[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62235785A - Veritical field-effect transistor - Google Patents

Veritical field-effect transistor

Info

Publication number
JPS62235785A
JPS62235785A JP8050886A JP8050886A JPS62235785A JP S62235785 A JPS62235785 A JP S62235785A JP 8050886 A JP8050886 A JP 8050886A JP 8050886 A JP8050886 A JP 8050886A JP S62235785 A JPS62235785 A JP S62235785A
Authority
JP
Japan
Prior art keywords
region
diode
conductivity type
outer periphery
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8050886A
Other languages
Japanese (ja)
Inventor
Hajime Sawajima
澤島 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8050886A priority Critical patent/JPS62235785A/en
Publication of JPS62235785A publication Critical patent/JPS62235785A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the surge resistance amount of a vertical field effect transistor by forming a diode region deeper than a well region on the outer periphery of the transistor to reduce the withstanding voltage of the outer periphery from an element to eliminate the operation of a parasitic transistor in the element. CONSTITUTION:A second conductivity type well region 1 formed on one main surface of a first conductivity type semiconductor substrate 8, a first conductivity type source region 2 formed in the region 1, and a gate electrode 3 formed through an insulating film 4 on the region 1 between the region 2 and the substrate 8 are formed. A second conductivity type diode region 1. deeper than the region 1 is formed on the outer periphery of the transistor. Thus, when an overvoltage which exceeds the breakdown voltage of the diode region is applied, a diode of the region 1' and the substrate 8 is broken down, and a breakdown current flows only to the outer periphery. In this case, a parasitic transistor formed of the drain 8, the layer 1 and the layer 2 does not operate at all, and an element is not thus damaged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型電界効果トランジスタ(以下縦型MO8F
ETと略す)K関し、特に内蔵される逆方向ダイオード
のサージ耐量向上に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vertical field effect transistor (hereinafter referred to as a vertical MO8F transistor).
(abbreviated as ET), it particularly relates to improving the surge resistance of the built-in reverse diode.

〔従来の技術〕[Conventional technology]

従来、縦型MO8FETは第セ図に示すように、寄生ト
ランジスタアクション防止のため、pウェル領域1,1
′間をソース電極6でシ1−トしており、ソース2−ド
レイン9間にダイオードが内蔵された形となっている。
Conventionally, vertical MO8FETs have p-well regions 1 and 1 to prevent parasitic transistor action, as shown in Fig.
A diode is built in between the source 2 and the drain 9.

このダイオードを積極的に働かせようとの応用が最近増
加傾向にあり、特に、L負荷転流時の過電圧保護用ダイ
オードとして使う用途が増えてきている。
Recently, there has been an increase in the number of applications in which diodes are used to actively work, and in particular, their use as overvoltage protection diodes during L load commutation has been increasing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の機な用途に用いる場合、内蔵ダイオードは云わゆ
るツェナーダイオードの如く働き、サージ電圧が印加さ
れた場合ブレークダウンして一定電圧で過電圧を防ぎ、
そのままの状態で過電正分のエネルギーを電流として流
す。本来トランジスタアクシロン防止のために考慮した
以上の電流がダイオードを流れる事となるため、従来の
構造では、素子部でのトランジスタアクシロンにより、
ツェナーダイオードを外付けした場合に比べてはるかに
小さなエネルギーで、素子部が破壊してしまうと云う欠
点があった。
When used in the above-mentioned applications, the built-in diode acts like a so-called Zener diode, and when a surge voltage is applied, it breaks down and maintains a constant voltage to prevent overvoltage.
In this state, the energy equal to the amount of the overcurrent flows as a current. In the conventional structure, the transistor axilon in the element part causes more current to flow through the diode than was originally considered to prevent the transistor axilon.
The drawback was that the element part would be destroyed by much less energy than when an external Zener diode was attached.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は縦型MO8FETとして動作する素子部と逆方
向ダイオードとして動作する外周部とに機能を構造でわ
け、外周部の耐圧を素子部よシ低くする事により、素子
部にある寄生トランジスタが動作を行こさない様にして
、耐量向上をはかるものである。
The present invention has a structure that divides the functions into an element part that operates as a vertical MO8FET and an outer peripheral part that operates as a reverse diode, and by making the breakdown voltage of the outer peripheral part lower than that of the element part, the parasitic transistor in the element part operates. This is intended to improve durability by preventing this from occurring.

本発明の縦型電界効果トランジスタは、第1導電型の半
導体基板の一重部に形成された第2導電型のウェル領域
と、このウェル領域内に形成された第1導電型のソース
領域と、ソース領域と半導体基板との間のウェル領域の
表面に絶縁膜を介して形成されたゲート電極とを有する
縦型電界効果トランジスタにおいて、この縦型電界効果
トランジスタの外周にウェル領域より深い第2導電型の
ダイオード領域を設けたことを特徴とする。
A vertical field effect transistor of the present invention includes: a well region of a second conductivity type formed in a single portion of a semiconductor substrate of a first conductivity type; a source region of a first conductivity type formed within the well region; In a vertical field effect transistor having a gate electrode formed on the surface of a well region between a source region and a semiconductor substrate with an insulating film interposed therebetween, a second conductive layer deeper than the well region is formed on the outer periphery of the vertical field effect transistor. It is characterized by having a type diode region.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明をNチャネル縦型MO8FETに応用し
た一実施例の縦断面図である。N−の半導体基板8の裏
面側にN のドレイン層9を形成し、表面側KPウェル
層1およびダイオード領域IIを+ 形成し、Pウェル層1内にN のソース層2を形成する
。Pウェル層1およびダイオード領域1′にPウェル高
濃度層7を形成し、ソース電極の配線で接続する。ゲー
ト電極3をソース層2と半導体基板8の間のPウェル層
1の上にゲート絶縁膜4を介して形成し、ゲート電極3
とソース電極6の配線とは絶縁膜5で絶縁し、縦型MO
8FETが形成される。ダイオード領域1′ は縦型M
O8FETの外周に形成する。ここで外周のダイオード
領域1′は縦型MO8FETの形成されている素子部の
Pウェル層1よりも深く押込んで、素子部より深く形成
する。これによって外周のダイオード領域の耐圧は、素
子部のPウェル層より低くなる。
FIG. 1 is a longitudinal sectional view of an embodiment in which the present invention is applied to an N-channel vertical MO8FET. An N2 drain layer 9 is formed on the back side of the N- type semiconductor substrate 8, a front side KP well layer 1 and a diode region II are formed on the + side, and an N2 source layer 2 is formed in the P well layer 1. A P-well high concentration layer 7 is formed in the P-well layer 1 and the diode region 1', and connected by a source electrode wiring. A gate electrode 3 is formed on the P-well layer 1 between the source layer 2 and the semiconductor substrate 8 with a gate insulating film 4 interposed therebetween.
and the wiring of the source electrode 6 are insulated by an insulating film 5, and the vertical MO
8FETs are formed. Diode region 1' is vertical type M
Formed on the outer periphery of O8FET. Here, the diode region 1' on the outer periphery is pushed deeper than the P well layer 1 of the element part where the vertical MO8FET is formed, and is formed deeper than the element part. As a result, the diode region on the outer periphery has a lower breakdown voltage than the P-well layer in the element portion.

次にかような素子に外部より過電圧が印加された場合の
動作を説明する。ダイオード領域のブレークダウン電圧
をこえる過電圧が印加されると、外周のダイオード領域
1′ と半導体基板8とのダイオードがブレークダウン
し、ブレークダウン電流が、過電圧のエネルギーに応じ
て、外周部のみに流れる。この場合素子部は全く動作し
ないため、ドレイン9−Pウェル層1−ソース層2で形
成される寄生トランジスタは全く動作せずこのため素子
部は破゛壊をまぬがれる。また外周部のダイオードのサ
ージ耐量はツェナーダイオードと全く同機に面積に比例
するため、必要に応じて耐量設定も可能である。
Next, the operation when an overvoltage is applied to such an element from the outside will be explained. When an overvoltage exceeding the breakdown voltage of the diode region is applied, the diode between the outer diode region 1' and the semiconductor substrate 8 breaks down, and a breakdown current flows only to the outer circumference depending on the energy of the overvoltage. . In this case, since the element section does not operate at all, the parasitic transistor formed by the drain 9-P well layer 1-source layer 2 does not operate at all, and therefore the element section is prevented from being destroyed. In addition, the surge resistance of the outer peripheral diode is proportional to the area, just like the Zener diode, so it is possible to set the surge resistance as necessary.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、縦型MO8FETの形成さ
れている素子部の外周に、低耐圧のダイオードとして働
くダイオード領域を設ける事によって、ダイオードの過
電圧耐量を独立に大きく設計できる効果がある。
As described above, the present invention has the effect that the overvoltage withstand capacity of the diode can be independently designed to be large by providing a diode region that functions as a low voltage diode on the outer periphery of the element portion where the vertical MO8FET is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のNチャネル縦型型界効果ト
ランジスタの縦断面図、第2図は従来の縦型電界効果ト
ランジスタの断面図である。 1・・・・・・Pウェル層、1′・・・・・・ダイオー
ド領域、2・・・・・・ソース層、3・・・・・・ゲー
ト電極、4・・・・・・ゲート絶縁膜、5・・・・・・
絶縁膜、6・・・・・・ソース電極、7・・・・・・P
ウェル高濃度層、8・・・・・・半導体基板、9・・・
・・・ドレイン層。 6一
FIG. 1 is a longitudinal sectional view of an N-channel vertical field effect transistor according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional vertical field effect transistor. 1...P well layer, 1'...diode region, 2...source layer, 3...gate electrode, 4...gate Insulating film, 5...
Insulating film, 6...source electrode, 7...P
Well high concentration layer, 8... Semiconductor substrate, 9...
...Drain layer. 61

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板の一主面に形成された第2導電
型のウェル領域と、該ウェル領域内に形成された第1導
電型のソース領域と、ソース領域と半導体基板との間の
ウェル領域の表面に絶縁膜を介して形成されたゲート電
極とを有する縦型電界効果トランジスタにおいて、該縦
型電界効果トランジスタの外周に前記ウェル領域より深
い第2導電型のダイオード領域を設けたことを特徴とす
る縦型電界効果トランジスタ。
A well region of a second conductivity type formed on one principal surface of a semiconductor substrate of a first conductivity type, a source region of a first conductivity type formed within the well region, and a region between the source region and the semiconductor substrate. In a vertical field effect transistor having a gate electrode formed on the surface of a well region with an insulating film interposed therebetween, a diode region of a second conductivity type deeper than the well region is provided on the outer periphery of the vertical field effect transistor. A vertical field effect transistor characterized by
JP8050886A 1986-04-07 1986-04-07 Veritical field-effect transistor Pending JPS62235785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8050886A JPS62235785A (en) 1986-04-07 1986-04-07 Veritical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050886A JPS62235785A (en) 1986-04-07 1986-04-07 Veritical field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62235785A true JPS62235785A (en) 1987-10-15

Family

ID=13720255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050886A Pending JPS62235785A (en) 1986-04-07 1986-04-07 Veritical field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62235785A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215067A (en) * 1988-02-24 1989-08-29 Hitachi Ltd Vertical insulating gate field effect transistor
JPH03105980A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Semiconductor device and manufacture thereof
US5191395A (en) * 1990-04-02 1993-03-02 Fuji Electric Co., Ltd. Mos type semiconductor device with means to prevent parasitic bipolar transistor
JP2006140372A (en) * 2004-11-15 2006-06-01 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
WO2010061244A1 (en) * 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device and switch apparatus comprising the same
US8604560B2 (en) 2008-11-27 2013-12-10 Freescale Semiconductor, Inc. Power MOS transistor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206073A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Mis semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206073A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Mis semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215067A (en) * 1988-02-24 1989-08-29 Hitachi Ltd Vertical insulating gate field effect transistor
JPH03105980A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Semiconductor device and manufacture thereof
US5191395A (en) * 1990-04-02 1993-03-02 Fuji Electric Co., Ltd. Mos type semiconductor device with means to prevent parasitic bipolar transistor
JP2006140372A (en) * 2004-11-15 2006-06-01 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
WO2010061244A1 (en) * 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device and switch apparatus comprising the same
US8530953B2 (en) 2008-11-27 2013-09-10 Freescale Semiconductor, Inc. Power MOS transistor device and switch apparatus comprising the same
US8604560B2 (en) 2008-11-27 2013-12-10 Freescale Semiconductor, Inc. Power MOS transistor device

Similar Documents

Publication Publication Date Title
US4819044A (en) Vertical type MOS transistor and its chip
US4509067A (en) Semiconductor integrated circuit devices with protective means against overvoltages
JP3485655B2 (en) Composite MOSFET
JP2692350B2 (en) MOS type semiconductor device
JPH0837284A (en) Semiconductor integrated circuit device
JPH0888323A (en) Semiconductor integrated circuit device
JPH06508958A (en) monolithic integrated circuit device
US5005061A (en) Avalanche stress protected semiconductor device having variable input impedance
JPH11261011A (en) Protection circuit for semiconductor integrated circuit device
JP3189589B2 (en) Insulated gate type semiconductor device
JPH03180074A (en) Semiconductor device
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPS62235785A (en) Veritical field-effect transistor
US5298770A (en) Power switching MOS transistor
US4922316A (en) Infant protection device
JP2004031980A (en) Composite mosfet
US6747315B1 (en) Semiconductor device having MOS field-effect transistor
JP3283736B2 (en) Semiconductor integrated circuit device
JPH0553074B2 (en)
JP2611639B2 (en) Semiconductor device
JPH06177328A (en) Mis transistor for i/o protecting element
JPH0763075B2 (en) Semiconductor integrated circuit device
JP3146650B2 (en) Power integrated circuit
JPS63172468A (en) Input protective circuit
JPH10223843A (en) Protective circuit of semiconductor device