[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5972787A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5972787A
JPS5972787A JP18322182A JP18322182A JPS5972787A JP S5972787 A JPS5972787 A JP S5972787A JP 18322182 A JP18322182 A JP 18322182A JP 18322182 A JP18322182 A JP 18322182A JP S5972787 A JPS5972787 A JP S5972787A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor
laser
mesa stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18322182A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18322182A priority Critical patent/JPS5972787A/en
Publication of JPS5972787A publication Critical patent/JPS5972787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the formation of a non-injection region at the stage of crystal growth and to improve the reproducibility of characteristics of DFB-LD and the yield rate in manufacture, by the constitution wherein a mesa stripe, which includes an active layer of BH-LD that undergoes light emitting recombination, has a semiconductor layer having a partially different conductive type on the active layer. CONSTITUTION:A diffraction grating 2 is formed on an N-InP substrate 1. An N-In0.85 Ga0.15As0.33P0.61 current blocking layer 7, which corresponds to a light emitting wave length 1.1mum, is sequentially laminated to a thickness of 0.2mum. Thus a DH wafer is obtained. A photoresist mask is formed on this wafer. The N-In0.85Ga0.15As0.33P0.67 current blocking layer 5 is partially etched away. After the etching, the remaining part of the N-In0.85Ga0.15As0.33P0.67 current blocking layer 7 is made to be a non-injection region. Thereafter, a mesa stripe 10, which includes an active layer that undergoes light emitting recombination in the direction of <011> in parallel, is formed. Two parallel etching grooves 8 and 9, which hold the strip in between, are formed. Since the non- injection region can be readily formed at the stage of the crystal growth in this way, the reproducibility of the characteristics of DFB-BH LD, the yield rate in manufacture, and reliability can be improved to the large extent.

Description

【発明の詳細な説明】 本発明は活性層の周囲を活性層よりもエネルギーギャッ
プが大きく、屈折率が小さな半導体層で埋め込んだ埋め
込みへテロ構造半導体レーザ、特にレーザ共振軸方向に
部分的に非キャリア注入領域を有する分布帰還型埋め込
み半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a buried heterostructure semiconductor laser in which an active layer is surrounded by a semiconductor layer having a larger energy gap and a lower refractive index than the active layer. The present invention relates to a distributed feedback buried semiconductor laser having a carrier injection region.

埋め込みへテロ構造半導体レーザ(BHニーLD )は
低い発振しきい値電流、安定化された発振横モード、高
光出力動作、高温動作可能などの優れた特性を有してお
シ、光フアイバ通信用光源として注目を集めている。と
ころで通常のBH−LDでは高速で変調した場合波長が
単一でなくなシ、また直流で使用しても温度上昇や注入
電流の変化によって波長が不連続に跳ぶ。BH−LDを
高速変調して、そのレーザ光を光ファイバの一方の端に
入射すると、光ファイバの出力端から出る光は光ファイ
バの材料分散によシ、波形がくずれてしまう。
Buried heterostructure semiconductor lasers (BH-LDs) have excellent characteristics such as low oscillation threshold current, stabilized oscillation transverse mode, high optical output operation, and high temperature operation, and are suitable for optical fiber communication. It is attracting attention as a light source. By the way, in a normal BH-LD, when modulated at high speed, the wavelength is not single, and even when used with direct current, the wavelength jumps discontinuously due to temperature rise or change in injection current. When a BH-LD is modulated at high speed and the laser light is input to one end of an optical fiber, the waveform of the light emitted from the output end of the optical fiber is distorted due to material dispersion of the optical fiber.

これに対して数百メガビット/秒で高速変調して本単−
の発振波長を示す半導体レーザとして、ある適当なピッ
チの回折格子を設けた分布帰還型半導体レーザ(DFB
−LD)が提案されている。通常のB)(−LDではフ
ァプリ・ペロー共振器構造をもっておシ、活性層に閉じ
込められた光をLDチップの両端の共振器ミラー面を使
ってレーザ共振させ、発振させるのに対し、DFB−L
Dでは活性層の付近に回折格子を設けておシ、その回折
格子の中を光波が往復して共振する。最近そのよりなり
FB−LDとBH−LDとを組みあわせた構造をもつ半
導体レーザが種々開発され、500Mbit/secで
高速パルス変調しても単一波長で発振するという結果が
得られている。ところでDFB−LDにおいてはレーザ
・ウェファから個々のレーザ・ペレットに切シ出す際に
へき開によるレーザ共振器面が形成されてしまっては、
回折格子による単一軸モード発振が得られない。すなわ
ちファプリ・ペローモードの抑制が重要である。従来こ
れを防ぐために一方の端面を斜めにエツチングしたシ、
あるいは最終電極層をn型として一部分だけp形不純物
の拡散を行なったシ、あるいはS i Os 、 S 
i IN4 々どの絶縁膜を形成して、その一部のみと
シ除いて電極形成するなどの方法がとられていた。すな
わち、大きく分けて、片方のレーザ端面を斜めにする方
法と、レーザ端面はへき開によって結晶面を出したiま
レーザストライプの一部分を非発光領域にするという2
種類の方法がとられていた。しかしながら、例えば前者
の場合、Brメタノール等の混合エツチング液を用いて
も活性層付近で必ずしも完全に斜めなエツチング面が得
られるわけではない。ごくわずかの部分で他端の結晶へ
き開面と共にレーザ共振器を形成してし壕い、その結果
1本の中心波長モードの付近に小さな軸モードが立って
しまうという欠点があった。また後者の場合、絶縁膜の
わずかなピンホール等がレーザ発振に寄与しない無効電
流の増加をもたらしてレーザ発振しきい値の上昇を招い
たシ、また絶縁膜をはったまま電極の熱処理を行なうと
絶縁膜のふちでアロイスパイクを生じたシして素子の信
頼性に悪影響を与えるということがある。部分的に不純
物を拡散する場合も同様に、絶縁膜に存在するピンホー
ル等が問題となり、再現性、製造歩留りが悪いという欠
点がある。そこでもしあらかじめ結晶成長の段階で非注
入の領域を形成すれば、このような問題がなくなる。
In contrast, high-speed modulation at several hundred megabits/second is used to
A distributed feedback semiconductor laser (DFB), which has a diffraction grating with a certain appropriate pitch, is used as a semiconductor laser that exhibits an oscillation wavelength of
-LD) has been proposed. Normal B) (-LD has a Fabry-Perot resonator structure, and the light confined in the active layer is caused to resonate and oscillate using the cavity mirror surfaces at both ends of the LD chip, whereas DFB- L
In D, a diffraction grating is provided near the active layer, and light waves reciprocate within the diffraction grating and resonate. Recently, various semiconductor lasers having a structure combining FB-LD and BH-LD have been developed, and results have been obtained that oscillate at a single wavelength even when high-speed pulse modulation is performed at 500 Mbit/sec. However, in DFB-LD, if a laser resonator surface is formed due to cleavage when cutting individual laser pellets from a laser wafer,
Single-axis mode oscillation cannot be obtained using a diffraction grating. In other words, it is important to suppress the Fapry-Perot mode. Conventionally, to prevent this, one end face was etched diagonally,
Alternatively, the final electrode layer may be made of n-type and p-type impurities are partially diffused, or SiOs, S
A method has been used in which an insulating film is formed, and only a part of the insulating film is formed to form an electrode. Broadly speaking, there are two methods: one is to make one laser end face oblique, and the other is to make a part of the laser stripe into a non-emitting region by cleaving the laser end face to reveal a crystal plane.
Various methods were used. However, in the former case, for example, even if a mixed etching solution such as Br-methanol is used, it is not always possible to obtain a completely oblique etched surface near the active layer. A disadvantage is that a very small portion forms a laser resonator with the crystal cleavage plane at the other end, resulting in a small axial mode standing near one central wavelength mode. In the latter case, small pinholes in the insulating film may cause an increase in reactive current that does not contribute to laser oscillation, leading to a rise in the laser oscillation threshold. If this is done, alloy spikes may occur at the edges of the insulating film, which may adversely affect the reliability of the device. Similarly, when impurities are partially diffused, problems such as pinholes existing in the insulating film arise, resulting in poor reproducibility and manufacturing yield. Therefore, if a non-implanted region is formed in advance at the stage of crystal growth, this problem will disappear.

本発明の目的は上述の欠点をなくし、結晶成長の段階で
非注入の領域が形成できて、特性の再現性、製造の歩留
シが大幅に向上した分布帰還型↓1!め込み半導体レー
ザを提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, form a non-implanted region at the crystal growth stage, and significantly improve the reproducibility of characteristics and manufacturing yield of a distributed feedback type↓1! An object of the present invention is to provide an embedded semiconductor laser.

本発明による埋め込み構造半導体レーザの構成は、半導
体基板上に少くとも第1導電型クラツド層、活性層、第
2導電型半導体クラッド層を含む半導体多層膜を成長さ
せた多層膜構造半導体ウェファに、前記活性層よシも深
くエツチングしてメサストライプを形成した後、埋め込
み成長してなる埋め込みへテロ構造半導体レーザにおい
て、前記メサストライプがレーザ共振軸方向に部分的に
第1導電屋半導体層を有し、前記活性層に沿って、光ガ
イド層、および前記活性層中の発振波長1/2の整数倍
のピッチを有する回折格子が形成されていることを特徴
とする。
The structure of the buried structure semiconductor laser according to the present invention includes a multilayer structure semiconductor wafer in which a semiconductor multilayer film including at least a first conductivity type cladding layer, an active layer, and a second conductivity type semiconductor cladding layer is grown on a semiconductor substrate. In a buried heterostructure semiconductor laser formed by deep etching of the active layer to form a mesa stripe and then buried growth, the mesa stripe partially has a first conductive semiconductor layer in the laser resonance axis direction. A light guide layer and a diffraction grating having a pitch that is an integral multiple of 1/2 of the oscillation wavelength in the active layer are formed along the active layer.

以下、実施例を示す図面を用いて本発明を説明する。EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated using drawing which shows an Example.

第1図は本発明の一実施例であるDFB−BHLD5− のメチストライブ形成後、すなわち埋め込み成長前の半
導体グプルヘテロ(DH)ウェファの平面図である。第
2図は第1図で示したDHウェファに粧め込み成長を行
なって作製したDFB−BHLDにおいて第1図中A−
A′部分の断面図、すなわちメサストライプ部分を含む
レーザ共振軸方向の断面図である。同様に第3図(a)
は作製したDFB−BHLDの第1図中B−B’部分の
断面図、第3図(b)はC−C’部分の断面図である。
FIG. 1 is a plan view of a semiconductor group hetero (DH) wafer after methistrebe formation, that is, before buried growth, of DFB-BHLD5-, which is an embodiment of the present invention. Figure 2 shows the DFB-BHLD fabricated by performing overlay growth on the DH wafer shown in Figure 1.
FIG. 2 is a cross-sectional view of part A', that is, a cross-sectional view in the direction of the laser resonance axis including the mesa stripe part. Similarly, Figure 3(a)
3(b) is a sectional view taken along the line BB' in FIG. 1, and FIG. 3(b) is a sectional view taken along the line CC' of the fabricated DFB-BHLD.

主に第3図fa) 、 (b)の断面図を用いて以下製
作過程を説明する。まず(100) n−InP基板1
に例えばHe−cdレーザのレーザ干渉法を用いてピッ
チ0.23μmの回折格子2を形成する。これは<01
1>方向の共振軸方向にくシ返すものであシ、レーザ共
振軸方向の断面図を示す第2図がわかルやすい。このよ
うな回折格子を形成したn−InP基板1上に発光波長
1.1#gに相当するn  1:no、as cao、
ts As033 Po、67光ガイド層3を厚さ0.
3μm9発光波長1.55μmに相当するノンドープI
n0.59 Ga6,41 A11O,90Po、1C
I活性層4を厚さ0.1μm発光波長1,3μmに相当
するpInO,726− Ga02g Ago6t Po、39メルトバック防止
層5を厚さ0.15μm、さらにp−InPクラッド層
6を1μm。
The manufacturing process will be explained below mainly using the cross-sectional views of FIGS. 3fa) and 3(b). First, (100) n-InP substrate 1
For example, a diffraction grating 2 with a pitch of 0.23 μm is formed using a laser interferometry using a He-CD laser. This is <01
It is easy to understand that FIG. 2, which shows a sectional view in the direction of the laser resonance axis, is a cross-sectional view in the direction of the laser resonance axis. On the n-InP substrate 1 on which such a diffraction grating was formed, n1:no, as cao, which corresponds to an emission wavelength of 1.1#g, was formed.
ts As033Po, 67 light guide layer 3 with a thickness of 0.
Non-doped I corresponding to 3μm9 emission wavelength 1.55μm
n0.59 Ga6,41 A11O,90Po, 1C
The active layer 4 is made of pInO, 726-Ga02g Ago6t Po, which corresponds to the emission wavelength of 1.3 μm, and the thickness of the meltback prevention layer 5 is 0.15 μm, and the p-InP cladding layer 6 is 1 μm.

発光波長1.1μF#に相当するn InO,85ca
o、ts As(1,33P0.61電流ブロック層7
を厚さ0.2μm、順次積層さABo、33 Po、6
7光ガイド層3は過飽和度を△T=20℃程度にとった
スーパークーリング溶液を用いて、また続< Ino、
59Gao4t All0.90 Po、10活性層4
は膜厚制御が容易でヘテロ界面の状態が良好なオーバー
シード法を用いて結晶成長を行なうとよい。このように
して得たDHウェファに第1図に示したように〈011
〉方向に平行にフォトレジストマスクを形成して部分的
にn−In0.B5 Ga0.15 All0.33 
Po、67電流ブロック層7をエツチングして除去する
。この際エツチングは硫酸系の混合エツチング液を用い
ればn−rno、ss cao、ts All0.33
 Po、67電流プOツク層7のみが選択的にエツチン
グされ、p−InPクラッド層6はエツチングされない
。エツチング後n−In0.85 GIlo、15 A
11O,33Po、67電流ブロック層7の残された部
分が非注入領域となるわけである。その後こんどは<0
11>方向に平行に発光再結合する活性層を含むメサス
トライプ10.およびそれをはさむ2本の平行なエツチ
ング溝8.9を形成する。メサストライプ10は幅2μ
m 、エツチング$8 、9は幅10gm、深さ3μm
程度とし、Brメタノール混合エツチング液を用いて容
易にエツチングを行なうことができる。以上の2度のエ
ツチングを行なった、第1図に示したようなりHウェフ
ァに埋め込み成長を行ない、p−InP電流電流クロッ
2層11−InP電流電流クロッ2層12ずれもメサス
トライプの上面のみを除いて形成し、さらにp−InP
埋め込み層13、発光波長1.3μm相当のP−In0
.72 GaO,28Aso、tit Po、39電極
層14を全面にわたって積層させる。電極形成を行なっ
て所望のDFB−BHLDを得る。メサストライプ1゜
はレーザ共振軸方向に部分的にn−I n 0.85 
 G B O,15A80.33 Po、67電流ブロ
ック層を含んでいる。この部分にはメサストライプ自身
がnpn構造となっており、電流は注入されない。以上
水したようにメサストライプ10が部分的に第1導電型
半導体層であるn Ino、ss GILo、15 A
11O,33Po、67%L流ブOツク層7を有してお
シ、DI?’B−BHLDにおけるファプリ・ペローモ
ードの抑制のための非注入領域が結晶成長の段階で容易
に、かつきわめて歩留シよく形成できた。このようにし
て作製したDFB−BHLDにおいて注入領域の長さ4
00μm、非注入領域の長さ250μmとし、室温での
CW発振しきい値電流5(1mA 、 CW発振時の波
長の温度変化が0.8210゜500Mbit/’1f
lcの高速変調時にも軸モード1本のDFBモードでレ
ーザ発振するものが再現性よく得られた。
n InO, 85ca corresponding to emission wavelength 1.1μF#
o, ts As(1,33P0.61 current blocking layer 7
0.2 μm thick, sequentially laminated ABo, 33 Po, 6
7. The light guide layer 3 was formed using a super cooling solution with a supersaturation degree of △T=20°C.
59Gao4t All0.90 Po, 10 active layer 4
It is preferable to grow crystals using the overseeding method, which allows easy control of film thickness and good condition of the hetero interface. As shown in FIG. 1, the DH wafer obtained in this way has a
> direction, a photoresist mask is formed in parallel to the n-In0. B5 Ga0.15 All0.33
Po, 67 current blocking layer 7 is etched and removed. At this time, if a sulfuric acid-based mixed etching solution is used for etching, n-rno, ss cao, ts All0.33
Only the Po, 67 current block layer 7 is selectively etched, and the p-InP cladding layer 6 is not etched. After etching n-In0.85 GIlo, 15 A
The remaining portion of the 11O, 33Po, 67 current blocking layer 7 becomes a non-implanted region. After that, <0
11. Mesa stripe containing an active layer that emits light and recombines parallel to the direction 10. and two parallel etched grooves 8.9 sandwiching it. Mesa stripe 10 has a width of 2μ
m, etching $8, 9 is width 10gm, depth 3μm
Etching can be easily carried out using a Br-methanol mixed etching solution. After performing the above two etchings, as shown in Fig. 1, buried growth was performed on the H wafer, and the p-InP current current cross layer 2 layer 11 - InP current current cross layer 2 layer 12 was shifted only on the top surface of the mesa stripe. and then p-InP
Buried layer 13, P-In0 with emission wavelength equivalent to 1.3 μm
.. 72 GaO, 28 Aso, tit Po, 39 electrode layers 14 are laminated over the entire surface. Electrode formation is performed to obtain the desired DFB-BHLD. The mesa stripe 1° is partially n-I n 0.85 in the direction of the laser resonance axis.
Contains G B O, 15A80.33 Po, 67 current blocking layer. The mesa stripe itself has an npn structure in this part, and no current is injected into this part. As mentioned above, the mesa stripe 10 is partially a first conductivity type semiconductor layer n Ino, ss GILo, 15 A
11O, 33Po, 67% L flow book layer 7, and DI? The non-implanted region for suppressing the Fabry-Perot mode in 'B-BHLD could be easily formed at the crystal growth stage with an extremely high yield. In the DFB-BHLD manufactured in this way, the length of the implanted region is 4
00 μm, the length of the non-implanted region is 250 μm, the CW oscillation threshold current at room temperature is 5 (1 mA, and the temperature change in wavelength during CW oscillation is 0.8210°500 Mbit/'1f).
Even during high-speed modulation of lc, laser oscillation in one axial mode and DFB mode was obtained with good reproducibility.

本発明の実施例である1、5 pm帯のI nGaA 
aP/I rIPDFB−BHLDにおいて、メサスト
ライプ自身がレーザ共振軸方向に部分的に非注入領域を
含んでおJ、DFB  LDにおけるファプリ・ベロー
モードを十分に抑制することができた。このような非注
入領域が結晶成長の段階で容易に形成でき、したがって
従来例の場合と比べて特性上の再現性。
InGaA in the 1,5 pm band, which is an embodiment of the present invention
In the aP/I rIPDB-BHLD, the mesa stripe itself partially included a non-implanted region in the direction of the laser resonance axis, and the Fabry-Bello mode in the DFB LD could be sufficiently suppressed. Such a non-implanted region can be easily formed during the crystal growth stage, and therefore the characteristics are more reproducible than in the conventional case.

製造歩留り、信頼性が大幅に向上した。Manufacturing yield and reliability have been significantly improved.

9一 本発明の実施例であるDFB−BHLDにおいては、メ
サストライプがレーザ共振軸方向に部分的にn−In0
.85 cao、ts As(1,33Po、67電流
ブロック層7が形成されておジ、これが非注入領域とし
て動作している。このように結晶成長の段階で非注入領
域が容易に形成できたために、従来例のように、レーザ
の片端面を斜めにエツチングしたシ、絶縁膜や不純物拡
散によって非注入領域を形成する場合と比べてDFB−
BHLDの特性再現性、製造の歩留シおよび信頼性が大
幅に向上した。
91 In the DFB-BHLD which is an embodiment of the present invention, the mesa stripe is partially formed of n-In0 in the direction of the laser resonance axis.
.. 85 cao, ts As (1, 33 Po, 67 current blocking layer 7 is formed and operates as a non-implanted region. In this way, the non-implanted region can be easily formed at the stage of crystal growth. , compared to the conventional example in which one end surface of the laser is etched obliquely, the DFB-
The characteristic reproducibility, manufacturing yield, and reliability of BHLD have been significantly improved.

なお本発明の実施例においては、InPを基板とし、I
nGaAgP  を活性層、および光ガイド層とする発
振波長1μm帯の光デバイスを示したが、もちろんこの
材料系に限ることなく、可視光領域から遠赤外領域まで
の範囲をカバーすべく、他の半導体材料であってもなん
ら差しつかえない。また実施例であるDFB−BHLD
に用いる回折格子も1455μmのレーザ発振光に対し
てピッチ0.23μmの回折格子を示したが、これに限
ることなく、0.46μm等、活性層中の発振波長の1
/2の整数倍10− のピッチをもつ回折格子であればよい。さらにBH−L
Dの横モード制御に関する構造も実施例においては2本
のエツチング溝によってメサストライプがはさまれた構
造のものを用いたが、本発明はもちろんこれに限定する
ものでなく、発光再結合する活性層が、他の半導体材料
によっておおわれているBH−LDならば全て含むもの
である。
In the embodiment of the present invention, InP is used as the substrate and I
Although we have shown an optical device with an oscillation wavelength of 1 μm using nGaAgP as the active layer and optical guide layer, it is not limited to this material system, and other materials may be used to cover the range from the visible light region to the far infrared region. There is no problem even if it is a semiconductor material. Moreover, DFB-BHLD which is an example
The diffraction grating used for the laser oscillation light of 1455 μm has a pitch of 0.23 μm;
A diffraction grating having a pitch of 10 - an integral multiple of /2 may be used. Furthermore, BH-L
In the example, a structure related to the transverse mode control of D was used, in which a mesa stripe was sandwiched between two etching grooves, but the present invention is of course not limited to this. This includes all BH-LDs whose layers are covered with other semiconductor materials.

本発明の特徴はDF’B−BHLDにおいてBH−LD
の発光再結合する活性層を含むメサストライプが部分的
に異なる導電型の半導体層を活性層上に有することであ
る。結晶成長の段階で非注入領域を容易に形成すること
ができた。したがってレーザ共振器端面を斜めにエツチ
ングする方法や、絶縁膜あるいは不純物拡散によって非
注入領域を形成する従来例の方法と比べて、DFB−L
Dの特性上の再現性、製造の歩留シが大幅に向上した。
The feature of the present invention is that in DF'B-BHLD, BH-LD
The mesa stripe including the active layer that undergoes light emission recombination has semiconductor layers of partially different conductivity types on the active layer. A non-implanted region could be easily formed at the stage of crystal growth. Therefore, compared to the conventional method of etching the laser resonator end face obliquely or forming a non-implanted region using an insulating film or impurity diffusion, DFB-L
The reproducibility of the characteristics of D and the manufacturing yield were significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図(al 、 (b)は本発明の
一実施例であるDFB−BHLDに関するものであり、
第1図はDH−ウェファのエツチング溝形成後の平面図
、第2図は第1図中A−A’部の断面図、第3図(a)
はB−B’部、第3図(blはc−c’部の断面図であ
る。 図中1はn−InP基板、2は回折格子、3はn−In
0JS Ga0.15 AIo、33 Po、67光ガ
イド層、4はIn059GIL0.41 All0.9
0 Po、10活性層−,5はpInO,72GaO,
28Aso、61 Po、39メルトバック防止層、6
はp−InPクラッド層1.7はn InO,85ca
o、ts As(1,33Po、67電流ブロック層、
8,9はエツチング溝、1oはメサストライプ、11は
p−InP電流ブロック層、12はn−InP電流ブロ
ック層、13はp−InP埋め込み層%14はp In
ay2Gio、zs All0.61 Po、39電極
層をそれぞれあられす。 代理人弁理士内原  晋 祐1図 第2図 13  /4          7 / 1〕 第 3 図
FIG. 1, FIG. 2, and FIG. 3 (al, (b)) relate to DFB-BHLD, which is an embodiment of the present invention.
Figure 1 is a plan view of the DH-wafer after etching grooves are formed, Figure 2 is a cross-sectional view taken along line A-A' in Figure 1, and Figure 3 (a).
3 is a cross-sectional view of the BB' section, and FIG. 3 is a cross-sectional view of the c-c' section.
0JS Ga0.15 AIo, 33 Po, 67 light guide layer, 4 is In059GIL0.41 All0.9
0 Po, 10 active layer-, 5 is pInO, 72 GaO,
28Aso, 61 Po, 39 Meltback prevention layer, 6
is p-InP cladding layer 1.7 is n-InO, 85ca
o, ts As(1,33Po, 67 current blocking layer,
8 and 9 are etched grooves, 1o is a mesa stripe, 11 is a p-InP current blocking layer, 12 is an n-InP current blocking layer, 13 is a p-InP buried layer %14 is a p-InP
ay2Gio, zs All0.61 Po, 39 electrode layers respectively. Representative Patent Attorney Shinsuke Uchihara 1 Figure 2 Figure 13 /4 7 / 1] Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に少くとも第1導電型半導体クラッド層、
活性層、第2導電屋半導体クラッド層を含む半導体多層
膜を成長させた多層膜構造半導体ウェファに、前記活性
層よりも深くエツチングしてメサストライプを形成した
後埋め込み成長してなる埋め込みへテロ構造半導体レー
ザにおいて、前記メサストライプがレーザ共振軸方向に
部分的に第1導電型半導体層を有し、前記活性層に沿っ
て、光ガイド層、および前記活性層中に発振波長の1/
2 の整数倍のピッチを有する回折格子が形成されてな
ることを特徴とする半導体レーザ。
at least a first conductivity type semiconductor cladding layer on the semiconductor substrate;
A buried heterostructure is formed by etching a semiconductor multilayer film including an active layer and a second conductive semiconductor cladding layer into a multilayer structure semiconductor wafer, etching it deeper than the active layer to form a mesa stripe, and then growing it in a buried manner. In the semiconductor laser, the mesa stripe partially has a first conductivity type semiconductor layer in the direction of the laser resonance axis, and along the active layer, a light guide layer and a layer of 1/1 of the oscillation wavelength in the active layer.
A semiconductor laser comprising a diffraction grating having a pitch that is an integral multiple of 2.
JP18322182A 1982-10-19 1982-10-19 Semiconductor laser Pending JPS5972787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18322182A JPS5972787A (en) 1982-10-19 1982-10-19 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18322182A JPS5972787A (en) 1982-10-19 1982-10-19 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5972787A true JPS5972787A (en) 1984-04-24

Family

ID=16131903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18322182A Pending JPS5972787A (en) 1982-10-19 1982-10-19 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5972787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123383A (en) * 1984-07-11 1986-01-31 Mitsubishi Electric Corp Semiconductor laser
US4980314A (en) * 1989-06-06 1990-12-25 At&T Bell Laboratories Vapor processing of a substrate
US5194400A (en) * 1990-11-28 1993-03-16 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semiconductor laser device using (Alx Ga1-x)y In1-y P semiconductor clad layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123383A (en) * 1984-07-11 1986-01-31 Mitsubishi Electric Corp Semiconductor laser
US4980314A (en) * 1989-06-06 1990-12-25 At&T Bell Laboratories Vapor processing of a substrate
US5194400A (en) * 1990-11-28 1993-03-16 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semiconductor laser device using (Alx Ga1-x)y In1-y P semiconductor clad layers

Similar Documents

Publication Publication Date Title
US7463663B2 (en) Semiconductor laser diode and integrated semiconductor optical waveguide device
US4883771A (en) Method of making and separating semiconductor lasers
JP2001210911A (en) Semiconductor laser, its manufacturing method, optical module using semiconductor laser, and optical communication system
JP2537924B2 (en) Semiconductor laser
JPS5972787A (en) Semiconductor laser
JPS59197182A (en) Distribution feedback type semiconductor laser
JPS595689A (en) Distributed feedback type semiconductor laser
JPS59127889A (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPS59198786A (en) Distributed feedback type semiconductor laser
JPH037153B2 (en)
JPS59165478A (en) Distributed feedback type semiconductor laser
JPS596588A (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JP3277711B2 (en) Semiconductor laser and manufacturing method thereof
JPS6344311B2 (en)
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6234473Y2 (en)
JPS59218786A (en) Single axial mode semiconductor laser
JPS6353718B2 (en)
JPS59127890A (en) Semiconductor laser
JPS59197183A (en) Distribution feedback type semiconductor laser
JPS6347277B2 (en)
JPS6112399B2 (en)
JPH02105489A (en) Manufacture of semiconductor laser