[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62228423A - Method for collecting information on refining - Google Patents

Method for collecting information on refining

Info

Publication number
JPS62228423A
JPS62228423A JP7094686A JP7094686A JPS62228423A JP S62228423 A JPS62228423 A JP S62228423A JP 7094686 A JP7094686 A JP 7094686A JP 7094686 A JP7094686 A JP 7094686A JP S62228423 A JPS62228423 A JP S62228423A
Authority
JP
Japan
Prior art keywords
blowing
refining
lance
gas
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7094686A
Other languages
Japanese (ja)
Inventor
Yukio Takahashi
幸雄 高橋
Yasuo Kishimoto
康夫 岸本
Hideji Takeuchi
秀次 竹内
Tetsuya Fujii
徹也 藤井
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7094686A priority Critical patent/JPS62228423A/en
Publication of JPS62228423A publication Critical patent/JPS62228423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To accurately collect information to represent the entire part of a steel by temporarily injecting an inert gas from a top blowing lance for injecting a refining gas which has a photodetecting part of a fiber scope connecting to a measuring instrument at the top end and collecting the prescribed information. CONSTITUTION:The photodetecting part 8 of the fiber scope connecting via a fiber cable 9 to a two-color pyrometer 4 and a television camera 5 is attached to the top end of the top blowing lance 1. After the inside of a converter 2 is thoroughly preheated, the molten iron is charged therein and gaseous N2 is supplied from bottom blowing tuyeres 6 into the converter. Gaseous O2 is supplied from the top blowing lance 1 to execute blowing. The inert gas is temporarily introduced in the converter in place of the refining gas from the top blowing lance 1 and the temp. on the bath surface is measured by the two- color pyrometer 4, then the temp. in the bath is measured by a sub-lance at the time of collecting the information on the refining at the bath surface in the stage of blowing. The various kinds of the average data on the in-furnace conditions are thereby collected and the accuracy of blowing is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶鉄、溶鋼の成分組成や温度などの精錬情報
を浴面を観察することによって採取する方法に関するも
のであり、溶融還元炉や転炉的溶湯浴面に臨む位置に垂
下したファイバースコープを内装した精錬ガス噴射用上
吹きランスにより、各種の冶金情報を得る方法に関して
の提案である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for collecting refining information such as the composition and temperature of molten iron and molten steel by observing the bath surface. This is a proposal for a method for obtaining various metallurgical information using a top-blowing lance for injecting refining gas equipped with a fiberscope suspended in a position facing the molten metal bath surface in a converter.

(従来の技術) 従来、転炉内の状況、とりわけ溶鋼浴面の状況を的確に
把握し、その情報を分析して操業ならびに吹錬制御に役
立てるための精錬情報の採取はサブランスによる方法が
最も一般的である。
(Conventional technology) Conventionally, the best way to accurately grasp the situation inside the converter, especially the situation on the surface of the molten steel bath, and to collect refining information in order to analyze that information and use it for operation and blowing control is by using a sublance method. Common.

これに対し最近、実開昭60−9957号として開示さ
れたファイバースコープを内装した上吹きランスを使う
技術が、上記サブランスによるものの改良技術として提
案されている。この既知技術は、ランス先端のノズル部
に設けたファイバースコープの受光部を介し吹錬中の火
点部における溶鋼の温度、成分組成を光学的信号として
取出し、電気信号に変換して所定の精錬情報とする方法
である。
On the other hand, recently, a technology using a top-blown lance equipped with a fiber scope, disclosed in Japanese Utility Model Application Publication No. 60-9957, has been proposed as an improvement over the above-mentioned sub-lance. This known technology extracts the temperature and composition of molten steel at the hot point during blowing as optical signals through the light receiving part of a fiber scope installed in the nozzle part at the tip of the lance, converts them into electrical signals, and performs the specified refining process. This is a method of obtaining information.

かかる技術は、実開昭60−9957号公報に記載され
ているような種々の利点があるが、次のような問題点も
残していた。
Although this technique has various advantages as described in Japanese Utility Model Application Publication No. 60-9957, it still has the following problems.

(発明が解決しようとする問題点) 本発明が解決しようとする従来技術の問題点とは、精錬
用02ガス吹錬時の浴面を観測の対象としている点にあ
る。このことは、0□ガス流が浴面に衝突しているその
場所であり、そこでファイバースコープにより光学的に
得られる情報はあくまでも“火点”における溶鋼の温度
、成分組成にすぎないことを示している。要するに、こ
のようにして得られた光学的情報は、炉内の溶鋼全体を
代表する平均的なデータとはなり得ない。従って、かよ
うな情報Gこよれば、適格な操炉条件の特定、吹錬制御
への適用を害し、終点制御を難しくする結果を招く。
(Problems to be Solved by the Invention) The problem to be solved by the present invention in the prior art is that the bath surface during the blowing of the refining 02 gas is the object of observation. This shows that this is the location where the 0□ gas flow collides with the bath surface, and the information optically obtained by the fiberscope there is nothing more than the temperature and composition of the molten steel at the "flaming point." ing. In short, the optical information obtained in this way cannot be average data representative of the entire molten steel in the furnace. Therefore, such information G impairs the identification of suitable furnace operating conditions and its application to blowing control, and results in making end point control difficult.

本発明の目的は、ファイバースコープによる方法であっ
ても鋼浴全体を代表する情報を適時に得ることのできる
その採取技術を確立することにより、従来技術の抱える
問題点を克服することにある。
An object of the present invention is to overcome the problems of the prior art by establishing a sampling technique that can obtain information representative of the entire steel bath in a timely manner even when using a fiberscope.

(問題点を解決するための手段) 上部の目的は次の事項を骨子とする構成の採用によって
確実に実現できる。すなわち、本発明は、ファイバーケ
ーブルを通じて計測装置とつながるファイバースコープ
の受光部を先端部に有する精錬ガスを噴射するのに用い
る上吹きランスにて、浴面における精錬情報を採取する
に当り、該上吹きランス内に精錬ガスに代えて不活性ガ
スを一時的に導入して浴面に吹きつげ、不活性ガス雰囲
気の下で前記ファイバースコープにより所定の情報を得
ることを特徴とする精錬情報の採取方法、である。
(Means for solving the problem) The purpose of the upper part can be surely achieved by adopting a structure based on the following points. That is, the present invention provides a method for collecting refining information at the bath surface using a top-blower lance used for injecting refining gas, which has a light-receiving part at the tip of a fiberscope connected to a measuring device through a fiber cable. Collection of refining information characterized by temporarily introducing an inert gas instead of the refining gas into the blowing lance and blowing it onto the bath surface, and obtaining predetermined information using the fiber scope in an inert gas atmosphere. The method is.

(作 用) 本発明の着想は、ファイバースコープを使うと、■炉内
の溶鋼全体を代表する平均値は、0□噴射により、 C+1/20z  −’−’  co、   Fe+1
/20z−FeOという火点特有の反応が起きている場
所からの採取では得られないということ、 ■ガスの噴射を中止したときに見られる静止浴面の状態
あるいはスラグが浴面を覆ってしまった状態での採取で
は、精錬途中の状態をとらえることができない、 という点に着目して、それらを解決したところにある。
(Function) The idea of the present invention is that when a fiberscope is used, the average value representing the entire molten steel in the furnace becomes C+1/20z -'-' co, Fe+1 by 0□ injection.
/20z-FeO, which cannot be obtained by collecting from a place where the reaction peculiar to the flash point is occurring; ■The state of the static bath surface seen when gas injection is stopped, or the bath surface is covered with slag. This problem was solved by focusing on the fact that it is not possible to capture the state in the process of refining if the material is harvested in a still state.

すなわち、鋼浴の温度や成分組成が必要なときに、0□
吹錬から暫時、Arなどの不活性ガスをランスから噴射
することにより上記の着想を実現することとしたのであ
る。このようなタイミングで測定すれば、ファイバース
コープを使って観測する場合でも、火点という特異な状
況のデータを排除でき、鋼浴全体の真の平均的な値を知
ることができるので、正確な精錬情報を採取できる。そ
して、かような精錬消和をもとに吹錬を行えば、操業上
の各種制御精度が向上する。
In other words, when the temperature and composition of the steel bath are required, 0□
They decided to realize the above idea by injecting an inert gas such as Ar from a lance for a while after blowing. By measuring at such timing, even when observing using a fiberscope, data from the unique situation of the fire point can be excluded, and the true average value of the entire steel bath can be known, allowing accurate measurement. You can collect refinement information. If blowing is performed based on such refining and dissolution, the accuracy of various operational controls will be improved.

(実施例) この実施例は、5トン上底吹き転炉を用い、ファイバー
スコープを内装した上吹きランスを使って製鋼精錬を行
った例である。第1図は適用設備の概略図であり、1は
02とN2の切替えができる上吹きランスであり、その
先端部には第2図に示すようにガス噴射孔10の中心に
臨む位置にファイバースコープ受光部8が設けである。
(Example) This example is an example of steel refining using a 5-ton top-bottom blowing converter and a top-blowing lance equipped with a fiber scope. Fig. 1 is a schematic diagram of the applicable equipment, where 1 is a top-blowing lance that can switch between 02 and N2, and the tip of the lance has a fiber attached at a position facing the center of the gas injection hole 10, as shown in Fig. 2. A scope light receiving section 8 is provided.

この受光部8でキャッチした溶鋼温度やその成分組成な
どの光学的信号は、ランス1内フアイバーケーブル9を
介して2色高温計4とテレビカメラ5に伝送できる。な
お、転炉2の炉底にある4本の羽口6からは不活性ガス
(Ar、 Nz)を吹込むことができる。
Optical signals such as the temperature of the molten steel and its composition detected by the light receiving section 8 can be transmitted to the two-color pyrometer 4 and the television camera 5 via the fiber cable 9 inside the lance 1. Note that inert gas (Ar, Nz) can be blown into the converter 2 through four tuyeres 6 at the bottom of the furnace.

また、図示の3はサブランスであり、ランス先端のホル
ダーに消耗式のプローブ7が装着してあり、溶鋼の温度
、凝固温度、溶存酸素の測定およびサンプルの採取が可
能である。
Further, numeral 3 in the figure is a sub-lance, and a consumable probe 7 is attached to a holder at the tip of the lance, making it possible to measure the temperature of molten steel, solidification temperature, and dissolved oxygen, and to collect samples.

操業は、該転炉の炉内をコークス炉ガスにて十分に予熱
した後、C:4.3崎tχ、Si:O,15wtX、 
Mn:0.2崎tχ、P:0.15wtχ、S:0.0
25wtχの?容銑(1320℃)を装入した。垂直に
した炉の炉底羽口6からN2ガスを0.5Nm3/mi
nの割合で供給した。同時に炉口からファイバースコー
プを内装した上吹きランス1を下降させて02ガスを1
5Nm’/min供給した。ランスはその先端と浴面と
の距離が0.7mとなる位置で停止した。この状態で約
20分間吹錬を行った。
In operation, after sufficiently preheating the inside of the converter with coke oven gas, C: 4.3 tχ, Si: O, 15 wt
Mn: 0.2wtχ, P: 0.15wtχ, S: 0.0
25wtχ? Pig (1320°C) was charged. N2 gas is supplied at 0.5Nm3/mi from the bottom tuyere 6 of the vertical furnace.
It was supplied at a rate of n. At the same time, lower the top blowing lance 1 with the fiberscope inside from the furnace mouth and pour 02 gas into the tank.
5Nm'/min was supplied. The lance stopped at a position where the distance between its tip and the bath surface was 0.7 m. Blowing was performed in this state for about 20 minutes.

次に、上記吹錬の経過時間が5.10.15.20分の
4つの時点で前記上吹きランス1からの02ガス供給を
N2ガス(15Nm’/m1n)に瞬時に切換えて2色
高温計で浴面の温度を測定した。加えて同時に、サブラ
ンスを用いて浴中の温度を測定した。
Next, at four points in time when the elapsed time of the blowing is 5, 10, 15, and 20 minutes, the 02 gas supply from the top blowing lance 1 is instantly switched to N2 gas (15 Nm'/m1n), and the two-color high temperature The temperature of the bath surface was measured with a meter. In addition, at the same time, the temperature in the bath was measured using a sublance.

ファイバースコープおよびサブランスの各測定結果を第
3図に示す。この図から判るように、ファイバースコー
プを介して得た光学信号を解析した結果とサブランス3
による測定結果とはほとんど同一であり、その精度は約
±2.5°Cの範囲にあり、精錬情報として十分に活用
できる。また測温に要する時間も酸素(02)から窒素
(N2)ガスへの切換えに、約1秒、測定に2〜5秒、
N2から02ガスへの切換に約1秒であり、合計すると
4〜7秒で測温できた。副次的な効果として、吹錬初期
に発生したスラグの泡立ちが0□からN2ガスに変更せ
ずともモニターテレビにより確認でき、泡立ちが確認さ
れた時点でランス高さを0.4mまで下げたところ、泡
立ちが抑制されて溶鉄・溶滓の吹き出しくスロッピング
)を回避することができた。
Figure 3 shows the measurement results of the fiberscope and sublance. As you can see from this figure, the results of analyzing the optical signal obtained through the fiberscope and the Sublance 3
The measurement results are almost the same as those obtained by the method, and the accuracy is within the range of about ±2.5°C, so it can be fully utilized as refining information. In addition, the time required for temperature measurement is approximately 1 second to switch from oxygen (02) to nitrogen (N2) gas, and 2 to 5 seconds to measure.
It took about 1 second to switch from N2 gas to 02 gas, and the temperature could be measured in 4 to 7 seconds in total. As a secondary effect, the bubbling of the slag that occurred in the early stage of blowing could be confirmed on the monitor TV without changing from 0□ to N2 gas, and the lance height was lowered to 0.4 m when bubbling was confirmed. However, bubbling was suppressed and it was possible to avoid blowing out or slopping of molten iron and molten slag.

以上のように、測温時にファイバースコープを内装する
上吹ランスから供給するガスを0□から不活性ガス(A
rまたはNZ)に切換え、ファイバースコープに接続し
た2色高温計で鋼浴温度を測定すると高精度でしかも迅
速に測定できた。
As mentioned above, when measuring temperature, the gas supplied from the top blowing lance inside the fiberscope is changed from 0□ to inert gas (A
r or NZ) and measured the steel bath temperature with a two-color pyrometer connected to a fiberscope, it was possible to measure with high accuracy and quickly.

(比較例) 上記実施例と同じ設備を使い、同じ操業条件で吹錬を行
った。また実施例と全く同じタイミングで溶鉄の測温を
ファイバースコープを内装した上吹きランス1とサブラ
ンス3を用いて実施した。
(Comparative Example) Blowing was performed using the same equipment as in the above example and under the same operating conditions. Furthermore, at exactly the same timing as in the example, temperature measurement of molten iron was carried out using top-blowing lance 1 and sub-lance 3 equipped with fiberscopes.

この時、測温時にも上吹きランスlからは0□ガスのみ
を供給した。その測定結果を第4図に示す。
At this time, only 0□ gas was supplied from the top blowing lance l even during temperature measurement. The measurement results are shown in FIG.

この図より、サブランス1の温度に対して、ファイバー
スコープの2色高温計の温度は+800〜tooo℃の
値を示し、吹錬の進行に伴う推移もサブランス3の温度
とは異なる。このため、2色高温計の温度を吹錬情報と
して活用できなかったばかりか、この値を用いた場合に
は目標とする溶鉄温度、成分のものが得られないと予測
されたので、以降の吹錬はサブランス3から得たものを
使った。
From this figure, the temperature of the two-color pyrometer of the fiber scope shows a value of +800 to too0°C with respect to the temperature of the sublance 1, and the transition as the blowing progresses is also different from the temperature of the sublance 3. For this reason, not only could the temperature of the two-color pyrometer not be used as blowing information, but it was predicted that the target molten iron temperature and composition would not be obtained if this value was used, so subsequent blowing Ren used what he learned from Sublance 3.

(発明の効果) 以上説明したように本発明によれば、ファイバースコー
プを使った場合でも、火点の観測という真実のデータ採
取を阻害する要因が無いので、炉内状況の平均的な各種
データを採取でき、吹錬精度の向上を果たすことができ
る。
(Effects of the Invention) As explained above, according to the present invention, even when a fiberscope is used, there is no factor that hinders the collection of true data such as observation of the fire spot, so various average data of the inside situation of the reactor can be obtained. can be collected and improve the accuracy of blowing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明で使用する転炉と上吹き
ランスの断面図、 第3図および第4図は、本発明実施例と比較例(第4図
)について吹錬時間と溶銑温度との関係を示すグラフで
ある。 1・・・上吹きランス  2・・・転炉3・・・サブラ
ンス   4・・・2色高温計5・・・テレビカメラ 
 6・・・底吹き羽目7・・・プローブ 8・・・ファイバースコープの受光部 9・・・ファイバーケーブル 10・・・ノズル噴射孔 第1図 第3図 口欠刀東時間 (mt’n)
Figures 1 and 2 are cross-sectional views of the converter and top blowing lance used in the present invention, and Figures 3 and 4 are blowing times and diagrams for the examples of the present invention and the comparative example (Figure 4). It is a graph showing the relationship with hot metal temperature. 1...Top-blowing lance 2...Converter 3...Sub-lance 4...Two-color pyrometer 5...TV camera
6...Bottom blowout 7...Probe 8...Light receiving part of fiber scope 9...Fiber cable 10...Nozzle injection hole Figure 1 Figure 3 Mouth gap East time (mt'n)

Claims (1)

【特許請求の範囲】 1、ファイバケーブルを通じて計測装置とつながるファ
イバースコープの受光部を先端部に有する精錬ガスを噴
射するのに用いる上吹きランスにて、浴面における精錬
情報を採取するに当り、 該上吹きランス内に精錬ガスに代えて不活 性ガスを一時的に導入して浴面に吹きつけ、不活性ガス
雰囲気の下で前記ファイバースコープにより所定の情報
を得ることを特徴とする精錬情報の採取方法。
[Claims] 1. In collecting refining information at the bath surface with a top-blowing lance used to inject refining gas, the tip of which is a light-receiving part of a fiber scope connected to a measuring device through a fiber cable, Refining information characterized in that an inert gas is temporarily introduced into the top blowing lance instead of the refining gas and blown onto the bath surface, and predetermined information is obtained by the fiber scope under an inert gas atmosphere. collection method.
JP7094686A 1986-03-31 1986-03-31 Method for collecting information on refining Pending JPS62228423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7094686A JPS62228423A (en) 1986-03-31 1986-03-31 Method for collecting information on refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7094686A JPS62228423A (en) 1986-03-31 1986-03-31 Method for collecting information on refining

Publications (1)

Publication Number Publication Date
JPS62228423A true JPS62228423A (en) 1987-10-07

Family

ID=13446177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7094686A Pending JPS62228423A (en) 1986-03-31 1986-03-31 Method for collecting information on refining

Country Status (1)

Country Link
JP (1) JPS62228423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1604146A1 (en) * 2003-03-14 2005-12-14 Praxair Technology, Inc. System for optically analyzing a molten bath
JP2006126062A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Temperature measurement method and apparatus for molten metal
US9500528B2 (en) 2009-08-10 2016-11-22 Siemens Aktiengesellschaft Method for maintaining a temperature of a metal melt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1604146A1 (en) * 2003-03-14 2005-12-14 Praxair Technology, Inc. System for optically analyzing a molten bath
EP1604146A4 (en) * 2003-03-14 2007-01-03 Praxair Technology Inc System for optically analyzing a molten bath
JP2006126062A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Temperature measurement method and apparatus for molten metal
US9500528B2 (en) 2009-08-10 2016-11-22 Siemens Aktiengesellschaft Method for maintaining a temperature of a metal melt

Similar Documents

Publication Publication Date Title
EP3620542B1 (en) Converter operation monitoring method and converter operation method
CN115494010A (en) Molten steel component and temperature continuous detection system and method
US4651976A (en) Method for operating a converter used for steel refining
CN116547392A (en) Converter operation method and converter converting control system
JPH11326061A (en) Temperature measuring method and device for molten bath in furnace
CA1250356A (en) Method and apparatus for measuring slag-forming conditions within converter
US5830407A (en) Pressurized port for viewing and measuring properties of a molten metal bath
CA2379591C (en) Metal refining method using differing refining oxygen sequence
JPS62228423A (en) Method for collecting information on refining
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
JP6954262B2 (en) How to operate the converter
JP2020164992A (en) Slopping prediction method for converter, operation method for converter, and slopping prediction system for converter
US5234200A (en) Method and arrangement for preventing crusts from agglomeration in a metallurgical vessel
IIDA et al. Fully automatic blowing technique for basic oxygen steelmaking furnace
US3565606A (en) Method for controlling carbon removal in a basic oxygen furnace
JPH11246907A (en) Method for controlling blowing in converter
CN113186368B (en) Process for efficiently smelting high-carbon steel by one-step high-carbon-drawing method of 60-ton converter
EP1134295A1 (en) Submergible probe for viewing and analyzing properties of a molten metal bath
KR900006568Y1 (en) Slag sampler
JP3697944B2 (en) Converter blowing method
JPH05312651A (en) Continuous temperature measuring apparatus and component analyzing apparatus for molten metal
JP2803534B2 (en) Converter blowing control method
JPH09118908A (en) Method for controlling blowing in converter
JPH06235015A (en) Method for predicting slopping in refining vessel and instrument therefor
Wilder The bessemer converter process