JPS62245692A - Distributed feedback semiconductor laser with external resonator - Google Patents
Distributed feedback semiconductor laser with external resonatorInfo
- Publication number
- JPS62245692A JPS62245692A JP61089313A JP8931386A JPS62245692A JP S62245692 A JPS62245692 A JP S62245692A JP 61089313 A JP61089313 A JP 61089313A JP 8931386 A JP8931386 A JP 8931386A JP S62245692 A JPS62245692 A JP S62245692A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- phase control
- dfb laser
- layer
- external resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000003595 spectral effect Effects 0.000 abstract description 26
- 238000002347 injection Methods 0.000 abstract description 8
- 239000007924 injection Substances 0.000 abstract description 8
- 238000005530 etching Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 239000000969 carrier Substances 0.000 abstract description 2
- 238000003776 cleavage reaction Methods 0.000 abstract 1
- 238000010292 electrical insulation Methods 0.000 abstract 1
- 230000007017 scission Effects 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 7
- 230000001427 coherent effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000006643 Yamazaki synthesis reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06258—Controlling the frequency of the radiation with DFB-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、外部共振器付分布帰還型半導体レーザに関す
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distributed feedback semiconductor laser with an external cavity.
(従来の技術)
分布帰還型半導体レーザ(以下DFBレーザ)は軸モー
ドの安定性に優れているために、将来のコヒーレント光
伝送用光源として期待されている。(Prior Art) Distributed feedback semiconductor lasers (hereinafter referred to as DFB lasers) have excellent axial mode stability and are therefore expected to be used as light sources for coherent optical transmission in the future.
コヒーレント光伝送用光源には、特に、狭いスペクトル
線幅と、周波数の制御性(または安定性)が必要とされ
る。単体のDFBレーザを用いた場合には、スペクトル
線幅はせいぜい10MHz程度であり、特性的に不十分
であった。また周波数の制御性の面でも、平坦な周波数
変調特性が得られないといった問題があった。これらの
問題を克服するために、将来いくつかの方法が考えられ
てきた。Light sources for coherent optical transmission particularly require narrow spectral linewidth and frequency controllability (or stability). When a single DFB laser was used, the spectral line width was at most about 10 MHz, which was insufficient in terms of characteristics. Also, in terms of frequency controllability, there was a problem in that flat frequency modulation characteristics could not be obtained. Several methods have been considered in the future to overcome these problems.
まず第一のスペクトル線幅の問題は、DFBレーザに受
動光導波路を集積化することにより、外部共振器付DF
Bレーザを実現し、スペクトル線幅を1桁程度低減して
いる。これについては応用物理学会(村田他、第46回
応用物理学会学術講演会講演予稿集:tp−M−6)等
に報告されている。このようなりFBレーザは、外部共
振器によって実効的な共振器長が長くなり、スペクトル
線幅が低減できる。First, the problem of spectral linewidth can be solved by integrating a passive optical waveguide into a DFB laser.
A B laser has been realized, and the spectral linewidth has been reduced by about one order of magnitude. This has been reported at the Japan Society of Applied Physics (Murata et al., Proceedings of the 46th Society of Applied Physics Academic Conference: TP-M-6). In such an FB laser, the effective resonator length is increased by the external resonator, and the spectral linewidth can be reduced.
第2の周波数の制御性の問題については、DFBレーザ
に変調器を集積化し、レーザ端面の位相を実効的に変え
ることにより、平坦な周波数変調特性が得られた。これ
についてはエレクトロニクスレターズ誌(S、YAMA
ZAKI et、 al、 Electron、 Le
tt、 21(1985) 283)等に詳しい。Regarding the second problem of frequency controllability, a flat frequency modulation characteristic was obtained by integrating a modulator into the DFB laser and effectively changing the phase of the laser end face. Regarding this, Electronics Letters magazine (S, YAMA
ZAKI et, al, Electron, Le
tt, 21 (1985) 283).
(発明が解決しようとする問題点)
しかし、以上述べた従来例を、コヒーレント光伝送用光
源として必要とされる狭スペクトル線幅や周波数制御可
能などという点から見ると、まだ問題点が多い。すなわ
ち、最初の外部共振器付DFBレーザの場合、狭いスペ
クトル線幅は得られる一方、周波数を制御する機能がな
いために、周波数の安定化という点で問題があり、厳密
な温度と電流のコントロールを必要とし、定常状態で使
用するしかなかった。一方、端面位相制御型DFBレー
ザはある条件内で周波数制御が可能な反面、スペクトル
線幅については通常のDFBレーザと同程度で、不十分
な値しか得られていなかった。(Problems to be Solved by the Invention) However, the conventional examples described above still have many problems when viewed from the viewpoint of narrow spectral linewidth and frequency controllability required as a light source for coherent optical transmission. In other words, in the case of the first DFB laser with an external cavity, although a narrow spectral linewidth could be obtained, there was a problem in terms of frequency stabilization because there was no function to control the frequency, and strict temperature and current control was required. , and could only be used in a steady state. On the other hand, although the end facet phase controlled DFB laser allows frequency control within certain conditions, the spectral linewidth is comparable to that of a normal DFB laser, and an insufficient value has been obtained.
本発明の目的は、以上述べた問題点を改善し、スペクト
ル線幅が狭く、かつ周波数制御が可能なコヒーレント光
伝送用光源を提供することにある。An object of the present invention is to improve the above-mentioned problems and provide a light source for coherent optical transmission that has a narrow spectral linewidth and is frequency controllable.
(問題を解決するための手段)
DFBレーザと受動光導波路を用いた外部共振器とを、
同一半導体基板上に集積化した集積型半導体レーザにお
いて、前記受動光導波路の一部の屈折率が電気的に可変
であることを特徴とする外部共振器付DFBレーザによ
って、上述の問題点を解決できる。(Means for solving the problem) A DFB laser and an external resonator using a passive optical waveguide,
The above-mentioned problems are solved by a DFB laser with an external cavity, which is characterized in that the refractive index of a part of the passive optical waveguide is electrically variable in an integrated semiconductor laser integrated on the same semiconductor substrate. can.
(作用)
第1図は、本発明の基本的な構造を示すレーザ共振器軸
方向の断面図である。素子は、DFBレーザ部100と
外部共振器部200とからなり、いずれも半導体基板3
00上に形成され集積化されている。(Function) FIG. 1 is a cross-sectional view in the axial direction of a laser resonator showing the basic structure of the present invention. The device consists of a DFB laser section 100 and an external resonator section 200, both of which are connected to a semiconductor substrate 3.
00 and is integrated.
DFBレーザ部100に電流を注入することによりレー
ザ発振する。レーザ出力はレーザ側端面から放出される
一方、外部共振器の受動光導波路310にも導入される
。導入された光は外部共振器側端面で反射された後レー
ザ活性層320にフィードバックされる。このようにレ
ーザの共振器長が長くなったことにより、スペクトル線
幅が、DFBレーザ単体の場合と比べて大幅に低減され
る。このスペクトル線幅低減の効果は外部共振器長が長
いほど大きいため、通常、外部共振器長はDFBレーザ
長の数倍以上が必要である。そこで一つの問題が生じる
。Laser oscillation is performed by injecting current into the DFB laser section 100. While the laser output is emitted from the laser side end face, it is also introduced into the passive optical waveguide 310 of the external resonator. The introduced light is reflected by the external cavity side end face and then fed back to the laser active layer 320. By increasing the resonator length of the laser in this way, the spectral linewidth is significantly reduced compared to the case of a single DFB laser. The longer the external resonator length is, the greater the effect of reducing the spectral line width is, so the external resonator length usually needs to be several times or more the DFB laser length. One problem arises.
それは外部共振器長が長いため、その軸モード間隔が狭
くなり、DFBレーザ部100の電流や温度のわずかな
変動によって発振モードが他の軸モードに移ってしまう
ことである。この時スペクトル線幅は非常に広がってし
まう。また他の軸モードへ移らない場合でも、フィード
バック光の位相条件がずれただけでスペクトル線幅は広
がる。そこで本発明では、外部共振器部200の一部に
電極を付け、この部分を位相制御部400とした。位相
制御部400の光導波路310の屈折率をキャリア注入
または電気光学効果によって変化させることにより、フ
ィードバック光の位相を制御できる。このことにより、
DFBレーザ部100の電流や温度が変動し、レーザの
周波数がすぐれた場合でも、フィードバック光の位相を
制御して、軸モードの飛びや、スペクトル線幅の増大を
おさえることができる。This is because the external resonator length is long, so the axial mode spacing becomes narrow, and the oscillation mode shifts to another axial mode due to slight fluctuations in the current or temperature of the DFB laser section 100. At this time, the spectral linewidth becomes extremely wide. Furthermore, even if the mode does not shift to another axis mode, the spectral linewidth widens simply by shifting the phase condition of the feedback light. Therefore, in the present invention, an electrode is attached to a part of the external resonator part 200, and this part is used as the phase control part 400. By changing the refractive index of the optical waveguide 310 of the phase control section 400 by carrier injection or electro-optic effect, the phase of the feedback light can be controlled. Due to this,
Even if the current or temperature of the DFB laser section 100 fluctuates and the laser frequency is excellent, it is possible to control the phase of the feedback light to suppress the jump in the axial mode and the increase in the spectral line width.
また逆にレーザのスペクトル線幅が安定な範囲で、フィ
ードバック光の位相を変えることにより、周波数の制御
ができる。本発明の位相制御部400は外部共振器部2
00のどの場所に形成しても原理的には同じである。し
かし外部共振器部200の全体を位相制御部とした構造
は、通常1〜2mm以上の長い外部共振器を必要とする
ため、光学的な損失な応答速度の点で劣る。Conversely, the frequency can be controlled by changing the phase of the feedback light within a range where the spectral linewidth of the laser is stable. The phase control section 400 of the present invention includes the external resonator section 2
The principle is the same no matter where it is formed in 00. However, the structure in which the entire external resonator section 200 is a phase control section usually requires a long external resonator of 1 to 2 mm or more, and therefore is inferior in terms of optical loss and response speed.
(実施例) 第2図は、本発明の実施例を示す斜視図である。(Example) FIG. 2 is a perspective view showing an embodiment of the present invention.
基本的には第1図と同様の構造で、DFBレーザ部10
0と外部共振器部200からなっており、外部共振器部
200の一部に位相制御部400が設けである。Basically, the structure is the same as that shown in Fig. 1, and the DFB laser section 10
0 and an external resonator section 200, and a phase control section 400 is provided in a part of the external resonator section 200.
DFBレーザ部100、外部共振器部200、位相制御
部400の長さはそれぞれ30011m、 20011
m、 1.5mmである。The lengths of the DFB laser section 100, external resonator section 200, and phase control section 400 are 30011 m and 20011 m, respectively.
m, 1.5 mm.
以下、製作手順を簡単に述べる。まずn型InP基板3
00上のDFBレーザ部100に周期240nmの回折
格子を形成する。次に1回目のLPE成長によってn形
InGaAsP光ガイド層310、InGaAsP活性
層320、p形InPクラッド層330を順次成長する
。次に回折格子のあるDFBレーザ部100を除いた、
他の部分のクラッド層330、活性層320を選択的に
除去する。光ガイド層310は残しておく。2回目のL
PE成長において全体にp形InPクラッド層340を
形成する。次に埋め込み構造とするために、メサエッチ
ングを行った後、3回目のLPE成長によって埋め込み
成長を行う。本実施例では2重チャンネルプレーナ埋め
込み型を用いたが、他のストライプ構造でも本質的には
効果は変わらない。次に基板側と、成長側のDFBレー
ザ部100および位相制御部400に電極を形成する。The manufacturing procedure will be briefly described below. First, n-type InP substrate 3
A diffraction grating with a period of 240 nm is formed in the DFB laser section 100 on the DFB laser section 100. Next, an n-type InGaAsP optical guide layer 310, an InGaAsP active layer 320, and a p-type InP cladding layer 330 are sequentially grown by first LPE growth. Next, excluding the DFB laser section 100 with the diffraction grating,
Other parts of the cladding layer 330 and active layer 320 are selectively removed. The light guide layer 310 is left. Second L
A p-type InP cladding layer 340 is formed throughout the PE growth. Next, in order to form a buried structure, mesa etching is performed, and then buried growth is performed by a third LPE growth. In this embodiment, a double channel planar embedded type was used, but other striped structures can be used with essentially the same effect. Next, electrodes are formed on the substrate side and the DFB laser section 100 and phase control section 400 on the growth side.
各部分の電気的な分離は、成長層の一部をエツチングし
、溝を設けることにより行った。光ガイド層310はレ
ーザの発振波長に対して透明であるため、受動光導波路
となる。また、光ガイド層310にpn接合が形成され
ているため、位相制御部400にキャリアを注入するこ
とにより、この部分の屈折率を変化させることができる
。素子の両側の端面ばへき開により形成した。Electrical isolation of each portion was achieved by etching a portion of the grown layer and providing grooves. Since the optical guide layer 310 is transparent to the oscillation wavelength of the laser, it becomes a passive optical waveguide. Further, since a pn junction is formed in the optical guide layer 310, by injecting carriers into the phase control section 400, the refractive index of this portion can be changed. It was formed by cleaving the end faces on both sides of the element.
このように製作した素子の特性の一例を次に示す。しき
い値20mA、外部微分量子効率18%、発振波長1.
5511mであった。スペクトル線幅は5mW出力時に
0.7MHzであり、単体のレーザに比べて約1桁狭い
。スペクトル線幅はレーザへの注入電流を増すにつれ周
期的に変化するが、レーザへの注入電流と同時に、位相
制御部の注入電流を制御することにより、レーザへの注
入電流の比較的広い範囲にわたってスペクトル線幅をI
MHz以下に保つことができた。例えば位相制御を行わ
ない場合、線幅がIMHz以下のレーザ電流範囲的5m
Aが、位相制御により約20mAとなり、安定性が増し
た。また、この電流範囲内で位相制御部400の注入電
流をわずかに変化させることにより、スペクトル線幅を
ほぼ一定値(約IMHz)としたままで、周波数変調を
行うことができた。周波数偏移量は0.5GHz/yn
Aで、800MHz付近まで平坦な周波数変調特性が得
られた。An example of the characteristics of the device manufactured in this way is shown below. Threshold value 20mA, external differential quantum efficiency 18%, oscillation wavelength 1.
It was 5511m. The spectral line width is 0.7 MHz at 5 mW output, which is about one order of magnitude narrower than that of a single laser. The spectral linewidth changes periodically as the injection current to the laser increases, but by controlling the injection current of the phase control section at the same time as the injection current to the laser, it can be controlled over a relatively wide range of injection current to the laser. Spectral linewidth I
I was able to keep it below MHz. For example, when phase control is not performed, the laser current range is 5 m when the line width is below IMHz.
A became approximately 20 mA through phase control, improving stability. Furthermore, by slightly changing the injection current of the phase control section 400 within this current range, frequency modulation could be performed while keeping the spectral linewidth at a substantially constant value (approximately IMHz). Frequency deviation amount is 0.5GHz/yn
A flat frequency modulation characteristic was obtained up to around 800 MHz.
なお、上述の実施例では、位相制御部400をDFBレ
ーザ部100に隣接させたが、外部共振器部200のど
の部分に形成しても基本的には同じである。また外部共
振側の端面に高反射膜を形成することにより、フィード
バック光量を増大させ、スペクトル線幅をより低減する
こともできる。位相制御部400の屈折率を変化させる
方法は、キャリア注入に限らず、電気光学効果を用いて
もよい。この場合はさらに光ガイド層310を量子井戸
構造にすることにより高性能化が期待できる。In the above-described embodiment, the phase control section 400 is placed adjacent to the DFB laser section 100, but the phase control section 400 is basically the same no matter where it is formed in the external resonator section 200. Furthermore, by forming a highly reflective film on the end face on the external resonance side, the amount of feedback light can be increased and the spectral linewidth can be further reduced. The method for changing the refractive index of the phase control section 400 is not limited to carrier injection, and may also use an electro-optic effect. In this case, higher performance can be expected by forming the optical guide layer 310 into a quantum well structure.
(発明の効果)
以上のように本発明によれば、スペクトル線幅が狭く、
かつ周波数の制御性に優れたコヒーレント光伝送用光源
が実現できる。PSKヘテロダイン方式では、スペクト
ル線幅が狭くかつ安定した周波数が必要とされる。また
FSKヘテロダイン方式ではスペクトル線幅が狭くかつ
良好な周波数変調特性が必要とされる。本発明は、その
いずれにも対応可能である。実施例では、広い電流範囲
で安定なスペクトル線幅が得られ、かつ、800MHz
までの平坦な周波数変調特性が得られた。(Effects of the Invention) As described above, according to the present invention, the spectral line width is narrow;
In addition, a light source for coherent optical transmission with excellent frequency controllability can be realized. The PSK heterodyne system requires a narrow spectral linewidth and a stable frequency. Furthermore, the FSK heterodyne system requires a narrow spectral linewidth and good frequency modulation characteristics. The present invention is applicable to either of them. In the example, a stable spectral linewidth can be obtained over a wide current range, and 800MHz
A flat frequency modulation characteristic was obtained.
なお、これらの特性は、光伝送だけでなく各種の計測に
とっても重要であり、本発明が材料および応用面で光伝
送以外にも適用可能であることは言うまでもない。Note that these characteristics are important not only for optical transmission but also for various types of measurements, and it goes without saying that the present invention can be applied to applications other than optical transmission in terms of materials and applications.
第1図は、本発明の基本的な構造を示す図、第2図は実
施例を示す斜視図である。図中、100はDFBレーザ
部、200は外部共振器部、400は位相制御部、30
0は基板、310は光ガイド層、320は活性層、33
0.340はクラッド層である。FIG. 1 is a diagram showing the basic structure of the present invention, and FIG. 2 is a perspective view showing an embodiment. In the figure, 100 is a DFB laser section, 200 is an external resonator section, 400 is a phase control section, 30
0 is a substrate, 310 is a light guide layer, 320 is an active layer, 33
0.340 is the cladding layer.
Claims (1)
ザの光出射端に接続して設けた受動光導波路から成る外
部共振器とを1つの半導体基板上に形成した集積型半導
体レーザにおいて、前記受動光導波路の少なくとも一部
の領域の屈折率を電気的に可変する手段を備えているこ
とを特徴とする外部共振器付分布帰還型半導体レーザ。In an integrated semiconductor laser in which a distributed feedback semiconductor laser and an external resonator consisting of a passive optical waveguide connected to a light emitting end of the distributed feedback semiconductor laser are formed on one semiconductor substrate, the passive optical waveguide 1. A distributed feedback semiconductor laser with an external cavity, comprising means for electrically varying the refractive index of at least a part of the wavepath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61089313A JPS62245692A (en) | 1986-04-17 | 1986-04-17 | Distributed feedback semiconductor laser with external resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61089313A JPS62245692A (en) | 1986-04-17 | 1986-04-17 | Distributed feedback semiconductor laser with external resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62245692A true JPS62245692A (en) | 1987-10-26 |
Family
ID=13967176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61089313A Pending JPS62245692A (en) | 1986-04-17 | 1986-04-17 | Distributed feedback semiconductor laser with external resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62245692A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122188A (en) * | 1986-11-12 | 1988-05-26 | Hitachi Ltd | Photo-semiconductor device |
JPS6424483A (en) * | 1987-07-21 | 1989-01-26 | Kokusai Denshin Denwa Co Ltd | Semiconductor laser |
EP0314490A2 (en) * | 1987-10-28 | 1989-05-03 | Kokusai Denshin Denwa Kabushiki Kaisha | Semiconductor laser |
US5157681A (en) * | 1990-06-27 | 1992-10-20 | Mitsubishi Denki Kabushiki Kaisha | Wavelength-tunable distributed Bragg reflector semiconductor laser |
WO2019116657A1 (en) * | 2017-12-15 | 2019-06-20 | 株式会社堀場製作所 | Semiconductor laser |
JP2022506323A (en) * | 2018-11-05 | 2022-01-17 | 華為技術有限公司 | Externally reflected return light resistant laser |
-
1986
- 1986-04-17 JP JP61089313A patent/JPS62245692A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122188A (en) * | 1986-11-12 | 1988-05-26 | Hitachi Ltd | Photo-semiconductor device |
JPS6424483A (en) * | 1987-07-21 | 1989-01-26 | Kokusai Denshin Denwa Co Ltd | Semiconductor laser |
EP0314490A2 (en) * | 1987-10-28 | 1989-05-03 | Kokusai Denshin Denwa Kabushiki Kaisha | Semiconductor laser |
US5157681A (en) * | 1990-06-27 | 1992-10-20 | Mitsubishi Denki Kabushiki Kaisha | Wavelength-tunable distributed Bragg reflector semiconductor laser |
WO2019116657A1 (en) * | 2017-12-15 | 2019-06-20 | 株式会社堀場製作所 | Semiconductor laser |
JPWO2019116657A1 (en) * | 2017-12-15 | 2020-10-22 | 株式会社堀場製作所 | Semiconductor laser |
EP3726674A4 (en) * | 2017-12-15 | 2021-09-15 | HORIBA, Ltd. | Semiconductor laser |
US11374380B2 (en) | 2017-12-15 | 2022-06-28 | Horiba, Ltd. | Semiconductor laser |
JP2022506323A (en) * | 2018-11-05 | 2022-01-17 | 華為技術有限公司 | Externally reflected return light resistant laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0173269B1 (en) | Semiconductor laser device | |
CA2018928C (en) | Semiconductor laser device | |
EP0706243A2 (en) | Distributed feedback semiconductor laser and method for producing the same | |
US5636237A (en) | Semiconductor laser device which makes it possible to realize high-speed modulation | |
US7852894B2 (en) | Semiconductor laser and semiconductor optical integrated device | |
JPS6332988A (en) | Distributed feedback semiconductor laser | |
JPS62245692A (en) | Distributed feedback semiconductor laser with external resonator | |
TOHMORI et al. | Wavelength Tunable 1.5 µm GaInAsP/InP Bundle-Integrated-Guide Distributed Bragg Reflector (BIG-DBR) Lasers | |
JP7071646B2 (en) | Tunable laser | |
Botez | Single-mode AlGaAs diode lasers | |
CN115280609A (en) | Optical device | |
JPS60102788A (en) | Distributed feedback semiconductor laser | |
JPS6373585A (en) | Frequency tunable distributed bragg reflection-type semiconductor laser | |
EP4122062B1 (en) | Electroabsorption modulated laser | |
WO2021148120A1 (en) | Single-mode dfb laser | |
JP2687884B2 (en) | Tunable semiconductor laser and manufacturing method thereof | |
JPH0587035B2 (en) | ||
US20240313503A1 (en) | Electro-absorption modulated lasers with identical-active layer | |
WO2023012925A1 (en) | Semiconductor optical device and method for producing same | |
JP2776381B2 (en) | Semiconductor laser device | |
WO2023227189A1 (en) | Tilted semiconductor laser | |
JPS59127864A (en) | Semiconductor light-emitting element | |
JPS61212082A (en) | Integrated semiconductor laser | |
JPS5972787A (en) | Semiconductor laser | |
JPS6136719B2 (en) |