[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6238342B2 - - Google Patents

Info

Publication number
JPS6238342B2
JPS6238342B2 JP60017733A JP1773385A JPS6238342B2 JP S6238342 B2 JPS6238342 B2 JP S6238342B2 JP 60017733 A JP60017733 A JP 60017733A JP 1773385 A JP1773385 A JP 1773385A JP S6238342 B2 JPS6238342 B2 JP S6238342B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
prepared
silica gel
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60017733A
Other languages
Japanese (ja)
Other versions
JPS61178941A (en
Inventor
Toshihiro Saito
Kazuharu Mitarai
Nobuyuki Taniguchi
Satoshi Arimitsu
Katsumi Yanagi
Juji Onda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60017733A priority Critical patent/JPS61178941A/en
Publication of JPS61178941A publication Critical patent/JPS61178941A/en
Publication of JPS6238342B2 publication Critical patent/JPS6238342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 本発明はエタノールを製造する方法に関する。
更に詳しくは(a)ロジウム、リチウム、イリジウム
および/又はマグネシウム、イツトリウム、イツ
テルビウム、ルテシウム、バナジウム、クロム
(以下、その他の添加元素と略す)のうちの少な
くとも一種の元素を担体担持してなる触媒と、(b)
イリジウムおよび鉄又はモリブデンを担体担持し
てなる触媒の存在下、一酸化炭素と水素とを反応
させエタノールを製造する方法に関する。 〔従来の技術及び発明が解決しようとする問題
点〕 エタノール、アセトアルデヒド等の炭素数2の
含酸素化合物は従来ナフサを原料とする石油化学
的方法によつて製造されてきた。しかし近年の原
油の高騰により、製造価格の著しい上昇が起り、
原料転換の必要性が生じている。 一方豊富で且つ安価に入手可能な一酸化炭素及
び水素の混合ガスより炭素数2の含酸素化合物を
製造する方法が種々検討されている。 即ち、一酸化炭素と水素の混合ガスを、ロジウ
ムを主成分とし、マンガン、チタン、ジルコン、
鉄などの金属もしくは金属酸化物などより成る触
媒の存在下に反応させて、炭素数2の含酸素化合
物を選択的に製造する方法は公知である。(例え
ば特開昭51−80806号、同52−14706号同56−
147730号等) しかしながら、かかる方法は副生する炭化水
素、例えばメタン等の量が多く、含酸素化合物の
選択率が低いものや、含酸素化合物の選択率が高
い場合には、その生成量は極めて低いものであつ
た。更に高価な貴金属であるロジウムあたりの目
的化合物の生成量がまだ少なく、経済的にもプロ
セス的にも完成された技術が提供されていないの
が実情である。 更に炭素数2の含酸素化合物を高収量で高選択
的に製造することを目的として、ロジウムにリチ
ウム(特開昭56−8334)、鉄(特開昭51−80807
号)、マグネシウム(特開昭54−138504号)、バナ
ジウム(特開昭57−62232号)、イツトリウム、イ
ツテルビウム(特開昭57−62233号)、クロム(特
開昭55−143918号)、ロジウムとリチウムおよび
マグネシウム又は、バナジウム等(特開昭57−
109734号)ロジウム、イリジウムおよびリチウム
(特開昭59−190934号)等が提案されているが、
いずれの方法もアセトアルデヒド、酢酸又はメタ
ノールを主成分とするものであり、エタノールの
収率、選択性などは著しく低い欠点を有してい
る。 以上述べた如く、一酸化炭素及び水素を含有す
る気体よりエタノールを主成分とする含酸素化合
物を効率よく、経済性よく製造する方法は提供さ
れていない。 本発明者らは一酸化炭素及び水素を含有する気
体より、含酸素化合物を製造する際に、上記炭素
数2の含酸素化合物の選択性を改良しつつ、該反
応より生成される炭素数2の含酸素化合物中の分
布をエタノールに移動させ、かつ炭化水素の生成
を最小とすることを可能にした触媒系を開示する
ものであり、多数の助触媒成分の組合せ試験につ
き鋭意検討を重ねた結果、(a)ロジウム、リチウ
ム、イリジウムおよび/又はその他の添加元素の
うちの少なくとも一種の元素を担体担持してなる
触媒と、(b)イリジウムおよび鉄又はモリブデンを
担体担持してなる触媒とを組合せることにより予
期し得ない効果が発現し、エタノールが好ましい
収量と高選択性を有することを見い出し、本発明
を完成するに至つた。 〔発明の概要〕 本発明は前記した如く、(a)ロジウム、リチウ
ム、イリジウムおよび/又はその他の添加元素の
うちの少なくとも一種の元素を担体担持してなる
触媒と、(b)イリジウムおよび鉄又はモリブデンを
担体担持してなる触媒との存在下、一酸化炭素お
よび水素とを反応させエタノールを製造するもの
である。 以下、本発明を順次詳述する。 本発明において用いられる触媒は前述の如く、
(a)ロジウム、リチウム、イリジウムおよび/又は
その他の添加元素のうちの少なくとも一種の元素
を担体担持してなる触媒と、(b)イリジウムおよび
鉄又はモリブデンを担体担持してなる触媒からな
る二者の触媒を主たる構成成分とする。両者の触
媒は各々別途に調製したものを使用することがで
き、使用に際しては混合あるいは(a)の触媒の一つ
を上層に、(b)の触媒の一つを下層に充填して使用
することができる。 触媒の調製に際しては通常、貴金属触媒におい
て行われている如く、担体上に上記の成分を分散
させて用いる。 本発明方法において用いられる触媒は貴金属を
使用する場合に用いられる常法に従つて調製する
ことができる。例えば含浸法、浸漬法、イオン交
換法、共沈法、混練法等によつて調製できる。 触媒を構成する成分であるロジウム及びイリジ
ウムにおいて触媒調製のために使用できる原料化
合物としては押化物、臭化物等のハロゲン化物、
硝酸塩、炭酸塩等の無機塩、酢酸塩、シユウ酸
塩、アセチルアセトナート塩、エチレンジアミン
酢酸塩等の有機酸塩又はキレート化合物、カルボ
ニル化合物、アンミン錯体、金属アルコキシド化
合物、アルキル金属化合物等通常貴金属触媒を調
製する際に用いられる化合物を使用することがで
きる。 助触媒として使用されるリチウム、マグネシウ
ム、イツトリウム、イツテリビウム、ルテシウ
ム、バナジウム、クロムに使用できる原料化合物
としてはハロゲン化物、硝酸塩、塩素酸塩等の無
機酸塩、水酸化物、ギ酸塩、酢酸塩等の有機酸
塩、金属アルコキシド化合物、アルキル金属化合
物等より適宜使用することができる。 また鉄、モリブデンとして使用できる原料化合
物としてはハロゲン化物、ハロゲン酸塩、硝酸塩
等の無機塩、ギ酸塩、酢酸塩等の有機酸塩、カル
ボニル化合物等より適宜使用することができる。 しかし、これらの触媒構成成分を担体上で担持
することを容易にするため、エタノール、水又は
他の適当な溶媒に可溶性の高い化合物が好ましく
は用いられる。 以下に含浸法を例にとり触媒の調製法を説明す
る。上記の金属化合物を水、メタノール、エタノ
ール、アセトン、テトラヒドロフランジオキサ
ン、ノルマルヘキサン、ベンゼン、トルエン等の
単独または混合溶媒に溶解し、その溶液に担体を
加え浸漬し、溶媒を留去し、乾燥し、必要とあれ
ば加熱、ガス処理等の処理を行い、担体に金属化
合物を担持する。 (a)又は(b)触媒の担持の手法としては原料化合物
を同一溶媒に同時に溶解した混合溶液を作り、担
体に同時に担持する方法、各成分を逐次的に担持
する方法、あるいは各成分を必要に応じて還元、
熱処理等の処理を行いながら逐次的、段階的に担
持する方法などの各手法を用いることができる。 その他の調製法、例えば担体のイオン交換能を
利用したイオン交換によつて金属を担持する方
法、共沈法によつて触媒を調製する方法なども本
発明方法に用いられる触媒の調製手法として採用
できる。 上述の手法によつて調製された(a)および(b)の触
媒は通常還元処理を行うことにより活性化し次い
で反応に供せられる。還元を行うには水素を含有
する気体により昇温下で行うことが簡便であつて
好ましい。 (a)の触媒の還元温度として、ロジウムの還元さ
れる温度、即ち100℃程度の温度条件下でも還元
処理ができるが、好ましくは200℃〜600℃の温度
下で還元処理を行う。この際触媒の各成分の分散
を十分に行わせる目的で低温より徐々に、あるい
は段階的に昇温しながら水素還元を行つてもよ
い。また還元剤を用いて、化学的に還元を行うこ
ともできる。たとえば一酸化炭素と水を用いた
り、ヒドラジン、水素化ホウ素化合物、水素化ア
ルミニウム化合物などの還元剤を用いた還元処理
を行なつてもよい。また(b)の触媒は(a)の触媒と同
様な方法で還元処理を行うことができる。 本発明において用いられる担体は、好ましくは
比表面積10〜1000m3/g、細孔径10Å以上を有す
るものであれば通常担体として知られているもの
を使用することができる。具体的な担体として
は、シリカ、各種の珪酸塩、アルミナ、活性炭、
各種金属の酸化物(例えば酸化ジルコニウム、酸
化チタン、マグネシウムなど)、モレキユーラー
シープ、ケイソウ土などがあげられるが、シリカ
系の担体が好ましい。 上記(a)の触媒における各構成成分の比率は以下
の様である。ロジウムと担体に対する比率は、担
体の比表面積を考慮して重量比で0.0001〜0.5、
好ましくは0.001〜0.3である。リチウムとロジウ
ムの比率はリチウム/ロジウム(原子比)で
0.0001〜3、好ましくは0.001〜2の範囲であ
る。イリジウムとロジウムの比率はイリジウム/
ロジウム(原子比)で0.001〜6、好ましくは
0.005〜3の範囲である。その他の添加元素とロ
ジウムの比率はその他の添加元素/ロジウム(原
子比)で0.001〜10、好ましくは0.005〜3の範囲
である。 更に上記(b)の触媒における各構成成分の比率は
以下の様である。イリジウムと担体に対する比率
は、担体の比表面積を考慮して重量比で0.0001〜
0.5、好ましくは0.001〜0.3である。鉄とイリジウ
ムの比率は鉄/イリジウム(原子比)で0.001〜
10、好ましくは0.05〜5の範囲である。モリブデ
ンとイリジウムの比率はモリブデン/イリジウム
(原子比)で0.001〜10、好ましくは0.05〜5の範
囲である。 本発明はたとえば固定床の流通式反応装置に適
用することができる。すなわち反応器内に上記(b)
の触媒のうちの一つの上に、(a)の触媒のうちの一
つを充填するか、(a)の触媒のうちの一つと(b)の触
媒のうちの一つを混合して充填し、原料ガスを送
入して反応を行わせる。 生成物は分離し、未反応の原料ガスは必要に応
じて精製したのちに循環再使用することも可能で
ある。 また本発明は流動床式の反応装置にも適用でき
る。すなわち、原料ガスと上記(a)の触媒のうちの
一つと(b)の触媒のうちの一つを混合、流動化した
触媒を同伴させて反応を行わせることもできる。
更に本発明は溶媒中に触媒を分散させ、原料ガス
を送入し、反応を行うことからなる液相不均一反
応にも適用できる。 本発明方法を実施するに際して採用される条件
はエタノールを主成分とする含酸素化合物を高収
率、高選択率で、かつ炭化水素の生成を最小にし
ながら製造することを目的として種々の反応条件
の因子を有機的に組合せて選択される。 反応圧力は、常圧(すなわち0Kg/cm2ゲージ)
でも当該目的化合物を高選択率・高収率で製造で
きるのであるが、空時収率を高める目的で加圧下
において反応を行うことができる。従つて反応圧
力としては0Kg/cm2ゲージ〜350Kg/cm2ゲージ好
ましくは0Kg/cm2ゲージから250Kg/cm2ゲージの
圧力下で行う。反応温度は150℃〜450℃、好まし
くは180℃〜350℃である。反応温度が高い場合に
は、炭化水素の副生量が増加するため原料の送入
速度を早くしたり、水素、一酸化炭素の組成比を
変える必要がある。従つて、空間速度(原料ガス
送入量/触媒容量)は標準状態(0℃、1気圧)
換算で10h-1〜107h-1の範囲より、反応圧力、反
応温度、原料ガス組成との関係より適宜選択され
る。 当該原料ガスの組成は、主として一酸化炭素と
水素を含有しているガスであつて、窒素、アルゴ
ン、ヘリウム、メタン等のガス、あるいは反応条
件下において、気体の状態であれば炭化水素、二
酸化炭素、生成した含酸素化合物や水を含有して
いてもよい。水素と一酸化炭素の混合比率は水
素/一酸化炭素(容積比)で0.1〜10、好ましく
は0.25〜5であり、原料ガス中の一酸化炭素と水
素の合計割合は20〜100容積%、好ましくは60〜
100容積%である。 以下実施例によつて、本発明をさらに詳細に説
明するが、これらの例は本発明の理解を容易にす
るためにあえて同一反応条件で示すものであり、
本発明はこれにより何ら限定されるものでないこ
とは言うまでもない。 実施例 1 塩化ロジウム(RhCl3・3H2O)1.20g、塩化マ
グネシウム(MgCl2・6H2O)0.093g、塩化リチ
ウム(LiCl・H2O)0.055gをエタノール30mlに
溶解させ、これにシリカゲル(DAVISON#57)
25mlを加えた後、ロータリーエバポレーターを使
用して減圧下で乾燥した。この担持触媒をパイレ
ツクス製ガラス反応管に充填し、水素180ml/毎
分下、400℃で5時間還元してRh−Mg−Li触媒
を調製した。 また塩化イリジウム(IrCl4・H2O)0.803g、
塩化鉄(FeCl3・6H2O)0.370gを水11.5mlに溶
解させ、これに上記に記載のシリカゲル25mlを加
えた後、室温下で1時間、60℃で18時間乾燥し
た。この担持触媒を上記と同様の装置を使用し、
同様の操作で還元処理してIr−Fe触媒を調製し
た。 活性試験及び結果 外径6mmの熱電対保護管を有する内径14mmのチ
タン製反応管に上記のIr−Fe触媒1.5mlを充填
し、ついで上記のRh−Mg−Li触媒4mlを上記に
記載のシリカゲル10mlで希釈して充填した。反応
管内を窒素で置換し、常圧下、窒素希釈水素ガス
(H2:N2=100:100ml/毎分)で200℃、1時間
再還元した後、水素/一酸化炭素=2.0/1(容
積比)の混合ガスを36Nl/毎時送入し、反応圧
力20Kg/cm2、反応温度275℃において反応を行つ
た。 反応流出物のうち、液状生成物は水に吸収させ
て捕集し、また流出ガス組成はガスクロ法により
分析し、その結果を第1表に示す。 実施例 2 塩化ロジウム1.20g、塩化イツトリウム
(YCl3・6H2O)0.138g、塩化リチウム0.055gを
エタノール30mlに溶解させ、これに前記に記載の
シリカゲル25mlを加えた後、実施例1と同様の装
置を使用し、同様の操作で乾燥、還元処理して
Rh−Y−Li触媒を調製した。 また、塩化イリジウム0.803g、塩化モリブデ
ン(MoCl5)0.087gをエタノール30mlに溶解さ
せ、これに前記に記載のシリカゲル25mlを加えた
後、ロータリーエバポレーターを使用して減圧下
で乾燥した後、実施例1と同様の装置を使用し、
同様の操作で還元してIr−Mo触媒を調製した。 実施例1と同様の反応装置に上記のIr−Mo触
媒1mlを充填し、ついで上記のRh−Y−Li触媒
4mlを前記に記載のシリカゲル10mlで希釈して充
填した後、実施例1と同様にして反応を行つた。
結果を第1表に示す。 実施例 3 塩化ロジウム1.20g、塩化イツテルビウム
(YbCl3・6H2O)0.177g、塩化リチウム0.055g
をエタノール30mlに溶解させ、これに前記に記載
のシリカゲル25mlを加えた後、実施例1と同様の
装置を使用し、同様の操作で乾燥、還元処理して
Rh−Yb−Li触媒を調製した。 また実施例1と同様にして、同様の組成比でIr
−Fe触媒を調製した。 実施例1と同様の反応装置に上記のIr−Fe触
媒1.5mlを充填し、ついで上記のRh−Yb−Li触媒
4mlを前記に記載のシリカゲル10mlで希釈して充
填した後、実施例1と同様にして反応を行つた。
結果を第1表に示す。 実施例 4 塩化ロジウム1.20g、塩化ルテシウム
(LuCl3・6H2O)0.178g、塩化リチウム0.055g
をエタノール30mlに溶解させ、これに前記に記載
のシリカゲル25mlを加えた後、実施例1と同様の
装置を使用し、同様の操作で乾燥、還元処理して
Rh−Lu−Li触媒を調製した。 また実施例2と同様にして、同様の組成比でIr
−Mo触媒を調製した。 実施例1と同様の反応装置に上記のIr−Mo触
媒1mlを充填し、ついで上記のRh−Lu−Li触媒
4mlを前記に記載のシリカゲル10mlで希釈して充
填した後、実施例1と同様にして反応を行つた。
結果を第1表に示す。 実施例 5 塩化ロジウム1.20g、塩化バナジウム(VCl3
0.072g、塩化リチウム0.055gをエタノール30ml
に溶解させ、これに前記に記載のシリカゲル25ml
を加えた後、実施例1と同様の装置を使用し、同
様の操作で乾燥、還元処理してRh−V−Li触媒
を調製した。 また実施例1と同様にして、同様の組成比でIr
−Fe触媒を調製した。 実施例1と同様の反応装置に上記のIr−Fe触
媒1mlを充填し、ついで上記のRh−V−Li触媒
4mlを前記に記載のシリカゲル10mlで希釈して充
填した後、実施例1と同様にして反応を行つた。
結果を第1表に示す。 実施例 6 実施例5と同様にして同様の組成比でRh−V
−Li触媒を調製した。 また実施例2と同様にして、同様の組成比でIr
−Mo触媒を調製した。 実施例1と同様の反応装置に上記のIr−Mo触
媒1mlを充填し、ついで上記のRh−V−Li触媒
4mlを前記に記載のシリカゲル10mlで希釈して充
填した後、実施例1と同様にして反応を行つた。
結果は第1表に示す。 実施例 7 塩化ロジウム1.20g、塩化クロム(CrCl3
6H2O)0.122g、塩化リチウム0.055gをエタノ
ール30mlに溶解させ、これに前記に記載のシリカ
ゲル25mlを加えた後、実施例1と同様の装置を使
用し、同様の操作で乾燥、還元処理してRh−Cr
−Li触媒を調製した。 また実施例1と同様にして、同様の組成比でIr
−Fe触媒を調製した。 実施例1と同様の反応装置に上記のIr−Fe触
媒1mlを充填し、ついで上記のRh−Cr−Li触媒
4mlを前記に記載のシリカゲル10mlで希釈して充
填した後、実施例1と同様にして反応を行つた。
結果を第1表に示す。 実施例 8 塩化ロジウム1.20g、塩化バナジウム0.072
g、塩化リチウム0.055g、塩化イリジウム
(IrCl4・H2O)0.064gをエタノール30mlに溶解さ
せ、これに前記に記載のシリカゲル25mlを加えた
後、実施例1と同様の装置を使用し、同様の操作
で乾燥、還元処理してRh−V−Li−Ir触媒を調
製した。 また実施例1と同様の反応装置に上記のIr−
Fe触媒を調製した。 実施例1と同様の反応装置に上記のIr−Fe触
媒1mlを充填し、ついで上記のRh−V−Li−Ir
触媒4mlを前記に記載のシリカゲル10mlで希釈し
て充填した後、実施例1と同様にして反応を行つ
た。結果を第1表に示す。 比較例 1 実施例1と同様にして、同様の組成比でRh−
Mg−Li触媒を調製し、その4mlを前記に記載の
シリカゲル10mlで希釈して充填した以外は、実施
例1と同様にして反応を行つた。結果を第1表に
示す。 比較例 2 実施例2と同様にして、同様の組成比でRh−
Y−Li説触を調製し、その4mlを前記に記載のシ
リカゲル10mlで希釈して充填した以外は、実施例
1と同様にして反応を行つた。結果を第1表に示
す。 比較例 3 実施例3と同様にして、同様の組成比でRh−
Yb−Li触媒を調製し、その4mlを前記に記載の
シリカゲル10mlで希釈して充填した以外は、実施
例1と同様にして反応を行つた。結果を第1表に
示す。 比較例 4 実施例4と同様にして、同様の組成比でRh−
Lu−Li触媒を調製し、その4mlを前記に記載の
シリカゲル10mlで希釈して充填した以外は、実施
例1同様にして反応を行つた。結果を第1表に示
す。 比較例 5 実施例5と同様にして、同様の組成比でRh−
V−Li触媒を調製し、その4mlを前記に記載のシ
リカゲル10mlで希釈して充填した以外は、実施例
1と同様にして反応を行つた。結果を第1表に示
す。 比較例 6 実施例7と同様にして、同様の組成比でRh−
Cr−Li触媒を調製し、その4mlを前記に記載の
シリカゲル10mlで希釈して充填した以外は、実施
例1と同様にして反応を行つた。結果を第1表に
示す。
OBJECTS OF THE INVENTION The present invention relates to a method for producing ethanol.
More specifically, (a) a catalyst comprising at least one element selected from the group consisting of rhodium, lithium, iridium, and/or magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium (hereinafter referred to as other additive elements) supported on a carrier; and (b)
The present invention relates to a method for producing ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst comprising iridium and iron or molybdenum supported on a carrier. [Prior Art and Problems to be Solved by the Invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the rise in crude oil prices in recent years, manufacturing prices have risen significantly.
The need for raw material conversion is emerging. On the other hand, various methods for producing oxygen-containing compounds having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is abundant and available at low cost, have been studied. That is, a mixed gas of carbon monoxide and hydrogen, with rhodium as the main component, manganese, titanium, zircon,
A method for selectively producing an oxygen-containing compound having 2 carbon atoms by reacting it in the presence of a catalyst made of a metal such as iron or a metal oxide is known. (For example, JP-A No. 51-80806, No. 52-14706, No. 56-
(No. 147730, etc.) However, such methods produce a large amount of by-product hydrocarbons, such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the amount produced is low. It was extremely low. Furthermore, the actual situation is that the amount of the target compound produced per rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided. Furthermore, with the aim of producing oxygen-containing compounds having 2 carbon atoms in high yield and with high selectivity, rhodium was combined with lithium (Japanese Patent Application Laid-Open No. 56-8334) and iron (Japanese Patent Application Laid-open No. 51-80807).
), magnesium (JP 54-138504), vanadium (JP 57-62232), yttrium, ytterbium (JP 57-62233), chromium (JP 55-143918), Rhodium, lithium, magnesium or vanadium, etc. (JP-A-57-
109734) rhodium, iridium, and lithium (Japanese Patent Application Laid-Open No. 1989-190934), etc.
All of these methods contain acetaldehyde, acetic acid, or methanol as the main components, and have the disadvantage that the yield and selectivity of ethanol are extremely low. As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen. The present inventors have proposed that when producing an oxygen-containing compound from a gas containing carbon monoxide and hydrogen, while improving the selectivity of the above-mentioned oxygen-containing compound having two carbon atoms, The present invention discloses a catalyst system that makes it possible to shift the distribution of oxygenated compounds into ethanol and minimize the production of hydrocarbons. As a result, (a) a catalyst comprising at least one element selected from rhodium, lithium, iridium and/or other additive elements supported on a support, and (b) a catalyst comprising iridium and iron or molybdenum supported on a support. The inventors discovered that the combination produced an unexpected effect, and that ethanol had a preferable yield and high selectivity, leading to the completion of the present invention. [Summary of the Invention] As described above, the present invention comprises (a) a catalyst comprising at least one element selected from rhodium, lithium, iridium and/or other additive elements supported on a carrier, and (b) iridium and iron or Ethanol is produced by reacting carbon monoxide and hydrogen in the presence of a catalyst comprising molybdenum supported on a carrier. The present invention will be described in detail below. As mentioned above, the catalyst used in the present invention is
(a) a catalyst comprising at least one element selected from rhodium, lithium, iridium and/or other additive elements supported on a carrier; and (b) a catalyst comprising iridium and iron or molybdenum supported on a support. The main component is a catalyst. Both catalysts can be prepared separately, and when used, they are mixed or used by filling one of the catalysts in (a) in the upper layer and one in the catalyst in (b) in the lower layer. be able to. When preparing a catalyst, the above-mentioned components are usually dispersed on a carrier, as is done for noble metal catalysts. The catalyst used in the method of the present invention can be prepared according to conventional methods when using noble metals. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. Raw materials for rhodium and iridium, which are components of the catalyst, that can be used to prepare the catalyst include extrudates, halides such as bromides,
Usually noble metal catalysts such as inorganic salts such as nitrates and carbonates, organic acid salts or chelate compounds such as acetates, oxalates, acetylacetonate salts, and ethylenediamine acetates, carbonyl compounds, ammine complexes, metal alkoxide compounds, alkyl metal compounds, etc. Compounds used in the preparation of can be used. Raw material compounds that can be used for lithium, magnesium, yttrium, itteribium, lutetium, vanadium, and chromium used as promoters include halides, inorganic acid salts such as nitrates and chlorates, hydroxides, formates, and acetates. can be used as appropriate from organic acid salts, metal alkoxide compounds, alkyl metal compounds, etc. Further, raw material compounds that can be used as iron and molybdenum include halides, inorganic salts such as halogenates and nitrates, organic acid salts such as formates and acetates, and carbonyl compounds. However, compounds that are highly soluble in ethanol, water or other suitable solvents are preferably used to facilitate loading these catalyst components on a support. The method for preparing the catalyst will be explained below using the impregnation method as an example. The above metal compound is dissolved in a single or mixed solvent such as water, methanol, ethanol, acetone, tetrahydrofurandioxane, n-hexane, benzene, toluene, etc., a carrier is added to the solution, immersed, the solvent is distilled off, and dried, If necessary, treatments such as heating and gas treatment are performed to support the metal compound on the carrier. (a) or (b) The method for supporting the catalyst is to prepare a mixed solution in which the raw material compounds are dissolved in the same solvent and support them simultaneously on the carrier, to support each component sequentially, or to support each component as needed. Refund according to
Various methods can be used, such as a method of supporting the material sequentially or stepwise while performing treatments such as heat treatment. Other preparation methods, such as a method in which metals are supported by ion exchange using the ion exchange ability of a carrier, and a method in which a catalyst is prepared by a coprecipitation method, are also adopted as methods for preparing the catalyst used in the method of the present invention. can. The catalysts (a) and (b) prepared by the above-mentioned method are usually activated by reduction treatment and then subjected to reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. Although the reduction temperature of the catalyst (a) can be the temperature at which rhodium is reduced, that is, about 100°C, the reduction process is preferably carried out at a temperature of 200°C to 600°C. At this time, hydrogen reduction may be carried out while raising the temperature gradually or stepwise from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound. Further, the catalyst (b) can be subjected to reduction treatment in the same manner as the catalyst (a). As the carrier used in the present invention, those commonly known as carriers can be used as long as they preferably have a specific surface area of 10 to 1000 m 3 /g and a pore diameter of 10 Å or more. Specific carriers include silica, various silicates, alumina, activated carbon,
Examples include oxides of various metals (for example, zirconium oxide, titanium oxide, magnesium, etc.), molecular sheep, diatomaceous earth, etc., but silica-based carriers are preferred. The ratio of each component in the catalyst (a) above is as follows. The ratio of rhodium to carrier is 0.0001 to 0.5 by weight considering the specific surface area of the carrier.
Preferably it is 0.001 to 0.3. The ratio of lithium and rhodium is lithium/rhodium (atomic ratio)
It ranges from 0.0001 to 3, preferably from 0.001 to 2. The ratio of iridium and rhodium is iridium/
Rhodium (atomic ratio) 0.001 to 6, preferably
It ranges from 0.005 to 3. The ratio of other additive elements to rhodium (other additive elements/rhodium (atomic ratio)) is in the range of 0.001 to 10, preferably 0.005 to 3. Further, the ratio of each component in the catalyst (b) above is as follows. The ratio of iridium to the carrier is 0.0001 to 0.0001 by weight considering the specific surface area of the carrier.
0.5, preferably 0.001-0.3. The ratio of iron to iridium is iron/iridium (atomic ratio) from 0.001
10, preferably in the range of 0.05-5. The ratio of molybdenum to iridium is molybdenum/iridium (atomic ratio) in the range of 0.001 to 10, preferably 0.05 to 5. The present invention can be applied, for example, to a fixed bed flow reactor. That is, the above (b) in the reactor
One of the catalysts in (a) is packed on top of one of the catalysts in (a), or one of the catalysts in (a) and one of the catalysts in (b) are mixed and packed. Then, raw material gas is introduced to carry out the reaction. It is also possible to separate the product and recycle and reuse the unreacted raw material gas after purifying it if necessary. The present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by mixing the raw material gas with one of the catalysts (a) and (b) and allowing a fluidized catalyst to accompany the mixture.
Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction, which involves dispersing a catalyst in a solvent, feeding a raw material gas, and carrying out the reaction. The conditions adopted in carrying out the method of the present invention are various reaction conditions for the purpose of producing oxygen-containing compounds containing ethanol as the main component with high yield and high selectivity while minimizing the production of hydrocarbons. are selected by organically combining these factors. The reaction pressure is normal pressure (i.e. 0 Kg/cm 2 gauge)
However, the target compound can be produced with high selectivity and high yield, but the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is 0 Kg/cm 2 gauge to 350 Kg/cm 2 gauge, preferably 0 Kg/cm 2 gauge to 250 Kg/cm 2 gauge. The reaction temperature is 150°C to 450°C, preferably 180°C to 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of raw materials or change the composition ratio of hydrogen and carbon monoxide. Therefore, the space velocity (raw material gas feed rate/catalyst capacity) is under standard conditions (0°C, 1 atm)
It is appropriately selected from the range of 10 h -1 to 10 7 h -1 in terms of the relationship with the reaction pressure, reaction temperature, and raw material gas composition. The composition of the raw material gas is mainly a gas containing carbon monoxide and hydrogen, and gases such as nitrogen, argon, helium, methane, etc., or hydrocarbons and dioxide if in a gaseous state under the reaction conditions. It may contain carbon, generated oxygen-containing compounds, and water. The mixing ratio of hydrogen and carbon monoxide is hydrogen/carbon monoxide (volume ratio) of 0.1 to 10, preferably 0.25 to 5, and the total proportion of carbon monoxide and hydrogen in the raw material gas is 20 to 100% by volume. Preferably 60~
It is 100% by volume. The present invention will be explained in more detail with reference to Examples below, but these Examples are deliberately shown under the same reaction conditions in order to facilitate understanding of the present invention.
It goes without saying that the present invention is not limited to this in any way. Example 1 1.20 g of rhodium chloride (RhCl 3.3H 2 O), 0.093 g of magnesium chloride (MgCl 2.6H 2 O), and 0.055 g of lithium chloride (LiCl.H 2 O) were dissolved in 30 ml of ethanol, and silica gel was added to the solution. (DAVISON#57)
After adding 25 ml, it was dried under reduced pressure using a rotary evaporator. This supported catalyst was packed into a Pyrex glass reaction tube and reduced at 400° C. for 5 hours under 180 ml of hydrogen per minute to prepare a Rh-Mg-Li catalyst. Also, 0.803 g of iridium chloride (IrCl 4 H 2 O),
0.370 g of iron chloride (FeCl 3 .6H 2 O) was dissolved in 11.5 ml of water, and 25 ml of the silica gel described above was added thereto, followed by drying at room temperature for 1 hour and at 60° C. for 18 hours. Using the same equipment as above, this supported catalyst was
An Ir-Fe catalyst was prepared by reduction treatment in the same manner. Activity Test and Results A titanium reaction tube with an inner diameter of 14 mm and a thermocouple protection tube with an outer diameter of 6 mm was filled with 1.5 ml of the above Ir-Fe catalyst, and then 4 ml of the above Rh-Mg-Li catalyst was filled with the silica gel described above. It was diluted with 10 ml and filled. The inside of the reaction tube was replaced with nitrogen, and after being re-reduced at 200°C for 1 hour with nitrogen-diluted hydrogen gas (H 2 :N 2 = 100:100ml/min) under normal pressure, hydrogen/carbon monoxide = 2.0/1 ( A mixed gas (volume ratio) of 36 Nl/hour was fed, and the reaction was carried out at a reaction pressure of 20 Kg/cm 2 and a reaction temperature of 275°C. Of the reaction effluent, the liquid product was absorbed and collected in water, and the effluent gas composition was analyzed by gas chromatography, and the results are shown in Table 1. Example 2 1.20 g of rhodium chloride, 0.138 g of yttrium chloride (YCl 3 6H 2 O), and 0.055 g of lithium chloride were dissolved in 30 ml of ethanol, and 25 ml of the silica gel described above was added thereto, followed by the same procedure as in Example 1. Using the same equipment, dry and reduce the
A Rh-Y-Li catalyst was prepared. In addition, 0.803 g of iridium chloride and 0.087 g of molybdenum chloride (MoCl 5 ) were dissolved in 30 ml of ethanol, and 25 ml of the silica gel described above was added thereto, and then dried under reduced pressure using a rotary evaporator. Using the same equipment as 1,
An Ir-Mo catalyst was prepared by reduction in a similar manner. A reaction apparatus similar to that in Example 1 was charged with 1 ml of the above Ir-Mo catalyst, and then 4 ml of the above Rh-Y-Li catalyst was diluted with 10 ml of the silica gel described above and charged therein. The reaction was carried out using
The results are shown in Table 1. Example 3 Rhodium chloride 1.20g, yzterbium chloride (YbCl 3 6H 2 O) 0.177g, lithium chloride 0.055g
was dissolved in 30 ml of ethanol, and 25 ml of the silica gel described above was added thereto. Using the same equipment as in Example 1, the solution was dried and reduced in the same manner.
Rh-Yb-Li catalyst was prepared. In addition, in the same manner as in Example 1, Ir
-Fe catalyst was prepared. The same reaction apparatus as in Example 1 was charged with 1.5 ml of the above Ir-Fe catalyst, and then 4 ml of the above Rh-Yb-Li catalyst was diluted with 10 ml of the silica gel described above and then filled. The reaction was carried out in the same manner.
The results are shown in Table 1. Example 4 Rhodium chloride 1.20g, lutetium chloride (LuCl 3 6H 2 O) 0.178g, lithium chloride 0.055g
was dissolved in 30 ml of ethanol, and 25 ml of the silica gel described above was added thereto. Using the same equipment as in Example 1, the solution was dried and reduced in the same manner.
A Rh-Lu-Li catalyst was prepared. In addition, in the same manner as in Example 2, Ir
-Mo catalyst was prepared. The same reaction apparatus as in Example 1 was charged with 1 ml of the above Ir-Mo catalyst, and then 4 ml of the above Rh-Lu-Li catalyst was diluted with 10 ml of the silica gel described above and charged, and then the same reaction apparatus as in Example 1 was charged. The reaction was carried out using
The results are shown in Table 1. Example 5 Rhodium chloride 1.20g, vanadium chloride (VCl 3 )
0.072g, lithium chloride 0.055g in ethanol 30ml
Add 25 ml of the silica gel described above to this.
After adding, using the same apparatus as in Example 1, drying and reduction treatment were performed in the same manner as in Example 1 to prepare a Rh-V-Li catalyst. Also, in the same manner as in Example 1, Ir
-Fe catalyst was prepared. The same reaction apparatus as in Example 1 was charged with 1 ml of the above Ir-Fe catalyst, and then 4 ml of the above Rh-V-Li catalyst was diluted with 10 ml of the silica gel described above and then filled. The reaction was carried out using
The results are shown in Table 1. Example 6 Rh-V was prepared in the same manner as in Example 5 with the same composition ratio.
-Li catalyst was prepared. In addition, in the same manner as in Example 2, Ir
-Mo catalyst was prepared. The same reaction apparatus as in Example 1 was charged with 1 ml of the above Ir-Mo catalyst, and then 4 ml of the above Rh-V-Li catalyst was diluted with 10 ml of the above-mentioned silica gel and then filled. The reaction was carried out using
The results are shown in Table 1. Example 7 Rhodium chloride 1.20g, chromium chloride ( CrCl3 .
0.122 g of 6H 2 O) and 0.055 g of lithium chloride were dissolved in 30 ml of ethanol, and 25 ml of the silica gel described above was added thereto. Using the same apparatus as in Example 1, drying and reduction treatment were carried out in the same manner. and Rh−Cr
-Li catalyst was prepared. In addition, in the same manner as in Example 1, Ir
-Fe catalyst was prepared. The same reaction apparatus as in Example 1 was charged with 1 ml of the above Ir-Fe catalyst, and then 4 ml of the above Rh-Cr-Li catalyst was diluted with 10 ml of the silica gel described above and then filled, and then the same reaction apparatus as in Example 1 was charged. The reaction was carried out using
The results are shown in Table 1. Example 8 Rhodium chloride 1.20g, vanadium chloride 0.072
g, 0.055 g of lithium chloride, and 0.064 g of iridium chloride (IrCl 4 H 2 O) were dissolved in 30 ml of ethanol, and after adding 25 ml of the silica gel described above, using the same apparatus as in Example 1, A Rh-V-Li-Ir catalyst was prepared by drying and reducing in the same manner. In addition, the above Ir-
A Fe catalyst was prepared. The same reaction apparatus as in Example 1 was charged with 1 ml of the above Ir-Fe catalyst, and then the above Rh-V-Li-Ir
After 4 ml of the catalyst was diluted with 10 ml of the silica gel described above and filled, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 Rh-
A reaction was carried out in the same manner as in Example 1, except that a Mg-Li catalyst was prepared and 4 ml of it was diluted with 10 ml of the silica gel described above and charged. The results are shown in Table 1. Comparative Example 2 Rh-
The reaction was carried out in the same manner as in Example 1, except that 4 ml of Y-Li compound was prepared and diluted with 10 ml of the silica gel described above and filled. The results are shown in Table 1. Comparative Example 3 Rh-
A reaction was carried out in the same manner as in Example 1, except that a Yb-Li catalyst was prepared, and 4 ml of it was diluted with 10 ml of the silica gel described above and charged. The results are shown in Table 1. Comparative Example 4 Rh-
The reaction was carried out in the same manner as in Example 1, except that a Lu-Li catalyst was prepared and 4 ml of it was diluted with 10 ml of the silica gel described above and charged. The results are shown in Table 1. Comparative Example 5 Rh-
The reaction was carried out in the same manner as in Example 1, except that a V-Li catalyst was prepared and 4 ml of it was diluted with 10 ml of the silica gel described above and charged. The results are shown in Table 1. Comparative Example 6 Rh-
A reaction was carried out in the same manner as in Example 1, except that a Cr-Li catalyst was prepared and 4 ml of it was diluted with 10 ml of the silica gel described above and charged. The results are shown in Table 1.

【表】 実施例 9 実施例1で調製したRh−Mg−Li触媒4mlおよ
びIr−Fe触媒1.5mlを前記に記載のシリカゲル10
mlで希釈、混合し充填した後、実施例1と同様に
して反応を行つた。 結果を第2表に示す。 実施例 10 実施例2で調製したRh−Y−Li触媒4mlおよ
びIr−Mo触媒1mlを前記に記載のシリカゲル10
mlで希釈、混合し充填した後、実施例1と同様に
して反応を行つた。 結果を第2表に示す。 実施例 11 塩化ロジウム1.20g、塩化リチウム0.055g、
塩化イリジウム0.064gをエタノール30mlに溶解
させ、これに前記に記載のシリカゲル25mlを加え
た後、実施例1と同様の装置を使用し、同様の操
作で乾燥、還元してRh−Li−Ir触媒を調製し
た。 また、実施例1と同様にして同様の組成比でIr
−Fe触媒を調製した。 実施例1と同様の反応装置に上記のRh−Li−
Ir触媒4mlおよびIr−Fe触媒1mlを前記に記載の
シリカゲル10mlで希釈、混合して充填した後、実
施例1と同様にして反応を行つた。結果を第2表
に示す。 比較例 7 実施例11と同様にして同様の組成比でRh−Li
−Ir触媒を調製し、その4mlを前記に記載のシリ
カゲル10mlで希釈して充填した以外は実施例1と
同様にして反応を行つた。 結果を第2表に示す。
[Table] Example 9 4 ml of the Rh-Mg-Li catalyst prepared in Example 1 and 1.5 ml of the Ir-Fe catalyst were mixed with the silica gel 10 described above.
After diluting with 1 ml, mixing and filling, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 2. Example 10 4 ml of the Rh-Y-Li catalyst prepared in Example 2 and 1 ml of the Ir-Mo catalyst were mixed with the silica gel 10 described above.
After diluting with 1 ml, mixing and filling, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 2. Example 11 Rhodium chloride 1.20g, lithium chloride 0.055g,
After dissolving 0.064 g of iridium chloride in 30 ml of ethanol and adding 25 ml of the silica gel described above, the Rh-Li-Ir catalyst was dried and reduced using the same equipment as in Example 1 and the same operations. was prepared. Further, in the same manner as in Example 1, Ir
-Fe catalyst was prepared. The above Rh-Li-
After diluting 4 ml of Ir catalyst and 1 ml of Ir-Fe catalyst with 10 ml of the silica gel described above, mixing and filling the mixture, a reaction was carried out in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 7 Rh-Li was prepared in the same manner as in Example 11 with the same composition ratio.
The reaction was carried out in the same manner as in Example 1, except that -Ir catalyst was prepared and 4 ml of it was diluted with 10 ml of the silica gel described above and charged. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウム、リチウム、イリジウムおよび/又
はマグネシウム、イツトリウム、イツテルビウ
ム、ルテシウム、バナジウム、クロムのうちの少
なくとも一種の元素を担体担持してなる触媒と、
イリジウムおよび鉄又はモリブデンを担体担持し
てなる触媒の存在下、一酸化炭素と水素とを反応
させることからなるエタノールを製造する方法。
1. A catalyst comprising at least one element selected from rhodium, lithium, iridium, and/or magnesium, yttrium, ytterbium, lutetium, vanadium, and chromium supported on a carrier;
A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising iridium and iron or molybdenum supported on a carrier.
JP60017733A 1985-02-02 1985-02-02 Production of ethanol Granted JPS61178941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017733A JPS61178941A (en) 1985-02-02 1985-02-02 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017733A JPS61178941A (en) 1985-02-02 1985-02-02 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS61178941A JPS61178941A (en) 1986-08-11
JPS6238342B2 true JPS6238342B2 (en) 1987-08-17

Family

ID=11951947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017733A Granted JPS61178941A (en) 1985-02-02 1985-02-02 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS61178941A (en)

Also Published As

Publication number Publication date
JPS61178941A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6238343B2 (en)
JPS6238342B2 (en)
JPS63416B2 (en)
JPS6238336B2 (en)
JPS6238340B2 (en)
JPS6238341B2 (en)
JPS6218530B2 (en)
JPS6238337B2 (en)
JPS6238338B2 (en)
JPS643857B2 (en)
JPS63414B2 (en)
JPS6114137B2 (en)
JPS6119608B2 (en)
JPS6238339B2 (en)
JPS6218531B2 (en)
JPS6341373B2 (en)
JPS63415B2 (en)
JPS63412B2 (en)
JPS6238335B2 (en)
JPS6119611B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6121931B2 (en)
JPS63162638A (en) Production of ethanol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term