JPS62238529A - Optical modulation element - Google Patents
Optical modulation elementInfo
- Publication number
- JPS62238529A JPS62238529A JP61082922A JP8292286A JPS62238529A JP S62238529 A JPS62238529 A JP S62238529A JP 61082922 A JP61082922 A JP 61082922A JP 8292286 A JP8292286 A JP 8292286A JP S62238529 A JPS62238529 A JP S62238529A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- liquid crystal
- modulation element
- state
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title abstract description 11
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 35
- 230000005684 electric field Effects 0.000 claims description 10
- 239000004988 Nematic liquid crystal Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 description 10
- 239000012212 insulator Substances 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 4
- 239000000975 dye Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
未発明は1光変調素子、特に回折格子と液晶とを組み合
わせて液晶の屈折率を制御することにより入射光に所望
の回折現象を生じせしめる光変調素子に関する。[Detailed Description of the Invention] Technical Field> What has not yet been invented is a light modulation element, particularly a light modulation element that combines a diffraction grating and a liquid crystal to control the refractive index of the liquid crystal to produce a desired diffraction phenomenon in incident light. Regarding.
〈従来技術〉
従来から良く知られている光変調素子としては、 、I
′Lいに偏光方向が直交する様に配した一対の偏光板と
、この一対の偏光板間に配され一対の透明基板の相対す
る基板面に互い直交する配向処理を施して液晶を封入し
た素子とから成り、この液晶の配向状態をねじれた状態
と基板面に眞直に向いた状態との間でスイッチングを行
ない入射光の変調をする所謂TN(ツウィヌトネマチッ
ク)型の液晶表示素子がある。この種の表示素子は構成
が簡便で駆動が容易なことから多岐に亘り利用されてい
るが、2枚の偏光板を利用して光束の透過及び遮断を行
なう為に消色時、即ち光透過時の透過率が悪く光束利用
効率の面からは好ましい光変調素子とは言えなかった。<Prior art> Conventionally well-known light modulation elements include , I
A pair of polarizing plates are arranged so that the directions of polarization are perpendicular to each other, and a pair of transparent substrates are arranged between the pair of polarizing plates.The opposing surfaces of the substrates are aligned to be orthogonal to each other, and liquid crystal is encapsulated. The so-called TN (twin nematic) type liquid crystal display element modulates the incident light by switching the alignment state of the liquid crystal between a twisted state and a state facing straight toward the substrate surface. be. This type of display element has a simple structure and is easy to drive, so it is used in a wide variety of ways.However, since it uses two polarizing plates to transmit and block the light flux, it is difficult to change the color when decoloring, that is, when light is transmitted. The light transmittance was poor, and it could not be said to be a desirable light modulation element from the viewpoint of luminous flux utilization efficiency.
又、液晶を利用した同種の表示素子として。Also, as a similar type of display element using liquid crystal.
液晶分子に色素を混入させて用いる所謂ゲスト・ホスト
モードの液晶素子があるが、この表示素子に於ても色素
が介在する為に消色時の透過率は良くても70%程度で
あった。There is a so-called guest-host mode liquid crystal element that uses a dye mixed into liquid crystal molecules, but since the dye is present in this display element, the transmittance when decoloring is at best about 70%. .
一方、特公昭53−3928号公報やUSP4.251
,137等に於て反射型や透過型の位相回折格子と液晶
とを組合せた表示素子や色フィルター素子が開示されて
いる。これらで開示されている素子は確かに光束利用効
率は優れているが、特公昭53−3928号公報に開示
されている素子は単なる装飾効果を示すのみであり、文
字や画像を表示する表示素子や光束の透過、遮断を行な
う光変調素子としては満足出来るものではなかった。又
、USP4,251゜137に開示されている色フィル
ター素子は一対の対向する基板面に互いに配列方向が直
交する様に回折格子を形成し、この基板間に液晶を充填
して液晶分子の配向状態を制御することにより屈折率を
変え1回折格子を成す物質と液晶との屈折率差を変える
ことで分光透過率特性を可変にするものであり、光束利
用効率に優れ且つ可変色フィルターとして高性能を有す
る。しかしながら、この種の従来の回折格子を用いた光
変調素子は一般に静的状態に於ても入射光を回折してし
まっていた為、実際に表示素子とし、 て用いる際は無
表示状態即ち入射光束が全て透過する状態を維持する為
に常時電圧等を印加しておく必要があった。従って、電
力を多く消費する、液晶の配向状態等に依存する為に無
表示状態に於る素子の透過特性が不安定である等。On the other hand, Japanese Patent Publication No. 53-3928 and USP 4.251
, 137, etc., disclose display elements and color filter elements in which a reflective or transmissive phase diffraction grating is combined with a liquid crystal. The elements disclosed in these documents are certainly excellent in luminous flux utilization efficiency, but the element disclosed in Japanese Patent Publication No. 53-3928 merely exhibits a decorative effect, and is not a display element for displaying characters or images. However, it has not been satisfactory as a light modulation element for transmitting and blocking light beams. In addition, the color filter element disclosed in US Pat. By controlling the state, the refractive index is changed and the difference in refractive index between the substance that makes up the diffraction grating and the liquid crystal is changed, thereby making the spectral transmittance characteristics variable.It has excellent luminous flux utilization efficiency and is highly effective as a variable color filter. Has performance. However, since this type of conventional light modulation element using a diffraction grating generally diffracts incident light even in a static state, when actually used as a display element, it is required to be in a non-display state, i.e. It was necessary to constantly apply a voltage or the like in order to maintain a state in which all the luminous flux was transmitted. Therefore, a large amount of power is consumed, and the transmission characteristics of the element in the non-display state are unstable because it depends on the alignment state of the liquid crystal.
表示素子としては好ましくない問題をかかえていた。It had problems that were undesirable as a display element.
〈発明の概要〉 本発明の目的は、上記従来の問題点に鑑み。<Summary of the invention> The object of the present invention is to solve the above-mentioned conventional problems.
安定した無表示状態が得られ1表示素子として用いるの
に好適な光変調素子を提供することにある。The object of the present invention is to provide a light modulation element which can provide a stable non-display state and is suitable for use as a single display element.
L足口的を達成する為に1本発明に係る光変調素子は、
所定の部材から成る位相型回折格子と該回折格子の溝部
に存する液晶と該液晶の配向状態を変化せしめる制御手
段とを有する素子であって、前記制御手段が前記回折格
子の側面に設けた電極を有することを特徴とする。In order to achieve the L-leg effect, the light modulation element according to the present invention is as follows:
An element comprising a phase type diffraction grating made of a predetermined material, a liquid crystal existing in the grooves of the diffraction grating, and a control means for changing the alignment state of the liquid crystal, the control means comprising an electrode provided on a side surface of the diffraction grating. It is characterized by having the following.
尚1本発明の更なる特徴は以下に示す実施例より明らか
になるであろう。Further features of the present invention will become clear from the Examples shown below.
〈実施例〉
第1図(A)、(B)は本発明に係る光変調素子の一実
施例を示す模式図で、1は透明基板、2は透明電極、3
は透明絶縁膜、4は液、11□、5は回折格子を成す透
明絶縁体、6は透明保護膜で絶縁膜を兼ねる。7はスイ
ッチ、8は駆動電源、9は入射光、10は零次回折光、
10’は高次回折光を示す。<Example> FIGS. 1(A) and 1(B) are schematic diagrams showing an example of the light modulation element according to the present invention, in which 1 is a transparent substrate, 2 is a transparent electrode, and 3
4 is a transparent insulating film, 4 is a liquid, 11□, 5 is a transparent insulator forming a diffraction grating, and 6 is a transparent protective film which also serves as an insulating film. 7 is a switch, 8 is a driving power source, 9 is incident light, 10 is zero-order diffracted light,
10' indicates higher-order diffraction light.
こ、二で、第1図(A)はスイッチ7がOFF状ff4
の電界無印加の状態、第1図(B)はスイッチ7がON
状態の電界印加状yEを示しており、又1本実施例に於
ては液晶1として正誘電性ネブチツク液晶を用いるもの
とする。In FIG. 1(A), the switch 7 is in the OFF state ff4
In the state where no electric field is applied, Fig. 1 (B) shows that switch 7 is ON.
In this embodiment, it is assumed that a positive dielectric Nebchik liquid crystal is used as the liquid crystal 1.
木実施例に於る光変調素子は、一対の透明、L(板1の
夫々の片面に透明絶縁膜を形成し、一方の^叩ルNσ1
の洟1111 Mb腓11り31−に漬111給帰休5
からなる矩形状の回折格子を形成して、該回折格子の側
面及び透明絶縁膜3と該回折格子との界面に透明電極2
を設け、該回折格子を透明保護1!’26で被って1回
折格子を右する透明基板1と他方の透明基板1とを透明
保護膜3が対向する様に貼り合わせて、間隙部に液晶4
を封入して構成されている。尚、隣り合う凸部の透明電
極2はリード線を介して駆動電源8及びスイッチ7と接
続されている。更に透明絶縁膜3には昨直配向処理が施
されており、液晶4の分子は垂直配向、所謂ホメオトロ
ピック配向をしている。The light modulation element in the wooden embodiment is formed by forming a transparent insulating film on one side of each of a pair of transparent plates 1,
NOSHI 1111 Mb 11 RI 31- NIZUKI 111 paid furlough 5
A rectangular diffraction grating made of
is provided, and the diffraction grating is transparently protected 1! The transparent substrate 1 covering the first diffraction grating and the other transparent substrate 1 are pasted together so that the transparent protective film 3 faces each other, and the liquid crystal 4 is placed in the gap.
It is composed of enclosed. Note that the transparent electrodes 2 of adjacent convex portions are connected to a drive power source 8 and a switch 7 via lead wires. Furthermore, the transparent insulating film 3 has been subjected to a vertical alignment treatment, so that the molecules of the liquid crystal 4 are vertically aligned, so-called homeotropic alignment.
以ド1本光変調素子の機能に関して述べる。The function of the single-wire optical modulation element will be described below.
第1図(A)に示す状態、即ちスイッチ7がOFFで透
明電極2間に電圧が印加されていない状態では、前述の
如く液晶4はホメオトロピック配向をしており、基板1
に対して垂直な方向へ長軸が向いている。この時、入射
光9はその偏光状態に係わりなく液晶4の常屈折率no
を感じる為、透明電極2と透明保護nり6の膜厚が回折
格子のライン幅(凸部の幅)に比べ十分小さいとすれば
、透明絶縁体5の屈折率ngを液晶4の常屈折率noと
等しく設定しておくことにより、入射光9は回折作用を
受けることなく水素子を素通りし、零次の出射光lOと
して出射する。In the state shown in FIG. 1(A), that is, in the state where the switch 7 is OFF and no voltage is applied between the transparent electrodes 2, the liquid crystal 4 is homeotropically aligned as described above, and the substrate 1
The long axis is oriented perpendicular to. At this time, the incident light 9 has the ordinary refractive index no of the liquid crystal 4 regardless of its polarization state.
If the film thickness of the transparent electrode 2 and the transparent protection n 6 is sufficiently smaller than the line width (width of the convex portion) of the diffraction grating, then the refractive index n of the transparent insulator 5 can be expressed as the ordinary refraction of the liquid crystal 4. By setting the ratio equal to no, the incident light 9 passes through the hydrogen atoms without being subjected to diffraction and is emitted as zero-order outgoing light IO.
一方、第1図(B)に示す状態、即ちスイッチ7がON
で透明電極2間に所定電圧が印加されている状態では、
液晶4の分子の長袖は電界方向に揃い、図示する様に基
板lの面に対して平行な方向へ配向される(ホモジニア
ス配向)。On the other hand, the state shown in FIG. 1(B), that is, the switch 7 is ON.
When a predetermined voltage is applied between the transparent electrodes 2,
The long sleeves of the molecules of the liquid crystal 4 are aligned in the direction of the electric field, and are aligned in a direction parallel to the plane of the substrate l (homogeneous alignment) as shown.
この時、入射光9の偏光成分の内、液晶4の配向方向と
同方向の偏光成分は液晶4の異常屈折率neを感じる。At this time, among the polarized light components of the incident light 9, the polarized light components in the same direction as the alignment direction of the liquid crystal 4 sense the extraordinary refractive index ne of the liquid crystal 4.
従って、この偏光成分の光が液晶4の通過する際の光路
長と透明絶縁体5を通過する際の光路長との間の光路長
差が丁度入/2(入は入射光の波長)になる様に液晶4
の異常屈折率neと透明絶縁体5の屈折率ngと回折格
子の高さTとを設定することにより、入射光9は零次の
出射光10となることはなく全て高次回折光10’とな
り出射する。尚、高次回折光10’の回折角(出射角)
は波長入と回折格子のピッチに依存するものである。Therefore, the difference in optical path length between the optical path length of this polarized component light when it passes through the liquid crystal 4 and the optical path length when it passes through the transparent insulator 5 is exactly 0/2 (where 0 is the wavelength of the incident light). LCD 4
By setting the extraordinary refractive index ne of the transparent insulator 5, the refractive index ng of the transparent insulator 5, and the height T of the diffraction grating, the incident light 9 does not become the zero-order output light 10, but all becomes the higher-order diffracted light 10'. Emits light. In addition, the diffraction angle (output angle) of the higher-order diffracted light 10'
depends on the wavelength and the pitch of the diffraction grating.
1!uち、第1図(A)、(B)に示す様な矩形状回折
格子に於る零次透過回折光(図中、出射光10)の回折
効率η0は次の(1)式で近似的に表わすことが出来る
為、所定波長入の光の回折効率η0をη040とするに
は(2)式の条件を満足させれば良いものである。1! The diffraction efficiency η0 of the zero-order transmitted diffracted light (output light 10 in the figure) in a rectangular diffraction grating as shown in Figures 1 (A) and (B) is approximated by the following equation (1). Therefore, in order to set the diffraction efficiency η0 of light incident at a predetermined wavelength to η040, it is sufficient to satisfy the condition of equation (2).
夕 1 ΔnT
η0−T(1+cos(2π) ) −一−−(1)入
Δ n T = (m + 7) 入
(m=0.1,2.−−) −−(2)
但し、Δn=lne−nglである。Evening 1 ΔnT η0-T(1+cos(2π)) -1--(1) In Δn T = (m + 7) In (m=0.1, 2.--) --(2)
However, Δn=lne−ngl.
尚、第1図(B)に於て、入射光9の偏光成分の内、液
晶4の配向方向と垂交する方向、即ち回折格子の溝方向
に偏光した偏光成分はスイッチ7がONの電界印加状態
であっても、液晶4の常屈折率noを感じる。従って、
入射光9のこの偏光成分は本実施例に於る光変調素子で
は変調し得ない。従って、任意の偏光特性の入射光を変
調する為には、例えば第1図に示す如き素子を2個用い
て互いに回折格子の配列方向が直交する様に重畳させて
構成すれば良く1重畳した夫々の素子が独立して互いに
直交する偏光成分を変調することが可能である。In FIG. 1(B), among the polarized light components of the incident light 9, the polarized light components polarized in the direction perpendicular to the alignment direction of the liquid crystal 4, that is, in the direction of the grooves of the diffraction grating, are affected by the electric field when the switch 7 is turned on. Even in the applied state, the ordinary refractive index no of the liquid crystal 4 is felt. Therefore,
This polarization component of the incident light 9 cannot be modulated by the light modulation element in this embodiment. Therefore, in order to modulate incident light with arbitrary polarization characteristics, it is sufficient to use two elements as shown in FIG. Each element can independently modulate mutually orthogonal polarization components.
以上説明した様に、本実施例に係る光変調素子に於ては
、電界無印加時に°“明”°状態、即ち全透過状態で、
電界印加時には“暗”、即ぢ変調状態(表示状態)が得
られる為、通常状態(゛°明゛°状態)での電流消費が
なく、素子を駆動する為に用いられる駆動回路の設計自
由度も増す。As explained above, the light modulation element according to this embodiment is in the "bright" state, that is, in the fully transparent state when no electric field is applied.
When an electric field is applied, a "dark" modulation state (display state) can be obtained immediately, so there is no current consumption in the normal state (bright state), and there is freedom in designing the drive circuit used to drive the element. The frequency also increases.
又、透明電極の電蝕速度もRくなり、素子としての信頼
性が著しく向上する。従って、表示素子や色フイルタ−
、光スイツチ等1本光変調素子の適用範囲は大きく拡が
っている。Furthermore, the electrolytic corrosion rate of the transparent electrode is also increased to R, and the reliability of the device is significantly improved. Therefore, display elements and color filters
The scope of application of single optical modulation elements such as optical switches and the like is greatly expanding.
更に、出熱の市ながら、従来の液晶を利用した表示素子
の様に偏光板や光吸収性物質(例えば色素)を用いない
為に光束利用効率に優れる。Furthermore, although it generates heat, it has excellent luminous flux utilization efficiency because it does not use polarizing plates or light-absorbing substances (such as dyes) unlike conventional display elements using liquid crystals.
未発明に係る光変調素子を成す回折格子は第1図から解
る様に、凹凸のレリーフパターンから成る所謂位相型の
回折格子であり、この種のレリーフパターンの形成する
方法としては1例えばフォトリングラフイーとドライエ
ツチングを組み合わせた方法、熱硬化性樹脂あるいは紫
外線硬化性樹脂等を用いたレプリカ法、ルーリングエン
ジンを用いた切削法あるいはエンボス法等の各種方法が
挙げられる。As can be seen from FIG. 1, the diffraction grating constituting the optical modulation element according to the invention is a so-called phase-type diffraction grating consisting of a relief pattern of unevenness. Various methods include a method combining graphie and dry etching, a replica method using a thermosetting resin or an ultraviolet curable resin, a cutting method using a ruling engine, or an embossing method.
又、本実施例に於ては回折格子の形状として矩形状のも
のを有する素子を示しているが、この形状が如何なる形
であっても光の変調は可能である。例えば、三角波状や
正弦波状、及び非対称形状等各種形状の回折格子を用い
ることが出来1回折光間の分離角は回折格子のピッチと
入射光の波長に依存し1例えば零次透過回折光の分光透
過率特性は回折格子の形状(波形プロフィール)と高さ
T、及び屈折率差Δnに主として依存する。即ち、矩形
状回折格子に於る零次透過回折光の回折効率η0を表わ
す前記(1)式は、三角波状や正弦波状の回折格子に於
る回折効率に対しては適用出来ず、設計の際は夫々の回
折格子形状に対応する式を用いる。Further, although this embodiment shows an element having a rectangular diffraction grating, light modulation is possible regardless of the shape. For example, diffraction gratings of various shapes such as triangular wave, sinusoidal, and asymmetric shapes can be used, and the separation angle between the diffracted lights depends on the pitch of the diffraction grating and the wavelength of the incident light. The spectral transmittance characteristics mainly depend on the shape (waveform profile) and height T of the diffraction grating, and the refractive index difference Δn. In other words, the above equation (1), which expresses the diffraction efficiency η0 of the zero-order transmitted diffraction light in a rectangular diffraction grating, cannot be applied to the diffraction efficiency in a triangular or sinusoidal diffraction grating, and the design In this case, a formula corresponding to each diffraction grating shape is used.
又1本実施例では所謂透過型の光変調素子を示している
が、反射型の光変調素子として用いることも可能である
。この場合、第1図に於る一対の透明電極3の内一方を
使用波長(域)に於て反射特性を備えた部材で構成した
り、又は基板1と透明電極3の界面に反射膜を施すか、
回折格子を成す凹凸のレリーフパターン全面に反射膜を
形成すれば良い。Furthermore, although this embodiment shows a so-called transmission type light modulation element, it is also possible to use it as a reflection type light modulation element. In this case, one of the pair of transparent electrodes 3 in FIG. Do you give it?
A reflective film may be formed on the entire surface of the uneven relief pattern forming the diffraction grating.
更に、第1図に示す素子に於ては透明電極2が透明保6
! +1!23との界面にも形成しであるが。Furthermore, in the device shown in FIG.
! It is also formed at the interface with +1!23.
この界面には必ずしも透明電極2を形成する必要はなく
、第1図の素子の如く所謂正読電性ネマチック液晶に対
して横電界(基板1の面に平行な電界)を印加出来れば
良い。従って、通常5回折格子を形成している透明絶縁
体の側壁に形成されていれば良い。又、液晶の配向状態
を制御する手段としては電界に限られるものではなく、
熱や磁界等を発する制御手段を用いることも可能である
が、素子構成や制御方法の簡便さや応答特性等を鑑みる
と電界による制御が最も好ましい。It is not necessarily necessary to form the transparent electrode 2 at this interface, and it is sufficient if a transverse electric field (an electric field parallel to the surface of the substrate 1) can be applied to the so-called correct reading nematic liquid crystal as in the device shown in FIG. Therefore, it is sufficient that it is formed on the side wall of the transparent insulator that normally forms the five-diffraction grating. Furthermore, the means for controlling the alignment state of liquid crystals is not limited to electric fields;
Although it is possible to use a control means that generates heat, a magnetic field, etc., control using an electric field is most preferable in view of the element configuration, simplicity of the control method, response characteristics, etc.
〈発明の効果〉
以上、未発明に係る光変調素子は、静的状態に於て全透
過状態を得て、無表示状態の安定化を可能にした表示素
子や色フィルター等に好適な素子である。<Effects of the Invention> As described above, the uninvented light modulation element is an element suitable for display elements, color filters, etc., which can obtain a fully transparent state in a static state and can stabilize a non-display state. be.
第1図(A)、(B)は本発明に係る光変調素子の一実
施例を示す模式図で、第1図(A)は静的状態、第1図
(B)は駆動状態を示す。
1−−−−−− =−m−透明基板
2−−−−−−−−−一透明電極
3−−−−−−−−−一透明絶縁nり
4−−−−一−−−−−液晶
5−−−−−−−−−一透明絶縁体(回折格子)6−−
−−一−−−−−透明保護膜
7−−−−−−−−−−スイッチ
8−一−−−−−−−−駆動電源
9−−−−一−−−−−人射光FIGS. 1(A) and 1(B) are schematic diagrams showing one embodiment of the light modulation element according to the present invention, with FIG. 1(A) showing a static state and FIG. 1(B) showing a driving state. . 1--------- =-m-transparent substrate 2-------1-transparent electrode 3--1 transparent insulation 4------1-- --Liquid crystal 5-----Transparent insulator (diffraction grating) 6--
---1--------Transparent protective film 7------------Switch 8--1---------Drive power supply 9------1--Infrared light
Claims (3)
に存する液晶と該液晶の配向状態を変化せしめる制御手
段とを有する素子であって、前記制御手段が前記回折格
子の側面に設けた電極を有する光変調素子。(1) An element comprising a diffraction grating made of a predetermined member, a liquid crystal existing in the grooves of the diffraction grating, and a control means for changing the alignment state of the liquid crystal, the control means being provided on a side surface of the diffraction grating. A light modulation element with electrodes.
ある特許請求の範囲第(1)項記載の光変調素子。(2) The light modulation element according to claim (1), wherein the liquid crystal is a nematic liquid crystal having positive dielectricity.
前記回折格子の凸部側面に電極を有する特許請求の範囲
第(2)項記載の光変調素子。(3) The control means is means for applying an electric field,
The light modulation element according to claim 2, further comprising an electrode on a side surface of a convex portion of the diffraction grating.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61082922A JPH0652353B2 (en) | 1986-04-09 | 1986-04-09 | Light modulator |
US07/033,773 US4850681A (en) | 1986-04-07 | 1987-04-03 | Optical modulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61082922A JPH0652353B2 (en) | 1986-04-09 | 1986-04-09 | Light modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62238529A true JPS62238529A (en) | 1987-10-19 |
JPH0652353B2 JPH0652353B2 (en) | 1994-07-06 |
Family
ID=13787731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61082922A Expired - Fee Related JPH0652353B2 (en) | 1986-04-07 | 1986-04-09 | Light modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0652353B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006178302A (en) * | 2004-12-24 | 2006-07-06 | Asahi Glass Co Ltd | Liquid crystal cell driven by lateral electric field |
WO2023199892A1 (en) * | 2022-04-13 | 2023-10-19 | 株式会社SteraVision | Liquid crystal panel, optical switching element, and method for manufacturing liquid crystal panel substrate |
-
1986
- 1986-04-09 JP JP61082922A patent/JPH0652353B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006178302A (en) * | 2004-12-24 | 2006-07-06 | Asahi Glass Co Ltd | Liquid crystal cell driven by lateral electric field |
WO2023199892A1 (en) * | 2022-04-13 | 2023-10-19 | 株式会社SteraVision | Liquid crystal panel, optical switching element, and method for manufacturing liquid crystal panel substrate |
JP2023156997A (en) * | 2022-04-13 | 2023-10-25 | 株式会社SteraVision | Liquid crystal panel and optical switching element |
Also Published As
Publication number | Publication date |
---|---|
JPH0652353B2 (en) | 1994-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8520170B2 (en) | Low-twist chiral optical layers and related fabrication methods | |
JPH10282491A (en) | Liquid crystal display | |
US4822146A (en) | Optical modulation element | |
US20050002101A1 (en) | Dynamically controllable light modulator using phase diffraction grating and display using the same | |
JPH0519687B2 (en) | ||
JPS62238529A (en) | Optical modulation element | |
JPH06148692A (en) | Wavelength variable liquid crystal optical filter | |
JP2001183644A (en) | Liquid crystal display device | |
JPH0776815B2 (en) | Light modulator | |
JP3144011B2 (en) | Liquid crystal phase grating | |
JPS62235926A (en) | Optical modulation element | |
JPH0652351B2 (en) | Light modulator | |
JPS63250621A (en) | Optical modulation element | |
JPS62237423A (en) | Light modulating element | |
JPH0652348B2 (en) | Light modulator | |
JPS62237424A (en) | Light modulating element | |
JP2517589B2 (en) | Light modulation element | |
JPS62238520A (en) | Optical modulator | |
KR100683137B1 (en) | Reflective type fringe field switching mode lcd | |
JPS62238519A (en) | Optical modulator | |
JPH0652350B2 (en) | Light modulator | |
JPS62238516A (en) | Optical modulator | |
JPS6186731A (en) | Liquid crystal element | |
JPH0776814B2 (en) | Light modulator | |
JPS61193123A (en) | Optical modulating equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |