合を備える非晶質シリコン系の半導体層を光活
性層とする光起電力装置は既に知られており、その基本
構成は透光性の基板上に、透光性受光面電極層、半導体
光活性層、背面電極層をこの順序に積層しである。(b) Conventional technology A photovoltaic device in which an amorphous silicon semiconductor layer with a semiconductor junction is used as a photoactive layer is already known. A light-receiving surface electrode layer, a semiconductor photoactive layer, and a back electrode layer are laminated in this order.
斯る光起電力装置の光電変換効率を向上せしめるべく、
特開昭58−57756号公報や第44回応用物理学会
学術講演会(昭和58年9月25日〜28日〉予稿集2
5P−L−2第351頁等に開示されたように、光入射
側の受光面M、極層の表面に0.1μm以上2.5μm
以下の凹凸を設は粗面(テクスチュア)化し、入射光の
光路長を長くすると共に光活性層中に封じ込める試みが
ある。In order to improve the photoelectric conversion efficiency of such a photovoltaic device,
Unexamined Japanese Patent Publication No. 58-57756 and the 44th Academic Conference of the Japan Society of Applied Physics (September 25-28, 1980) Proceedings 2
As disclosed in 5P-L-2, page 351, etc., the surface of the light receiving surface M on the light incident side and the pole layer has a thickness of 0.1 μm or more and 2.5 μm.
Attempts have been made to create a rough surface (texture) with the following irregularities to lengthen the optical path length of incident light and to confine it within the photoactive layer.
然し乍ら、上記受光面電極の粗面化は受光面電極の成膜
の過程に於いて行なわれるために、均一な凹凸を設ける
ことが難しいと言う欠点がある。However, since the surface roughening of the light-receiving surface electrode is carried out during the process of film formation of the light-receiving surface electrode, there is a drawback that it is difficult to provide uniform irregularities.
また、特開昭59−75678号公報に開示された透明
導電膜の粗面化は、斯る透明導電膜を形成後エツチング
を施す〕とにより行なうものであるが、この方法によっ
て均一な凹凸を設けることは難しい。Further, the surface roughening of the transparent conductive film disclosed in JP-A-59-75678 is carried out by performing etching after forming the transparent conductive film, and this method makes it possible to form uniform irregularities. It is difficult to set up.
(ハ)発明が解決しようとする問題点
本発明は上述の如く透明導電膜の表面に均一な凹凸が用
意に得られない点を解決しようとするものである。(c) Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned problem in which uniform irregularities cannot be easily obtained on the surface of a transparent conductive film.
(二〉 問題点を解決するための手段
本発明透明導電膜の粗面化方法は、透光性導電酸化物の
透明導電膜を一生面に配置した基板を用意し、上記透明
導電膜上に該導電膜のエッチング工程時マスクとして作
用する島状部分を点在せしめ、上記エツチング動作に寄
与する金属膜を上記島状部分を含む上記透明導電膜上に
ほぼ一定の厚みに配置した後、斯る金属膜とエツチング
液とを反応せしめ上記島状部分から露出した上記透明導
電膜をその途中までエツチングして粗面化したことを特
徴とする。(2) Means for Solving the Problems The method for roughening the surface of a transparent conductive film of the present invention involves preparing a substrate on which a transparent conductive film of a light-transmitting conductive oxide is disposed on its entire surface, and applying a layer on the transparent conductive film. After scattering island-shaped portions that act as masks during the etching process of the conductive film, and disposing a metal film contributing to the etching operation to a substantially constant thickness on the transparent conductive film including the island-shaped portions, The present invention is characterized in that the transparent conductive film exposed from the island-shaped portion is etched halfway through by causing the metal film to react with an etching solution to roughen the surface.
(ホ)作用
上述の如く透明導電膜の工;・チング工程に先立って該
透明導電膜上にマスクとして作用する島状部分を点在せ
しめると共に、エツチング動作に寄与する金属膜をこれ
らの上にほぼ一定の厚みに配置したことによって、上記
島状部分から露出した透明導電膜の露出部分のみがほぼ
均一にエツチング除去される。(e) Operation: Processing of the transparent conductive film as described above; - Prior to the etching process, island-shaped parts that act as masks are scattered on the transparent conductive film, and a metal film that contributes to the etching operation is placed on top of these. By arranging the transparent conductive film at a substantially constant thickness, only the exposed portions of the transparent conductive film exposed from the island-like portions are substantially uniformly etched away.
〈へ)実施例
第1図乃至第4図は本発明透明導電膜の粗面化方法を工
程別に示しており、第1図の工程では、ガラス等の透光
性且つ絶縁性の基板(1)の−主面上のほぼ全面を覆う
べくSnO,、Inl’s、ITO等のTCOからなる
透明導電膜(2)が電子ビーム蒸着法、スパッタリング
、熱CDV法等の周知の方法により膜厚約1800人〜
5ooo人程度形成きれる。1 to 4 show the method for roughening the transparent conductive film of the present invention step by step. In the step of FIG. 1, a transparent and insulating substrate (1 ) A transparent conductive film (2) made of TCO such as SnO, Inl's, ITO, etc. is deposited to cover almost the entire main surface of the film by known methods such as electron beam evaporation, sputtering, and thermal CDV. Approximately 1,800 people
About 500 people can be formed.
第2図の工程では、上記はぼ平坦な透明導電膜(2)上
に、該透明導電膜(2)のエツチング工程時にマスクと
して作用するC r * OsやT i Os等の金属
酸化物からなる島状部分(3)(3)・・・が点在して
形成される。斯る島状部分(3)(3)・・・は酸素雰
囲気中での金属体をソース或いはターゲットとする反応
性蒸着法やスパッタリング法により形成され、形成過程
初期の段階では被着(基板)面に対して一定膜厚の膜状
とならずクラスタ的に散逸することによって島状に形成
されるために、均一な島状部分(3)(3)・・・が存
易に得られる。In the process shown in FIG. 2, a metal oxide such as Cr*Os or TiOs, which acts as a mask during the etching process of the transparent conductive film (2), is etched onto the flat transparent conductive film (2). The island-like portions (3) (3)... are formed in a scattered manner. These island-shaped portions (3) (3)... are formed by reactive vapor deposition or sputtering using a metal body as a source or target in an oxygen atmosphere, and at the early stage of the formation process, the deposited (substrate) Since it is not formed into a film with a constant thickness on the surface but is formed into an island by dissipating in clusters, uniform island-like portions (3), (3), etc. can be easily obtained.
本実施例に於いてはCr、O,及びTie、のマスクと
して作用する粒径200〜500人の島状部分(3)(
3)・・・を下記の条件により作製した。In this example, the island-like portion (3) with a grain size of 200 to 500 people was used as a mask for Cr, O, and Tie.
3)... was produced under the following conditions.
・ Cr、O,・・・反応性蒸着法
ソ − ス 二 Cr雰 囲 気
: o8、2 X 10−’ Torr基板時間二
300〜400℃
蒸着時間: 2〜10分
・ T i O* ・・・スパッタリングターケラト
:Ti
雰 囲 気: Ar+O,,08分圧3×10−ツT
orr以上
基板温度−〜200°C
スパッタリング時間:2〜10分
第3図の工程では、上記島状部分(3)(3”)・・・
を含む透明導電膜(2)の露出部分上に該透明導電膜(
2)のエツチング動作に寄与する金属膜(4)が配置さ
れる。例えばTCOの透明導電膜(2)の工7チング動
作に寄与する金属膜(4)はHCl:H,。・Cr, O,... Reactive vapor deposition method source 2 Cr atmosphere: O8, 2 X 10-' Torr substrate time 2 300-400°C Vapor deposition time: 2-10 minutes ・TiO*...・Sputtering terquerate: Ti atmosphere: Ar+O, 08 partial pressure 3×10-T
orr or more Substrate temperature - ~200°C Sputtering time: 2 to 10 minutes In the process shown in Fig. 3, the island-like portions (3) (3'')...
The transparent conductive film (2) is coated on the exposed portion of the transparent conductive film (2) containing the transparent conductive film (2).
A metal film (4) contributing to the etching operation of 2) is arranged. For example, the metal film (4) that contributes to the etching operation of the transparent conductive film (2) of the TCO is HCl:H.
−1:5のエツチング液のHCQと反応してエツチング
動作する活性化水素を発生するZnであり、膜厚がほぼ
一定となるべく蒸着により約数1000人〜数μm形成
きれる。Zn reacts with the HCQ of the -1:5 etching solution to generate activated hydrogen for etching, and can be formed to a thickness of approximately several thousand to several micrometers by vapor deposition so that the film thickness is approximately constant.
第4図の工程では、透明導電膜(2)上に島状部分(3
)<3 >・・・を点在配置し、更にその上に金属膜(
4)を設けた基板(1)が上記金属膜く4)と反応する
ことにより透明導電膜(2)のエツチング動作に寄与す
るエツチング液、例えば上記Zn金属膜(4)に対して
HCN:H,0−15のエツチング液中に浸析されると
、上記島状部分(3)(3)・・・から露出し、金属膜
(4)と直接接触する透明導電膜(2)の露出部分が島
状部分(3)(3)・・・を耐エツチングマスクとして
斯るエツチング液と金属膜(4)との反応により発生し
た活性化水素によって選択的にエツチング除去される。In the process shown in FIG. 4, the island-shaped portion (3
)<3>... are dotted and a metal film (
An etching solution that contributes to the etching operation of the transparent conductive film (2) by reacting with the metal film (4), such as HCN:H , 0-15, the exposed portions of the transparent conductive film (2) are exposed from the island-like portions (3) (3) and come into direct contact with the metal film (4). is selectively etched and removed by activated hydrogen generated by the reaction between the etching solution and the metal film (4) using the island-shaped portions (3) (3), . . . as an etching-resistant mask.
しかも、上記金属膜(4)は蒸着などにより一定の膜厚
に付着されているために、斑なく接触面に活性化水素を
発生きせめることができ、均一な粗面化を実現し得る。Furthermore, since the metal film (4) is deposited to a constant thickness by vapor deposition or the like, activated hydrogen can be generated evenly on the contact surface, and uniform surface roughening can be achieved.
この様な透明導電膜(2)のエツチング処理をその厚み
方向の途中までとすることによって、第4図に示す如く
透明導電膜(2ンの露出部分のみがエツチング除去され
て、透明導電膜(2)乃至島状部分(3)(3)・・・
の露出表面は粗面化され、高低差約200人〜2000
人の凹凸表面(5)が付与される。By etching the transparent conductive film (2) halfway through its thickness, only the exposed portion of the transparent conductive film (2) is etched away, as shown in FIG. 2) to island-like portions (3) (3)...
The exposed surface is roughened and the height difference is approximately 200 to 2000.
A human textured surface (5) is provided.
一方、Snowの如きスズ系の透明導電膜(2)のエツ
チング工程にあっては、上記インジウム系の透明導電膜
(2)のエツチング液を用いてはエツチング除去するこ
とはできない0通常期るスズ系のエツチング工程には、
エツチング液のHClと反応して活性化水素を発生する
Znが予め被エツチング表面に付着される。そこで、こ
のスズ系透明導電膜(2)のエツチングに際しては島状
部分(3)(3)・・・を形成する第2図の工程後に、
予め膜厚がほぼ均一となる約数1000人〜数μm蒸着
きれる。斯る膜厚がほぼ一定なZnの蒸着膜により斑な
く活性水素の発生を得ることができ、均一な粗面化を施
すことができる。On the other hand, in the etching process for a tin-based transparent conductive film (2) such as Snow, the tin cannot be removed by etching using the etching solution for the indium-based transparent conductive film (2). The etching process of the system includes
Zn, which reacts with HCl of the etching solution to generate activated hydrogen, is deposited on the surface to be etched in advance. Therefore, when etching this tin-based transparent conductive film (2), after the step shown in Fig. 2 to form the island-like portions (3) (3)...
Approximately several thousand to several micrometers can be deposited in advance so that the film thickness is almost uniform. With such a deposited Zn film having a substantially constant thickness, active hydrogen can be generated evenly, and the surface can be uniformly roughened.
尚、斯るZnの蒸着膜を利用したエツチングは、インジ
ウム系の透明導電M(2)にも適用可能である。Note that etching using such a deposited Zn film can also be applied to the indium-based transparent conductive M(2).
第5図は本発明粗面化方法により凹凸表面(5)が付与
された透明導電膜(2)を受光面電極とした光起電力装
置の基本構造を示している。即ち、(1)〜(3)、(
5)は既に説明した基板〜凹凸表面であり、斯る凹凸表
面(5)の背面側に、その内部に膜面に平行なpin、
pn、pi、pinpin等の半導体接合を持つアモル
ファスシリコン系の半導体光活性層(6)と、Affi
、Ag、TCO/Aj!。FIG. 5 shows the basic structure of a photovoltaic device in which a light-receiving surface electrode is a transparent conductive film (2) provided with an uneven surface (5) by the surface roughening method of the present invention. That is, (1) to (3), (
5) is the already explained substrate ~ uneven surface, and on the back side of the uneven surface (5), there are pins parallel to the film surface inside,
An amorphous silicon-based semiconductor photoactive layer (6) having semiconductor junctions such as pn, pi, pinpin, etc., and an Affi
,Ag,TCO/Aj! .
TCO/Ag等の単暦或いは積層構造の背面を極(7)
と、がこの順序で積層しである。Pole the back side of a single calendar or laminated structure such as TCO/Ag (7)
and are stacked in this order.
而して、エツチング工程時にマスクとして作用したCr
、O,或いはTie、の島状部分(3バ3)・・・は受
光面側がTCOの透明導電膜(2)と接し、背面がアモ
ルファスシリコン系の半導体光活性層(6)と当接する
。光起電力装置に於いて留意すべきは、光電変換動作に
必要な光を光電変換動作する半導体光活性層(6)に多
く導くこと、換言すると、受光面側での光反射量を抑圧
することである。と記構成にある光起電力装置との屈折
率を見てみると、基板(1)の代表的な材料である青板
ガラスの屈折率は1.45〜1.6であり、次いでTC
Oの透明導電膜(2)のそれは約2.0程度であり、そ
して島状部分(3)(3)・・・を構成するCrよO3
若しくはTie、の各々の屈折率は約2.5と約2.6
である。一方、光電変換動作するアモルファスシリコン
系の半導体光活性層(6)の屈折率約3.4〜4.0で
あり、従って、透明導電膜(2)のエツチング工程時に
マスクとして作用する島状部分(3)(3)・・・とじ
て透明導電g(2)の屈折率より大きい材料、即ちTC
Oに対してCr*Os若しくは7 i 0 !を選択す
れば、屈折率が界面に於いて大きく変化することに起因
する界面反射を極めて小さくすることができる。Therefore, the Cr that acted as a mask during the etching process
, O, or Tie, the light-receiving surface side is in contact with the TCO transparent conductive film (2), and the back side is in contact with the amorphous silicon-based semiconductor photoactive layer (6). What should be kept in mind in a photovoltaic device is to guide a large amount of the light necessary for photoelectric conversion operation to the semiconductor photoactive layer (6) that performs photoelectric conversion operation, in other words, to suppress the amount of light reflection on the light receiving surface side. That's true. Looking at the refractive index of a photovoltaic device having the configuration described above, the refractive index of blue plate glass, which is a typical material for the substrate (1), is 1.45 to 1.6, followed by TC.
That of the O transparent conductive film (2) is about 2.0, and the Cr and O3 constituting the island portions (3) (3)...
or Tie, the refractive index of each is approximately 2.5 and approximately 2.6.
It is. On the other hand, the refractive index of the amorphous silicon-based semiconductor photoactive layer (6) that performs photoelectric conversion is approximately 3.4 to 4.0, and therefore, the island-shaped portion acts as a mask during the etching process of the transparent conductive film (2). (3) (3)...A material with a refractive index higher than that of the transparent conductor g(2), that is, TC
Cr*Os or 7 i 0 for O! By selecting , interface reflection caused by a large change in refractive index at the interface can be made extremely small.
(ト) 発明の効果
本発明透明導電膜の粗面化方法は以上の説明から明らか
な如く、透明導電膜上に点在せしめられた島状部分は該
導電膜のエッチング工程時耐エツチングのマスクとして
作用するので、は(2一定の厚みに付着されたエツチン
グ動作に寄与する金属膜の存在と相俟って、斯るエツチ
ングを上記透明導電膜の途中までとすることによって、
島状部分から露出した透明導電膜の露出部分のみがエツ
チング除去される結果、均一な凹凸表面を容易に形成す
ることができる。また、上記島状部分とじて透明導電膜
の屈折率より大きい材料を選択すれば、例えば光起電力
装置の半導体光活性層の如く更に大きな変化が緩和され
界面反射を抑圧することができ、上述の如き光起電力装
置にあっては光電変換効率を上昇せしめる。(G) Effects of the Invention As is clear from the above explanation, the method for roughening the surface of a transparent conductive film of the present invention is such that the island-shaped portions dotted on the transparent conductive film serve as etching-resistant masks during the etching process of the conductive film. (2) Coupled with the presence of a metal film that contributes to the etching operation and is deposited to a certain thickness, by limiting such etching to the middle of the transparent conductive film,
Only the exposed portions of the transparent conductive film exposed from the island portions are etched away, so that a uniform uneven surface can be easily formed. Furthermore, if a material with a refractive index higher than that of the transparent conductive film is selected for the island-shaped portion, as in the case of a semiconductor photoactive layer of a photovoltaic device, even larger changes can be alleviated and interface reflections can be suppressed. In photovoltaic devices such as the above, the photoelectric conversion efficiency is increased.
第1図乃至第4図は本発明粗面化方法を工程別に示す要
部拡大断面図、第5図は本発明粗面化方法により粗面化
された透明導電膜を組込んだ光起電力装置の要部拡大断
面図、である。
(1)・・・基板、(2)・・・透明導電膜、(3)・
・・島状部分、(4)・・・金属膜、(5)・・・凹凸
表面。Figures 1 to 4 are enlarged cross-sectional views of main parts showing each step of the surface roughening method of the present invention, and Figure 5 is a photovoltaic device incorporating a transparent conductive film roughened by the surface roughening method of the present invention. FIG. 2 is an enlarged cross-sectional view of the main parts of the device. (1)...Substrate, (2)...Transparent conductive film, (3)...
... Island-shaped portion, (4) ... Metal film, (5) ... Uneven surface.
Claims (4)
た基板を用意し、上記透明導電膜上に該導電膜のエッチ
ング工程時マスクとして作用する島状部分を点在せしめ
、上記エッチング動作に寄与する金属膜を上記島状部分
を含む上記透明導電膜上にほぼ一定の厚みに配置した後
、斯る金属膜とエッチング液とを反応せしめ上記島状部
分から露出した上記透明導電膜をその途中までエッチン
グして粗面化したことを特徴とする透明導電膜の粗面化
方法。(1) preparing a substrate on which a transparent conductive film of a light-transmitting conductive oxide is disposed on one principal surface, dotting island-shaped portions on the transparent conductive film to act as a mask during the etching process of the conductive film; After disposing a metal film that contributes to the etching operation to a substantially constant thickness on the transparent conductive film including the island-like portions, the metal film and the etching solution are reacted to remove the transparent conductive film exposed from the island-like portions. A method for roughening a transparent conductive film, characterized in that the conductive film is roughened by etching partway through the conductive film.
大きいことを特徴とする特許請求の範囲第1項記載の透
明導電膜の粗面化方法。(2) The method for roughening the surface of a transparent conductive film according to claim 1, wherein the refractive index of the island-shaped portion is larger than the refractive index of the transparent conductive film.
_2であることを特徴とした特許請求の範囲第2項記載
の透明導電膜の粗面化方法。(3) The transparent conductive film is Cr_2O_3 or SnO
_2. The method for roughening a transparent conductive film according to claim 2, characterized in that: _2.
物であり、上記金属膜はZn膜であることを特徴とした
特許請求の範囲第1項、第2項若しくは第3項記載の透
明導電膜の粗面化方法。(4) The method according to claim 1, 2, or 3, wherein the transparent conductive film is a SnO_2-based light-transmitting conductive oxide, and the metal film is a Zn film. Method for roughening transparent conductive film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60209372A JPS6269408A (en) | 1985-09-20 | 1985-09-20 | Surface roughing of transparent conducting film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60209372A JPS6269408A (en) | 1985-09-20 | 1985-09-20 | Surface roughing of transparent conducting film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6269408A true JPS6269408A (en) | 1987-03-30 |
Family
ID=16571836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60209372A Pending JPS6269408A (en) | 1985-09-20 | 1985-09-20 | Surface roughing of transparent conducting film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6269408A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01106472A (en) * | 1987-10-20 | 1989-04-24 | Sanyo Electric Co Ltd | Solar cell |
US6514674B1 (en) | 1999-03-11 | 2003-02-04 | Canon Kabushiki Kaisha | Method of forming an optical element |
JP2008508553A (en) * | 2004-07-27 | 2008-03-21 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Nanostructure antireflection surface |
WO2011013719A1 (en) * | 2009-07-29 | 2011-02-03 | 旭硝子株式会社 | Transparent conductive substrate for solar cell, and solar cell |
CN102822991A (en) * | 2010-04-05 | 2012-12-12 | 三菱电机株式会社 | Substrate for photoelectric conversion device, method for manufacturing the substrate, thin film photoelectric conversion device, method for manufacturing the device, and solar cell module |
CN109309132A (en) * | 2017-07-27 | 2019-02-05 | 中美矽晶制品股份有限公司 | solar cell chip |
-
1985
- 1985-09-20 JP JP60209372A patent/JPS6269408A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01106472A (en) * | 1987-10-20 | 1989-04-24 | Sanyo Electric Co Ltd | Solar cell |
US6514674B1 (en) | 1999-03-11 | 2003-02-04 | Canon Kabushiki Kaisha | Method of forming an optical element |
JP2008508553A (en) * | 2004-07-27 | 2008-03-21 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Nanostructure antireflection surface |
WO2011013719A1 (en) * | 2009-07-29 | 2011-02-03 | 旭硝子株式会社 | Transparent conductive substrate for solar cell, and solar cell |
CN102473742A (en) * | 2009-07-29 | 2012-05-23 | 旭硝子株式会社 | Transparent conductive substrate for solar cell and solar cell |
CN102822991A (en) * | 2010-04-05 | 2012-12-12 | 三菱电机株式会社 | Substrate for photoelectric conversion device, method for manufacturing the substrate, thin film photoelectric conversion device, method for manufacturing the device, and solar cell module |
US8828780B2 (en) | 2010-04-05 | 2014-09-09 | Mitsubishi Electric Corporation | Substrate for photoelectric conversion device and method of manufacturing the substrate, thin-film photoelectric conversion device and method of manufacturing the thin-film photoelectric conversion device, and solar cell module |
CN109309132A (en) * | 2017-07-27 | 2019-02-05 | 中美矽晶制品股份有限公司 | solar cell chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3672436B2 (en) | Method for manufacturing solar battery cell | |
US11469336B2 (en) | Photodiode, method for preparing the same, and electronic device | |
JPS6269408A (en) | Surface roughing of transparent conducting film | |
JPS61288473A (en) | Photovoltaic device | |
JPH0793447B2 (en) | Photoelectric conversion element | |
JPS61141185A (en) | Manufacture of photovoltaic element | |
JP3238945B2 (en) | Solar cell and method of manufacturing the same | |
JPS61288314A (en) | Working of light transmitting conducting oxide layer | |
JPS6269407A (en) | Surface roughing of transparent conducting film | |
JP3609147B2 (en) | Photoelectric conversion device | |
JP3229705B2 (en) | Photovoltaic device | |
JP2892921B2 (en) | Photovoltaic device | |
JPH05343715A (en) | Thin film solar cell | |
JP3487745B2 (en) | A method for manufacturing a substrate for a photovoltaic element and a method for manufacturing a photovoltaic element using the substrate. | |
JPS59152673A (en) | Manufacture of photoelectric converter | |
JP2004172496A (en) | Photoelectric converting element and method for manufacturing photoelectric converting element | |
JPS61116886A (en) | Manufacture of photovoltaic device | |
JPS6254927A (en) | Photovoltaic device | |
JP2994716B2 (en) | Photovoltaic device | |
JPS62123781A (en) | Photoelectric conversion element | |
JP2731314B2 (en) | Translucent photovoltaic device and method of manufacturing the same | |
JP2968971B2 (en) | Image sensor and manufacturing method thereof | |
JPH0323679A (en) | Photoelectric transducer | |
JPS59177921A (en) | Adhesion of film | |
JPH08107228A (en) | Thin film solar cell |