JPS623248B2 - - Google Patents
Info
- Publication number
- JPS623248B2 JPS623248B2 JP57223888A JP22388882A JPS623248B2 JP S623248 B2 JPS623248 B2 JP S623248B2 JP 57223888 A JP57223888 A JP 57223888A JP 22388882 A JP22388882 A JP 22388882A JP S623248 B2 JPS623248 B2 JP S623248B2
- Authority
- JP
- Japan
- Prior art keywords
- oxidation
- fibers
- exhaust gas
- precursor
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007254 oxidation reaction Methods 0.000 claims description 86
- 230000003647 oxidation Effects 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 47
- 239000000835 fiber Substances 0.000 claims description 26
- 230000001590 oxidative effect Effects 0.000 claims description 23
- 239000002243 precursor Substances 0.000 claims description 21
- 229920002545 silicone oil Polymers 0.000 claims description 13
- 229920002972 Acrylic fiber Polymers 0.000 claims description 12
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 11
- 239000004917 carbon fiber Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 53
- 239000000126 substance Substances 0.000 description 16
- 238000005979 thermal decomposition reaction Methods 0.000 description 14
- 239000003921 oil Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- -1 dimethylaminosiloxane Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
Description
本発明はアクリル系繊維からの耐炎化繊維又は
炭素繊維の製造プロセスにおいて、前駆体のアク
リル系繊維の酸化雰囲気中での加熱に伴う該繊維
に含有される油剤等の蒸発物及びこれら油剤並び
に繊維の酸化反応に伴う熱分解生成物に起因する
トラブルを防止し、高品位、高品質の耐炎化繊維
もしくは炭素繊維を効率的に与える製造法に関す
るものである。
従来、耐炎化又は炭素繊維はアクリル系繊維や
ピツチ系繊維を代表とする各種の前駆体(以下、
プレカーサという)を酸化雰囲気中で加熱して熱
安定化して耐炎化繊維とするか、該耐炎化繊維を
さらに高温の不活性雰囲気中で加熱して炭化し、
炭素繊維に転換することにより製造される。
このような耐炎化あるいは炭素繊維の製造法に
おいて、アクリル系繊維のように、その製糸工程
で油剤等で処理された繊維が、前記酸化雰囲気中
での加熱工程、すなわち酸化工程で加熱される
と、該繊維の酸化反応による熱分解物と共に前記
油剤及びその熱分解物が酸化雰囲気中に放出され
るために、これらの油剤や熱分解物を処理して無
害化する必要があり、該酸化工程における酸化雰
囲気の高温加熱に加えて、この排ガス処理のため
のエネルギー消費は莫大なものがあり、その省エ
ネルギー化は工業上極めて重要である。さらに加
えて、酸化雰囲気中に含まれるプレカーサから蒸
発・分解した油剤、特にシリコーン系油剤やプレ
カーサの熱分解物、特にタール状物は、該酸化工
程から排出される排ガスの酸化触媒処理において
触媒寿命を急激に低下させたり、耐炎化繊維の単
糸相互間を融着させ、不均一耐炎化の原因になつ
たりするという問題がある。
前者の酸化工程の省エネルギー化の手段とし
て、特開昭57―25417号公報には、酸化工程から
の排ガスを触媒処理した後酸化工程に循環再利用
する方法が開示されているが、この方法は後者の
シリコーン系油剤処理プレカーサの酸化には触媒
の寿命から利用することが困難となる。本発明者
らは、このような問題点を解消した。特にシリコ
ーン系油剤のように酸化触媒に対して強い被毒作
用を有するものを含む排ガス処理にも適用し得る
方法について鋭意検討を行つて本発明を見出に到
つたものである。すなわち、本発明は、前記プレ
カーサを酸化雰囲気中で加熱し、酸化繊維に転換
するに当つて、該酸化工程を少くとも2段階に分
割し、この分割された各酸化工程にそれぞれ独立
して酸化雰囲気を供給し、かつ分割された最初の
酸化工程には、少くとも第2段以降の酸化工程か
ら排出される排出ガス又は該排ガスと新鮮酸化気
体との混合ガスを供給することを特徴とする。
本発明において、少くとも2段階に分割された
酸化工程の最初の酸化工程、すなわち、プレカー
サが最初に酸化雰囲気で加熱される第1段工程に
は、第2段以降の酸化工程から排出される排ガス
もしくは該排ガスに新鮮な酸化性気体、通常新鮮
空気を混合した気体が供給される。すなわち、こ
のような多段酸化工程においては前段から後段に
ゆくにつれて、酸化雰囲気温度を高くする必要が
あるので、該最初の酸化工程に供給する排ガスの
温度は加熱する必要がないか、新鮮空気等を混合
する場合も加熱に要する熱エネルギーを著しく小
さくすることができる。そして、重要なことは後
述するように、本発明において、最初の酸化工程
の条件を該酸化工程を経た後の繊維(不完全な酸
化状態にある)の含有水分率が約2〜4重量%に
なるように制御することによつて、酸化工程にお
いて該プレカーサから発生する油剤に由来するタ
ール状物を実質的に完全に除去できることであ
る。したがつて、本発明の酸化工程において、第
2段以降の酸化工程においては、プレカーサ、正
確には不完全もしくは部分酸化繊維の酸化に伴つ
て発生する熱分解物の量は極めて少く、しかも排
ガスの触媒処理の障害となるシリコーン系油剤お
よび該油剤の熱分解物並びにタール状物の含有量
も著しく低減する。したがつてこれら第2段以降
の酸化工程から排出される排ガスの酸化触媒処理
の寿命が大きく延長され、かつ第2段酸化工程以
降におけるタール状物に起因する酸化処理工程で
の糸切れ発生等を防止することができる。本発明
において、分割されるべき酸化工程の段数は特に
限定されないが通常は2−4段がよく、4段を越
えると装置の設計上工業的に不利である。
ここで、分割された最初の酸化工程条件として
該工程を経たプレカーサの含有水分率が約2〜4
%に達する条件とした根拠は次の事実にもとづい
ている。
すなわち、第1図は、プレカーサのシリコーン
系油剤を付与したアクリル系繊維を酸化雰囲気中
で加熱した場合の該アクリル系繊維の含有水分率
(該繊維の酸化の程度を示す1尺度である)と該
繊維から発生するシリコーン系油剤および該油剤
並びに繊維の熱分解生成物の量との関係を示す図
で、Sは酸化工程で蒸発および熱分解するシリコ
ーン系油剤の発生量、Tは酸化工程でのタール状
物発生量を示す。
図から、該酸化工程におけるこれら発生物の量
は、酸化工程の初期に発生し、経時的にその量は
減少傾向を示すことが判る。
特に、シリコーン系油剤およびその熱分解物で
ある低分子量シリコーンも繊維自体の熱分解物と
同様に酸化初期、特にアクリル系繊維の含有水分
率が約2―4%に達した時点で実質的に大半を除
去することが可能になるのである。すなわち、本
発明において、分割された最初の酸化段階の条件
として、プレカーサの含有水分率が約2〜4%に
なるように設定するときは、この段階で該プレカ
ーサから発生する熱分解物の大半を除去すること
ができ、しかもかかる範囲の水分率を有する繊維
とした場合には、該熱分解物によるプレカーサの
単糸間融着や不均一酸化の問題も最初の酸化段階
では特に問題とならず、このような融着や不均一
酸化が生じても第2段以降の酸化により実質的に
解消することができ、得られる耐炎化および炭素
繊維の品位、品質上の欠点を生じることがないの
である。
次に、本発明においては、分割された各酸化工
程に供給される酸化雰囲気がそれぞれ独立して供
給される。この酸化雰囲気の供給を分割した各酸
化工程毎に独立させることによつて、各工程から
排出される排ガスを独立して処理することが可能
となり、また後段の酸化工程から排出される排ガ
スは前段の酸化工程の酸化雰囲気として利用で
き、省エネルギーの点で極めて有効になるのであ
る。特に、本発明の分割された最初の酸化工程に
は第2段以降の酸化工程から排出される排ガスを
そのまゝ酸化雰囲気として利用することができ、
この最初の酸化工程に供給する酸化雰囲気の加温
の必要がほとんどなく、温度コントロールが極め
て容易になり、工程的メリツトも大きい。かかる
点では第2段の酸化工程に第3段の酸化工程から
排出される排ガスを供給してもよく、このような
場合には最終段の酸化工程に供給する酸化雰囲気
だけを加熱するだけで済ませることも可能になる
のである。そして、この分割された最初の酸化工
程から排出される排ガスはそのまゝ直接、燃焼さ
せることができ、かつ第2段以降の酸化工程から
排出される排ガス中に含まれるシリコーン系油剤
やタール状物の含有量が少ないので、触媒処理し
ても該触媒の寿命を短かくすることが少ないので
排ガス処理としても工程的、エネルギー的に有利
となる。
以下、本発明の具体的態様を図面により説明す
る。
第2図は本発明の酸化工程の1例を示すフロー
チヤート図である。
図において、0はプレカーサ、1,2はそれぞ
れ第1段(最初)および第2段酸化炉、3は新鮮
外気供気ライン、4,4′は給気調節バルブ、
5,5′はヒータ、6,6′および9はブロワー、
7,7′は循環ガス供給ライン、8,8′は循環ガ
ス抜出ライン、10は排気ガス調節バルブ、11
は排気ライン、12は排ガス処理設備、13は大
気放出ラインである。
図に示すようにプレカーサ0は2段に分割され
た酸化炉1,2で酸化される。
炉2の循環ガス抜出ライン8′と給気調節バル
ブ4′で給気量を調節された外気供気ライン3か
らの新鮮空気との混合ガスは、ヒータ5′で所定
温度に加熱され、ブロワー6′により循環ガス供
給ライン7′を経て、二つに分割され、その一方
の排気ガスは酸化炉2に供給される。残りの該排
気ガスは炉1の循環ガスと混合し、炉1に供給さ
れる。
他方、炉1の循環ガス抜出ライン8を経たガス
は二つに分割され、その大部分はそのガス自体ま
たは外気供気ライン3からの新鮮空気と混合して
ヒータ5で所定温度に加熱され、ブロワー6によ
つて循環ガス供給ライン7を通して炉1内に供給
されるが前記したように該供給ライン7において
は炉2からの分割された排ガスが混合されてい
る。
また、炉1の排ガスの1部は、排ガス調節バル
ブ10により排気量を調節して排気ライン11を
経て排ガス処理設備で通常は直燃処理され、大気
放出ライン13を経て排気される。
次に第3図、第4図は本発明の他の酸化工程の
例を示すフローチヤート図である。
第3図は炉1の容積を炉2の容積より小さくし
た場合で、炉1/炉2の容積比は、たとえば1/2
〜1/5が挙げられるが特に限定されるものではな
い。
このような炉形状を酸化工程に適用した場合
は、炉1の炉内温度斑減少の効果が高まるととも
に、連続運転により、炉1の糸条出入口部に付着
したタール状物の除去清掃が容易となるメリツト
を有する。
第4図は酸化工程を3段に設けるとともに、炉
内容積を順次大きくし、炉2および炉3の酸化工
程からの排気ガスのそれぞれ分割された一方のガ
スが、炉1の循環ガスと混合して使用される例で
ある。
この場合、これら各炉の容積比は
炉1/炉2/炉14=0.2/0.8/1〜0.3/
0.6/1
が一般的であるが、特に限定されるものではな
い。
第5図は従来の酸化工程を示すフローチヤート
図である。
以下に本発明の効果を実施例により具体的に説
明する。なお、酸化性雰囲気中のタール、耐炎化
糸の毛羽および耐炎化糸の水分率は次の方法によ
つて測定した。
(1) タール状物
酸化雰囲気ガスを200℃に保温した導管で導
びき、活性炭にタール状物を吸着させ、吸着前
後の活性炭の重量増により求める。
タール状物濃度(g/Nm3)
=活性炭の重量増(g)/活性炭層ガス通過量(
Nm3)
(2) 耐炎化糸の毛羽
6000デニール6000フイラメントより成る耐炎
化糸を白色紙の上におき、1mの間の毛羽の数
を計測する。
(3) 水分率
耐炎化糸を硫酸アンモニウム水溶液のデシケ
ーター(25℃で81%恒湿)中に入れ、16時間吸
湿させた後の吸着水分率を求める。
実施例1、比較例1
炭化水素系油剤を3.0重量%付与したアクリル
系繊維を毎時100Kgの割合で連続的に供給し第
2,3,4および5図に示すフローに従つてそれ
ぞれ酸化処理した。この時の酸化条件、得られた
耐炎化糸の毛羽、操業性およびエネルギー消費量
などについて調べた結果を第1表に示す。なお排
ガス処理は、灯油を助燃剤として排ガスに混合
し、直燃処理とした。
第1表に示すように本発明を適用したテストNo.
1,2,3は、いずれもエネルギー消費が少な
い。また第1段酸化工程の処理時間が短かいテス
トNo.2およびテストNo.3は、該第1段酸化工程出
入口部分にタール状物がたまりにくく、したがつ
て焼成中の糸条への再付着も少なく耐炎化糸の品
位が良好であつた。
さらに本発明を適用した排ガス処理における灯
油消費量も少ないという効果が認められた。
The present invention relates to a process for producing flame-resistant fibers or carbon fibers from acrylic fibers, in which the precursor acrylic fibers are heated in an oxidizing atmosphere, and the evaporated products of oils and the like contained in the fibers, as well as these oils and fibers, are used. The present invention relates to a production method that prevents troubles caused by thermal decomposition products accompanying the oxidation reaction of carbon fibers and efficiently produces high-grade, high-quality flame-resistant fibers or carbon fibers. Conventionally, flame-resistant or carbon fibers have been made using various precursors (hereinafter referred to as
(referred to as a precursor) in an oxidizing atmosphere to thermally stabilize it into a flame-resistant fiber, or further heat the flame-resistant fiber in an inert atmosphere at a high temperature to carbonize it,
Manufactured by converting to carbon fiber. In such flame-retardant or carbon fiber manufacturing methods, when fibers, such as acrylic fibers, are treated with an oil agent etc. in the spinning process, they are heated in the heating process in the oxidizing atmosphere, that is, in the oxidation process. Since the oil agent and its thermal decomposition products are released into the oxidizing atmosphere together with the thermal decomposition products due to the oxidation reaction of the fibers, it is necessary to treat these oil agents and thermal decomposition products to make them harmless, and the oxidation process In addition to the high-temperature heating of the oxidizing atmosphere, energy consumption for this exhaust gas treatment is enormous, and energy conservation is extremely important industrially. In addition, oils evaporated and decomposed from the precursor contained in the oxidation atmosphere, especially silicone oils and thermal decomposition products of the precursor, especially tar-like substances, can have a long lifespan in the oxidation catalyst treatment of the exhaust gas discharged from the oxidation process. There are problems in that the flame resistance may be suddenly reduced, or the single filaments of the flame resistant fibers may be fused together, causing uneven flame resistance. As a means of saving energy in the former oxidation process, Japanese Patent Application Laid-Open No. 57-25417 discloses a method in which exhaust gas from the oxidation process is treated with a catalyst and then recycled for use in the oxidation process. It is difficult to use the latter method for oxidizing the silicone-based oil treatment precursor due to the lifetime of the catalyst. The present inventors solved such problems. In particular, the present invention was discovered through extensive research into methods that can be applied to the treatment of exhaust gases that contain substances that have a strong poisoning effect on oxidation catalysts, such as silicone oils. That is, in the present invention, when heating the precursor in an oxidizing atmosphere to convert it into oxidized fibers, the oxidation process is divided into at least two stages, and each of the divided oxidation stages is independently oxidized. The atmosphere is supplied, and the divided first oxidation process is supplied with at least the exhaust gas discharged from the oxidation process after the second stage or a mixed gas of the exhaust gas and fresh oxidation gas. . In the present invention, in the first oxidation step of the oxidation step divided into at least two stages, that is, the first step in which the precursor is first heated in an oxidizing atmosphere, the precursor is discharged from the second and subsequent oxidation steps. The exhaust gas or a mixture of the exhaust gas with a fresh oxidizing gas, usually fresh air, is supplied. In other words, in such a multi-stage oxidation process, it is necessary to increase the oxidizing atmosphere temperature from the first stage to the second stage, so the temperature of the exhaust gas supplied to the first oxidation process does not need to be heated, or is replaced by fresh air, etc. Also when mixing, the thermal energy required for heating can be significantly reduced. Importantly, as will be described later, in the present invention, the conditions for the first oxidation step are such that the moisture content of the fibers (in an incompletely oxidized state) after the oxidation step is approximately 2 to 4% by weight. By controlling the temperature so as to achieve this, it is possible to substantially completely remove tar-like substances originating from the oily substance generated from the precursor in the oxidation step. Therefore, in the oxidation process of the present invention, in the second and subsequent oxidation processes, the amount of thermal decomposition products generated due to the oxidation of the precursor, or more precisely, the incompletely or partially oxidized fibers, is extremely small, and moreover, the amount of thermal decomposition products generated by the oxidation of the incompletely or partially oxidized fibers is extremely small. The content of silicone oils, their thermal decomposition products, and tar-like substances, which impede the catalytic treatment of the oils, is also significantly reduced. Therefore, the life of the oxidation catalyst treatment of the exhaust gas discharged from the second and subsequent oxidation processes is greatly extended, and the occurrence of string breakage in the oxidation process due to tar-like substances in the second and subsequent oxidation processes. can be prevented. In the present invention, the number of stages in the oxidation step to be divided is not particularly limited, but usually 2 to 4 stages is preferred, and exceeding 4 stages is industrially disadvantageous in terms of equipment design. Here, as the divided first oxidation process conditions, the moisture content of the precursor that has undergone this process is approximately 2 to 4.
% is based on the following facts. That is, FIG. 1 shows the moisture content of the acrylic fiber (which is a measure of the degree of oxidation of the fiber) when the acrylic fiber to which the precursor silicone oil has been applied is heated in an oxidizing atmosphere. This is a diagram showing the relationship between the silicone oil generated from the fiber and the amount of thermal decomposition products of the oil and fiber, where S is the amount of silicone oil generated that evaporates and thermally decomposes in the oxidation process, and T is the amount of silicone oil generated in the oxidation process. shows the amount of tar-like substances generated. From the figure, it can be seen that the amount of these products generated in the oxidation step is generated at the beginning of the oxidation step, and the amount tends to decrease over time. In particular, silicone oils and their thermal decomposition products, low molecular weight silicones, as well as the thermal decomposition products of the fibers themselves, undergo substantial oxidation at the initial stage of oxidation, especially when the moisture content of acrylic fibers reaches about 2-4%. This makes it possible to remove most of it. That is, in the present invention, when the conditions for the first divided oxidation stage are set such that the moisture content of the precursor is about 2 to 4%, most of the thermal decomposition products generated from the precursor are removed at this stage. If the fibers can be removed and have a moisture content within this range, problems such as inter-filament fusion of the precursor and uneven oxidation due to the thermal decomposition products will not be a particular problem in the first oxidation stage. First, even if such fusion or non-uniform oxidation occurs, it can be substantially eliminated by oxidation in the second and subsequent stages, and there will be no defects in the flame resistance and the quality of the resulting carbon fiber. It is. Next, in the present invention, the oxidizing atmosphere is supplied to each of the divided oxidation steps independently. By independently supplying this oxidizing atmosphere to each divided oxidation process, it becomes possible to treat the exhaust gas discharged from each process independently, and the exhaust gas discharged from the latter oxidation process is transferred to the former stage. It can be used as an oxidizing atmosphere in the oxidation process, making it extremely effective in terms of energy conservation. In particular, in the divided first oxidation step of the present invention, the exhaust gas discharged from the second and subsequent oxidation steps can be used as is as an oxidation atmosphere,
There is almost no need to heat the oxidizing atmosphere supplied to this first oxidation step, making temperature control extremely easy and providing great process advantages. In this respect, the exhaust gas discharged from the third oxidation step may be supplied to the second oxidation step, and in such a case, only the oxidizing atmosphere supplied to the final oxidation step is heated. It will also be possible to get it done. The exhaust gas discharged from the divided first oxidation process can be directly combusted as is, and the silicone oil and tar-like substances contained in the exhaust gas discharged from the second and subsequent oxidation processes can be combusted as is. Since the content of substances is small, the life of the catalyst is less likely to be shortened even if it is treated with a catalyst, so it is advantageous in terms of process and energy for exhaust gas treatment. Hereinafter, specific embodiments of the present invention will be explained with reference to the drawings. FIG. 2 is a flowchart showing one example of the oxidation step of the present invention. In the figure, 0 is a precursor, 1 and 2 are the first stage (first) and second stage oxidation furnaces, respectively, 3 is a fresh outside air supply line, 4 and 4' are supply air adjustment valves,
5, 5' are heaters, 6, 6' and 9 are blowers,
7, 7' are circulating gas supply lines, 8, 8' are circulating gas extraction lines, 10 are exhaust gas control valves, 11
1 is an exhaust line, 12 is an exhaust gas treatment facility, and 13 is an atmospheric release line. As shown in the figure, precursor 0 is oxidized in oxidation furnaces 1 and 2 divided into two stages. The mixed gas of the circulating gas extraction line 8' of the furnace 2 and fresh air from the outside air supply line 3 whose supply air amount is adjusted by the supply air adjustment valve 4' is heated to a predetermined temperature by the heater 5'. The exhaust gas is divided into two parts by a blower 6' via a circulating gas supply line 7', and one of the exhaust gases is supplied to the oxidation furnace 2. The remaining exhaust gas is mixed with the circulating gas of the furnace 1 and fed to the furnace 1. On the other hand, the gas that has passed through the circulating gas extraction line 8 of the furnace 1 is divided into two parts, most of which are mixed with the gas itself or fresh air from the outside air supply line 3 and heated to a predetermined temperature by the heater 5. The circulating gas is supplied into the furnace 1 by the blower 6 through the circulating gas supply line 7, and as described above, the divided exhaust gases from the furnace 2 are mixed in the supply line 7. A portion of the exhaust gas from the furnace 1 is normally subjected to direct combustion treatment in an exhaust gas treatment facility via an exhaust line 11 with the exhaust amount adjusted by an exhaust gas control valve 10, and then exhausted via an atmosphere discharge line 13. Next, FIGS. 3 and 4 are flowcharts showing another example of the oxidation process of the present invention. Figure 3 shows the case where the volume of furnace 1 is smaller than that of furnace 2, and the volume ratio of furnace 1/furnace 2 is, for example, 1/2.
-1/5 is mentioned, but is not particularly limited. When such a furnace shape is applied to the oxidation process, the effect of reducing temperature irregularities in the furnace 1 increases, and continuous operation makes it easier to remove and clean tar-like substances attached to the yarn entrance and exit part of the furnace 1. It has the following merits. Figure 4 shows that the oxidation process is carried out in three stages, and the internal volume of the furnace is gradually increased, so that one of the divided exhaust gases from the oxidation process of furnace 2 and furnace 3 is mixed with the circulating gas of furnace 1. This is an example of how it is used. In this case, the volume ratio of each of these furnaces is Furnace 1/Furnace 2/Furnace 14 = 0.2/0.8/1~0.3/
The ratio is generally 0.6/1, but is not particularly limited. FIG. 5 is a flowchart showing a conventional oxidation process. The effects of the present invention will be specifically explained below using examples. The tar in the oxidizing atmosphere, the fluff of the flame-resistant yarn, and the moisture content of the flame-resistant yarn were measured by the following methods. (1) Tar-like substances The oxidizing atmosphere gas is guided through a conduit kept at 200°C, and the tar-like substances are adsorbed onto activated carbon, and the tar-like substances are determined by the weight increase of the activated carbon before and after adsorption. Tar-like substance concentration (g/Nm 3 ) = Increase in weight of activated carbon (g) / Activated carbon layer gas passing amount (
(Nm 3 ) (2) Fluff of flame-resistant yarn A flame-resistant yarn made of 6000 denier 6000 filament is placed on white paper, and the number of fluffs is counted over 1 m. (3) Moisture content Place the flame-retardant thread in a desiccator containing an aqueous ammonium sulfate solution (81% constant humidity at 25°C), and after allowing it to absorb moisture for 16 hours, determine the adsorbed moisture content. Example 1, Comparative Example 1 Acrylic fibers to which 3.0% by weight of hydrocarbon oil was added were continuously supplied at a rate of 100 kg/hour and oxidized according to the flows shown in Figures 2, 3, 4, and 5, respectively. . Table 1 shows the results of investigations regarding the oxidation conditions, fluff of the obtained flame-resistant yarn, workability, energy consumption, etc. In the exhaust gas treatment, kerosene was mixed with the exhaust gas as a combustion improver, and direct combustion treatment was performed. As shown in Table 1, test No. to which the present invention was applied.
1, 2, and 3 all consume less energy. In addition, in Test No. 2 and Test No. 3, in which the processing time of the first stage oxidation process is short, tar-like substances are less likely to accumulate at the entrance and exit part of the first stage oxidation process, and therefore, it is difficult for tar-like substances to accumulate in the yarn during firing. There was little adhesion and the quality of the flame-resistant yarn was good. Furthermore, the effect of reducing kerosene consumption in exhaust gas treatment to which the present invention is applied was recognized.
【表】【table】
【表】
実施例2、比較例2
実施例1および比較例1と同じアクリル系繊維
にシリコーン油剤としてジメチルアミノシロキサ
ン20重量部、炭化水素系油剤80重量部とからなる
配合油剤を用い、該油剤を2.5重量%付与した以
外は実施例1、比較例1の対応フロー図の酸化条
件と同様にして焼成した。なお排ガス処理は、灯
油を助燃剤として排ガスに混合し、直燃処理し
た。
得られた耐炎化糸の毛羽、操業性およびエネル
ギー消費量などについて結果を第2表に示す。
第2表に示すように本発明を適用したテストNo.
4,5,6はエネルギー消費が少ない。また第1
段の酸化工程の処理時間が短かいテストNo.5,6
は耐炎化糸の毛羽および操業性が良好であつた。[Table] Example 2, Comparative Example 2 A blended oil consisting of 20 parts by weight of dimethylaminosiloxane as a silicone oil and 80 parts by weight of a hydrocarbon oil was used on the same acrylic fibers as in Example 1 and Comparative Example 1. Firing was carried out under the same oxidation conditions as in the corresponding flowcharts of Example 1 and Comparative Example 1, except that 2.5% by weight of was added. In the exhaust gas treatment, kerosene was mixed with the exhaust gas as a combustion aid and direct combustion treatment was performed. Table 2 shows the results regarding the fluff, workability, energy consumption, etc. of the flame-resistant yarn obtained. As shown in Table 2, test No. to which the present invention was applied.
4, 5, and 6 consume less energy. Also the first
Test Nos. 5 and 6 with short processing time for stage oxidation process
The fluff and workability of the flame-resistant yarn were good.
第1図は酸化雰囲気中でアクリル系繊維を加熱
した場合の繊維の含有水分率と該繊維から発生す
るシリコーン系油剤および該油剤並びに繊維の熱
分解生成物の量との関係を示す図である。第2図
は本発明の酸化工程の例を示すフローチヤート
図、また第3図、第4図はそれぞれ本発明にかか
る酸化工程の他の例を示すフローチヤート図であ
る。第5図は従来の酸化工程を示すフローチヤー
ト図である。
0……プレカーサ、1……第1段酸化炉、2…
…第2段酸化炉、3……新鮮外気供気ライン、
4,4′,4″……給気調節バルブ、5,5′,
5″……ヒータ、6,6′,6″……ブロワー、
7,7′,7″……循環ガス供給ライン、8,
8′,8″……循環ガス抜出ライン、9,9′……
ブロワー、10,10′……排ガス調節バルブ、
11……排気ライン、12……排ガス処理設備、
13……大気放出ライン、14……第3段酸化
炉、S……酸化工程で蒸発および熱分解するシリ
コーン系油剤の発生量、T……酸化工程でのター
ル状物発生量。
FIG. 1 is a diagram showing the relationship between the moisture content of acrylic fibers and the amount of silicone oil generated from the fibers and the thermal decomposition products of the oils and fibers when the acrylic fibers are heated in an oxidizing atmosphere. . FIG. 2 is a flowchart showing an example of the oxidation step of the present invention, and FIGS. 3 and 4 are flowcharts showing other examples of the oxidation step of the present invention. FIG. 5 is a flowchart showing a conventional oxidation process. 0...precursor, 1...first stage oxidation furnace, 2...
...Second stage oxidation furnace, 3...Fresh outside air supply line,
4, 4', 4''...Air supply control valve, 5, 5',
5″……Heater, 6,6′,6″……Blower,
7, 7', 7''...Circulating gas supply line, 8,
8', 8''...Circulating gas extraction line, 9,9'...
Blower, 10, 10'...exhaust gas control valve,
11...exhaust line, 12...exhaust gas treatment equipment,
13...Atmospheric discharge line, 14...Third stage oxidation furnace, S...Amount of silicone oil generated that evaporates and thermally decomposes in the oxidation process, T...Amount of tar-like material generated in the oxidation process.
Claims (1)
の酸化雰囲気中で加熱し、得られた酸化繊維をよ
り高温の不活性雰囲気中で加熱して炭素繊維を製
造するに際して、該前駆体を酸化雰囲気中で加熱
する酸化工程を少くとも2段階に分割し、この分
割された各酸化工程に供給する酸化性気体をそれ
ぞれ独立に供給すると共に、第1段の酸化工程に
は、少くとも第2段以降の酸化工程から排出され
る排気ガスまたは該排気ガスと新鮮な酸化性気体
との混合ガスを供給することを特徴とする耐炎化
繊維もしくは炭素繊維の製造法。 2 特許請求の範囲第1項において、アクリル系
繊維がシリコーン系油剤で処理された繊維である
耐炎化繊維もしくは炭素繊維の製造法。 3 特許請求の範囲第1,2項において、最初の
酸化工程を経由した後の繊維の含有水分率が約2
〜4重量%である耐炎化繊維もしくは炭素繊維の
製造法。[Claims] 1. Using acrylic fiber as a precursor, at 200 to 300°C
When producing carbon fiber by heating the obtained oxidized fiber in an oxidizing atmosphere at a higher temperature, the oxidation step of heating the precursor in an oxidizing atmosphere is performed in at least two stages. In addition to independently supplying the oxidizing gas to each divided oxidation process, the first stage oxidation process is supplied with at least the exhaust gas discharged from the second and subsequent oxidation processes. A method for producing flame-resistant fibers or carbon fibers, characterized by supplying a mixed gas of exhaust gas and fresh oxidizing gas. 2. The method for producing flame-resistant fibers or carbon fibers according to claim 1, wherein the acrylic fibers are fibers treated with a silicone oil agent. 3 In claims 1 and 2, the moisture content of the fiber after passing through the first oxidation step is about 2
A method for producing flame-resistant fibers or carbon fibers having a content of ~4% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22388882A JPS59116423A (en) | 1982-12-22 | 1982-12-22 | Manufacture of flame resistant fiber or carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22388882A JPS59116423A (en) | 1982-12-22 | 1982-12-22 | Manufacture of flame resistant fiber or carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116423A JPS59116423A (en) | 1984-07-05 |
JPS623248B2 true JPS623248B2 (en) | 1987-01-23 |
Family
ID=16805276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22388882A Granted JPS59116423A (en) | 1982-12-22 | 1982-12-22 | Manufacture of flame resistant fiber or carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116423A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI632880B (en) * | 2012-04-13 | 2018-08-21 | 愛茉莉太平洋股份有限公司 | Container for cosmetic composition comprising foam |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233822A (en) * | 1985-08-08 | 1987-02-13 | Toray Ind Inc | Production of carbon fiber |
JP5022073B2 (en) * | 2007-03-20 | 2012-09-12 | 三菱レイヨン株式会社 | Flameproofing furnace and carbon fiber manufacturing method |
JP4961235B2 (en) * | 2007-03-23 | 2012-06-27 | 三菱レイヨン株式会社 | Carbon fiber manufacturing apparatus and carbon fiber manufacturing method |
JP5351397B2 (en) * | 2007-08-13 | 2013-11-27 | 三菱レイヨン株式会社 | Flameproof device |
JP5075654B2 (en) * | 2008-01-23 | 2012-11-21 | 三菱レイヨン株式会社 | Carbon fiber manufacturing apparatus and carbon fiber manufacturing method |
JP5097564B2 (en) * | 2008-01-23 | 2012-12-12 | 三菱レイヨン株式会社 | Carbon fiber production equipment |
CN102224112B (en) * | 2008-09-26 | 2013-09-11 | 独立行政法人国立高等专门学校机构 | System for water purification and method of increasing dissolved-oxygen concentration in water to be purified |
US9187847B2 (en) * | 2010-03-31 | 2015-11-17 | Kolon Industries, Inc. | Method for preparing carbon fiber and precursor fiber for carbon fiber |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4987826A (en) * | 1972-12-28 | 1974-08-22 | ||
JPS5048228A (en) * | 1973-09-08 | 1975-04-30 | ||
JPS5725417A (en) * | 1980-07-17 | 1982-02-10 | Mitsubishi Rayon Co Ltd | Heat-treating apparatus for preparing carbon fiber |
-
1982
- 1982-12-22 JP JP22388882A patent/JPS59116423A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4987826A (en) * | 1972-12-28 | 1974-08-22 | ||
JPS5048228A (en) * | 1973-09-08 | 1975-04-30 | ||
JPS5725417A (en) * | 1980-07-17 | 1982-02-10 | Mitsubishi Rayon Co Ltd | Heat-treating apparatus for preparing carbon fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI632880B (en) * | 2012-04-13 | 2018-08-21 | 愛茉莉太平洋股份有限公司 | Container for cosmetic composition comprising foam |
Also Published As
Publication number | Publication date |
---|---|
JPS59116423A (en) | 1984-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1317212C (en) | Process conditions for operation of ignition catalyst for natural gas combustion | |
JP3889051B2 (en) | Method for recovering sulfur compounds H {lower 2} S, SO {lower 2}, COS and / or CS {lower 2} present in the residual gas from the sulfur plant in the form of sulfur and removing substantially all of them | |
JPS623248B2 (en) | ||
JP2013032608A (en) | Method for processing exhaust gas | |
US5925591A (en) | Process for the production of hollow carbon fiber membranes | |
EP0118616B1 (en) | Process for producing carbon fiber | |
KR870000704B1 (en) | Method and system for producing carbon fibers | |
JPH0248648B2 (en) | ||
JPS58214528A (en) | Production of carbon fiber | |
KR0151987B1 (en) | Method of manufacturing carbon fiber | |
JPS61167023A (en) | Production of flameproofing yarn | |
WO2018230055A1 (en) | Carbon fiber production method | |
JPS62104920A (en) | Method for forming graphite fiber | |
JPS59142826A (en) | Waste gas treatment in carbon fiber manufacturing | |
JPS59116419A (en) | Manufacture of flame resistant yarn | |
JPS6285029A (en) | Production of carbon fiber | |
SU827143A1 (en) | Method of firing ammonia oxidation grate | |
JPS6233822A (en) | Production of carbon fiber | |
JPH03152216A (en) | Production of ceramic fiber | |
JP2022545460A (en) | Selective control of oxidizing atmosphere in carbon fiber production | |
SU1544469A1 (en) | Method of cleaning tail gases from nitrogen oxides | |
JPS59112031A (en) | Production of carbon yarn | |
CN118904313A (en) | Preparation method of aluminum silicate cotton composite purification material | |
JPH01118624A (en) | Provision of flame resistance | |
JPH01282348A (en) | Provision of fiber with flame resistance |