JPH11246907A - Method for controlling blowing in converter - Google Patents
Method for controlling blowing in converterInfo
- Publication number
- JPH11246907A JPH11246907A JP4923498A JP4923498A JPH11246907A JP H11246907 A JPH11246907 A JP H11246907A JP 4923498 A JP4923498 A JP 4923498A JP 4923498 A JP4923498 A JP 4923498A JP H11246907 A JPH11246907 A JP H11246907A
- Authority
- JP
- Japan
- Prior art keywords
- converter
- blowing
- molten iron
- temperature
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、上底吹き転炉にお
いて炉内反応の高効率化や転炉耐火物の溶損の軽減を図
るため、吹錬中の溶鉄温度や炭素濃度を精度良くかつ確
実に制御する転炉の吹錬制御方法に関する。BACKGROUND OF THE INVENTION The present invention relates to a method for accurately controlling the temperature and carbon concentration of molten iron during blowing to improve the efficiency of furnace reaction and reduce the melting of refractory in a converter in a top-bottom blown converter. The present invention relates to a method for controlling the blowing of a converter which is controlled reliably.
【0002】[0002]
【従来の技術】製鋼用転炉においては、吹錬終点の溶鋼
温度及び炭素濃度を所定の値に制御する必要がある。と
くに、近年製鋼能率向上の要請が強くなり、再吹錬等を
避けるためできるだけ精度良く終点制御を行うことが必
要になっている。2. Description of the Related Art In a steelmaking converter, it is necessary to control the molten steel temperature and carbon concentration at the end of blowing to predetermined values. In particular, in recent years, there has been a strong demand for improvement in steelmaking efficiency, and it has become necessary to control the end point as accurately as possible in order to avoid reblowing and the like.
【0003】また、脱燐等の炉内反応の効率を高めるた
めには、精錬中の溶鉄温度の推移を適正に制御する必要
がある。さらに、転炉耐火物の溶損の軽減を図るために
は、吹錬末期の温度制御を適正に行う必要がある。Further, in order to increase the efficiency of a furnace reaction such as dephosphorization, it is necessary to appropriately control the transition of the molten iron temperature during refining. Furthermore, in order to reduce the melting damage of the converter refractories, it is necessary to appropriately control the temperature at the end of blowing.
【0004】そのため、従来から転炉の吹錬終点制御に
関しては、計算機を用いたダイナミックコントロールが
一般に行われている。これは、物資収支・熱収支計算等
により吹錬中の溶鉄温度、炭素濃度の推移を推定する際
に、先行ヒートの情報に基く学習計算により推定精度を
向上させ、さらに吹錬中にサブランス(測定用ランス)に
より溶鉄温度及び炭素濃度を実測して軌道修正を行い、
吹錬終点制御を確実かつ精度良く行おうとするものであ
る。[0004] Therefore, dynamic control using a computer has been generally performed for controlling the blowing end point of a converter. This is because when estimating the transition of molten iron temperature and carbon concentration during blowing by material balance and heat balance calculations, etc., the estimation accuracy is improved by learning calculation based on information of preceding heat, and furthermore, sublance ( Measure the molten iron temperature and carbon concentration by measuring lance) and correct the trajectory,
It is intended to perform the blowing end point control reliably and accurately.
【0005】また、ダイナミックコントロールの精度を
さらに向上させるために、排ガスに関する情報例えば排
ガス中のCO、CO2濃度や排ガス流量等を実測し、こ
れらより脱炭量を推定するいわゆる脱炭速度計も多用さ
れている。In order to further improve the accuracy of the dynamic control, there is also a so-called decarburization speed meter which measures information on exhaust gas, for example, the concentration of CO and CO 2 in exhaust gas, the flow rate of exhaust gas, and estimates the amount of decarburization from these. It is heavily used.
【0006】[0006]
【発明が解決しようとする課題】熱収支計算等に基づく
溶鉄温度の推定は精度が低い。また、排ガス情報に基づ
く従来の脱炭速度計は、排ガス流量の測定に問題があり
その信頼性が低い。そのため、従来の吹錬制御では、サ
ブランスを用いて溶鉄温度及び炭素濃度を測定し、軌道
修正することが必要不可欠であった。The estimation of the molten iron temperature based on the heat balance calculation or the like has low accuracy. Further, the conventional decarburization speed meter based on exhaust gas information has a problem in measuring the exhaust gas flow rate, and its reliability is low. Therefore, in the conventional blowing control, it was indispensable to measure the molten iron temperature and the carbon concentration using a sublance and correct the trajectory.
【0007】しかし、サブランスのプローブ(消耗形熱
電対や消耗形カーボンデターミネータ)は消耗品である
ためコストが高く、かつスクラップ等の冷材が未溶解の
吹錬初期は測定の信頼性が低いため、吹錬後半の特定時
期に(通常は1回)測定を行うのが通例であり、吹錬全期
の情報を得るという観点からは不十分であった。However, the probe of the sublance (consumable thermocouple or consumable carbon terminator) is a consumable item, so that the cost is high and the reliability of the measurement is low at the beginning of blowing when the cold material such as scrap is not melted. For this reason, it is customary to measure at a specific time in the latter half of blowing (usually once), which is insufficient from the viewpoint of obtaining information on the entire blowing period.
【0008】一方、近年転炉の生産性や鉄歩留等を高め
るため、転炉の炉内圧を大気圧より高くして吹錬する加
圧式の転炉製鋼法が多数提案されている(例えば、特公
昭43−9982号、特開平2−20561号、特開平
2−298209号、特開平4−160109号公報な
ど)。On the other hand, in recent years, in order to increase the productivity of the converter, the yield of iron, and the like, there have been proposed a number of pressurized converter steelmaking methods in which the internal pressure of the converter is raised above the atmospheric pressure and blowing is performed (for example, see, for example). JP-B-43-9982, JP-A-2-20561, JP-A-2-298209, JP-A-4-160109, and the like.
【0009】このような加圧式の転炉製鋼法において
は、サブランスによる測定は、その設備及び作業が複雑
になって好ましくない。すなわち、サブランスの摺動部
のシール構造やプローブ交換のための加圧室が必要にな
り、炉上設備が複雑になる。また加圧室を炉内と等圧に
調整する必要があり、作業上の負担も大きい。In such a pressurized converter steelmaking method, measurement using a sublance is not preferable because its equipment and work are complicated. That is, a seal structure for the sliding portion of the sub-lance and a pressurizing chamber for probe replacement are required, and the furnace equipment becomes complicated. In addition, it is necessary to adjust the pressure of the pressurizing chamber to be equal to the pressure in the furnace, which imposes a heavy work load.
【0010】上述したように、現行の大気圧下の転炉操
業においても、将来実用化の可能性のある加圧下の転炉
操業においても、サブランスによる測定に依存しない新
たな吹錬制御方法を提供することが望まれている。As described above, a new blowing control method that does not depend on the measurement by a sublance is used in both the converter operation under the existing atmospheric pressure and the converter operation under pressure, which may be put to practical use in the future. It is desired to provide.
【0011】本発明は、上記のような問題点に鑑み、大
気圧下又は加圧下の転炉操業において、サブランスによ
る測定を行うことなく、転炉の吹錬中の温度制御及び吹
錬終点制御を精度良くかつ確実に行いうる手段を提供す
ることを目的とする。SUMMARY OF THE INVENTION In view of the above problems, the present invention provides temperature control and end point control during blowing of a converter without performing measurement using a sublance in a converter operation under atmospheric pressure or pressure. It is an object of the present invention to provide means capable of accurately and reliably performing the above.
【0012】[0012]
【課題を解決するための手段】本発明者らは、近年の測
温技術の進歩により、転炉の鉄浴部に温度計を配して比
較的容易に連続測温しうること、及びこれが転炉の吹錬
制御に非常に有用であることを知見した。Means for Solving the Problems The inventors of the present invention have made it possible to relatively easily and continuously measure a temperature by arranging a thermometer in an iron bath section of a converter with the recent advances in temperature measurement technology. It was found to be very useful for controlling the blowing of a converter.
【0013】また、本発明者らは、加圧式転炉のみなら
ず大気圧下の転炉においても炉口部の密閉を容易に行い
うること、及び近年のガス分析技術の進歩により排ガス
中の低濃度の不活性ガス成分も精度よく分析しうること
に着想し、種々検討の結果、排ガス流量を測定すること
なく、不活性ガスのマスバランスにより脱炭量を精度良
く推定しうることを知見した。Further, the present inventors have found that the furnace port can be easily sealed not only in a pressurized converter but also in a converter under atmospheric pressure. Inspired by the fact that low-concentration inert gas components can be analyzed with high accuracy, the results of various studies indicate that the amount of decarburization can be accurately estimated by measuring the mass balance of inert gas without measuring the exhaust gas flow rate. did.
【0014】これらの知見に基づく本発明の要旨は、上
底吹き転炉内の鉄浴部に温度計を配して溶鉄温度を連続
的に測定し、当該温度情報に基づき送酸速度、ランス−
湯面間隔及び冷却用副原料添加量のうちの1又は2以上
を調節して、吹錬中の溶鉄温度の制御を行なうことを特
徴とする転炉の吹錬制御方法である。The gist of the present invention based on these findings is that a thermometer is arranged in an iron bath in an upper and lower blown converter to continuously measure the molten iron temperature, and based on the temperature information, an acid feed rate and a lance pressure are measured. −
A blowing control method for a converter, comprising controlling one or more of a molten metal surface space and an added amount of a cooling auxiliary material to control a molten iron temperature during blowing.
【0015】また、上底吹き転炉内の鉄浴部に温度計と
炭素濃度測定手段とを配して溶鉄の温度及び炭素濃度を
測定し、これらの温度及び炭素濃度の情報に基づき送酸
速度、ランス−湯面間隔及び冷却用副原料添加量のうち
の1又は2以上を調節して、吹錬中の溶鉄温度及び炭素
濃度の制御を行うことを特徴とする転炉の吹錬制御方法
である。Further, a thermometer and a carbon concentration measuring means are arranged in an iron bath in the top and bottom blown converter to measure the temperature and the carbon concentration of the molten iron, and based on the information on the temperature and the carbon concentration, the acid is fed. Blowing control of a converter characterized by controlling one or more of a speed, a lance-gap and a cooling auxiliary material addition amount to control a molten iron temperature and a carbon concentration during blowing. Is the way.
【0016】さらに、上底吹き転炉内の鉄浴部に温度計
を配して溶鉄温度を連続的に測定するとともに、吹錬時
に転炉の炉口部を密閉して外気の侵入を防止する手段
と、排ガス中のCO、CO2及び不活性ガス濃度を測定
する手段と、転炉炉内又は/及び排ガス組成測定点より
上流の排ガスダクト内に所定流量の不活性ガスを供給す
る手段とを配して、前記の排ガス中の成分濃度及び不活
性ガス流量に基いて脱炭量を推定し、これらの温度及び
脱炭量の情報に基づき送酸速度、ランス−湯面間隔及び
冷却用副原料添加量のうちの1又は2以上を調節して、
吹錬中の溶鉄温度及び炭素濃度の制御を行うことを特徴
とする転炉の吹錬制御方法である。Further, a thermometer is arranged in an iron bath in the top and bottom blown converter to continuously measure the molten iron temperature, and the furnace opening of the converter is sealed during blowing to prevent outside air from entering. Means for measuring the concentration of CO, CO 2 and inert gas in the exhaust gas, and means for supplying a predetermined flow rate of the inert gas into the converter furnace or / and the exhaust gas duct upstream of the exhaust gas composition measurement point. The decarburization amount is estimated on the basis of the concentration of components in the exhaust gas and the flow rate of the inert gas. By adjusting one or more of the additional amounts of auxiliary materials for
This is a method for controlling the blowing of a converter, wherein the temperature of the molten iron and the carbon concentration during the blowing are controlled.
【0017】[0017]
【発明の実施の形態】図1は、本発明の実施形態の例を
示す説明図である。上吹きランス3と底吹き羽口4を備
えた転炉1内に鉄浴2が形成されており、副原料用のホ
ッパー7から切り出し装置8、投入シュート9をへて副
原料が添加される。FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention. An iron bath 2 is formed in a converter 1 provided with an upper blowing lance 3 and a bottom blowing tuyere 4, and an auxiliary material is added from a hopper 7 for the auxiliary material to a cutting device 8 and a charging chute 9. .
【0018】転炉1の炉底には測温用羽口10が設置さ
れ、パージガス供給ライン11から供給されるパージガ
スを導入するノズルの中にイメージファイバー12が挿
入されている。パージガスとしては通常はArを用いる
が、N2、COであっても構わない。また、ノズルを開
口するために必要に応じてO2、空気、CO2を供給する
ことも可能である。A temperature measuring tuyere 10 is installed at the bottom of the converter 1, and an image fiber 12 is inserted into a nozzle for introducing a purge gas supplied from a purge gas supply line 11. Usually, Ar is used as the purge gas, but N 2 or CO may be used. In addition, O 2 , air, and CO 2 can be supplied as needed to open the nozzle.
【0019】イメージファイバー12で得られた情報は
信号処理及び測温装置13により画像処理と信号処理が
なされた上で輝度から温度に変換され、温度情報として
出力される。なお、溶鉄温度の測定は上記のような光学
的な方法に限る必要はなく、例えば耐久保護管式の熱電
対等によってもよい。The information obtained by the image fiber 12 is subjected to image processing and signal processing by a signal processing and temperature measuring device 13 and then converted from luminance to temperature and output as temperature information. The measurement of the molten iron temperature does not need to be limited to the above-described optical method, but may be, for example, a durable protective tube type thermocouple.
【0020】この温度情報により操業条件が計算され、
その指示が上吹きガスライン5に設けた上吹きガス流量
制御装置6、ランス位置制御装置(図示していない)及び
冷却用副原料(鉄鉱石、細断スクラップ、石灰石、ドロ
マイトの一種又は2種以上)の切り出し装置8に伝達さ
れて、送酸速度、ランス−湯面間隔及び冷却用副原料添
加量のうちの1又は2以上を調節することにより、吹錬
中の溶鉄温度を制御する。The operating conditions are calculated based on the temperature information.
The instruction is an upper blowing gas flow control device 6, a lance position control device (not shown), and a cooling auxiliary material (one or two of iron ore, shredded scrap, limestone, and dolomite) provided in the upper blowing gas line 5. The molten iron temperature during blowing is controlled by adjusting one or more of the acid supply speed, the lance-to-gap surface distance, and the added amount of the cooling auxiliary material by being transmitted to the cutting device 8).
【0021】図2は、請求項2記載の本発明の実施形態
の例を示す説明図である。図2の例においては、転炉1
の炉底には測温用羽口10と分析用羽口14とが設置さ
れ、図1と同様に溶鉄温度を測定するとともに、溶鉄炭
素濃度を測定する。FIG. 2 is an explanatory diagram showing an example of the embodiment of the present invention described in claim 2. In the example of FIG.
The tuyere 10 for temperature measurement and the tuyere 14 for analysis are installed at the bottom of the furnace, and the molten iron temperature is measured as well as the molten iron carbon concentration as in FIG.
【0022】分析用羽口14には、パージガス供給ライ
ン15から供給されるパージガスを導入するノズルの中
に分析用ファイバー16が挿入されており、分析装置1
7により炭素濃度を測定する。パージガスとしては炭素
のような軽元素を測定するためにはArを用いるが、N
2、COであっても構わない。また、ノズルを開口する
ために必要に応じてO2、空気、CO2を供給することも
可能である。The analysis tuyere 14 has an analysis fiber 16 inserted into a nozzle for introducing a purge gas supplied from a purge gas supply line 15.
The carbon concentration is measured according to 7. Ar is used as a purge gas to measure light elements such as carbon,
2 , CO may be used. In addition, O 2 , air, and CO 2 can be supplied as needed to open the nozzle.
【0023】分析方法としては、例えば特開昭60−4
2644号公報に開示されているような、レーザーによ
る発光を利用した分析方法がある。As an analysis method, see, for example, JP-A-60-4
There is an analysis method utilizing emission by a laser as disclosed in Japanese Patent No. 2644.
【0024】このように、溶鉄温度と炭素濃度の情報を
同時に得て、上記と同様に送酸速度、ランス−湯面間隔
及び冷却用副原料添加量のうちの1又は2以上を調節す
ることにより、吹錬中の溶鉄温度及び炭素濃度が所定の
パターンで推移するように制御することができ、吹錬終
点での溶鋼温度及び炭素濃度の制御がより容易かつ確実
になる。As described above, by simultaneously obtaining the information on the molten iron temperature and the carbon concentration, one or more of the acid supply rate, the lance-to-gap spacing, and the added amount of the cooling auxiliary material are adjusted in the same manner as described above. Thereby, the molten iron temperature and the carbon concentration during blowing can be controlled to change in a predetermined pattern, and the control of the molten steel temperature and the carbon concentration at the end point of the blowing becomes easier and more reliable.
【0025】図3は請求項3記載の本発明の実施形態の
例を示す説明図である。本図の例においては、図1と同
様に転炉1の炉底に設けた測温用羽口10により溶鉄温
度を連続的に測定するに加えて、下記の方法で脱炭量の
推定を行う。FIG. 3 is an explanatory diagram showing an example of the embodiment of the present invention described in claim 3. In the example of this figure, in addition to continuously measuring the molten iron temperature by the temperature measuring tuyere 10 provided at the furnace bottom of the converter 1 as in FIG. 1, the decarburization amount is estimated by the following method.
【0026】図3の例においては、転炉1は吹錬時に炉
口シール装置18によりフード19と連結され、炉口部
を密閉して外気の侵入を防止する。排ガスダクトには、
排ガスの組成を分析する手段(本例では、サンプリング
孔20よりサンプルガスを採取してガス分析計21によ
り分析)を配して、排ガス中のCO、CO2及びN2濃度
を測定する。また、排ガスダクトの上流にガス吹き込み
口22を設けて、所定流量のN2ガスを流量計23を介
して、ダクト内に吹き込む。In the example shown in FIG. 3, the converter 1 is connected to a hood 19 by a furnace port sealing device 18 at the time of blowing, and the furnace port is sealed to prevent the intrusion of outside air. In the exhaust gas duct,
Means for analyzing the composition of the exhaust gas (in this example, a sample gas is collected from the sampling hole 20 and analyzed by the gas analyzer 21), and the concentrations of CO, CO 2 and N 2 in the exhaust gas are measured. Further, a gas inlet 22 is provided upstream of the exhaust gas duct, and a predetermined flow rate of N 2 gas is blown into the duct via a flow meter 23.
【0027】炉口シール装置18の形式はとくに限定す
る必要はなく、耐熱性、作業性や必要に応じて耐圧性を
考慮して、適切な方法を選択すればよい。また、外気の
遮断をより完全にするため、上吹きランス3の挿入孔に
もランス孔シール装置24を配し、副原料供給系も密閉
系とすることが望ましい。The type of the furnace port sealing device 18 does not need to be particularly limited, and an appropriate method may be selected in consideration of heat resistance, workability and, if necessary, pressure resistance. Further, in order to more completely shut off the outside air, it is desirable to provide a lance hole sealing device 24 also in the insertion hole of the upper blowing lance 3 and to make the auxiliary material supply system a closed system.
【0028】上記の手段により、外気の侵入を完全に防
止できるから、酸素吹錬中の脱炭量は下記(1)式により
推定することができる。 △C=(12/22.4)・Qn・((CO+CO2)/N2) ……(1) ここで、 △C:脱炭量(kg/min) Qn:N2ガス流量(Nm3/min) CO、CO2、N2:排ガス中のCO、CO2、N2濃度
(vol.%)。Since the invasion of outside air can be completely prevented by the above means, the decarburization amount during oxygen blowing can be estimated by the following equation (1). ΔC = (12 / 22.4) · Q n · ((CO + CO 2 ) / N 2 ) (1) where ΔC: decarburization amount (kg / min) Q n : N 2 gas flow rate ( Nm 3 / min) CO, CO 2 , N 2 : CO, CO 2 , N 2 concentration in exhaust gas
(vol.%).
【0029】なお、上式は基本式であって、先行ヒート
における脱炭量の推定値と実測値との対比により補正し
たり、排ガス組成測定点までの空間容積等により補正し
て、△Cの推定精度を高めることができる。The above equation is a basic equation, which is corrected by comparing the estimated value of the decarburization amount in the preceding heat with the actually measured value, or corrected by the space volume up to the exhaust gas composition measurement point. Can be increased in estimation accuracy.
【0030】N2ガスは必ずしもダクト内に吹き込む必
要はなく、他の目的のために用いられるN2、例えば底
吹き用のN2や副原料粉体のキャリアガスとして、酸素
ランスの副孔等から吹き込むN2であってもよい。ま
た、これらとダクトへのN2吹き込みを併用してもよ
い。The N 2 gas is not necessarily blown into the duct, N 2 used for other purposes, for example as a carrier gas of N 2 and auxiliary raw material powder for bottom blowing, the sub-hole or the like of the oxygen lance It may be N 2 blown from the air. Alternatively, these may be used in combination with N 2 blowing into the duct.
【0031】なお、図3の例は、不活性ガスとしてN2
を用いた場合であるが、この他Arを用いてもよく、N
2とArを併用してもよい。In the example of FIG. 3, N 2 is used as the inert gas.
In this case, Ar may be used.
2 and Ar may be used in combination.
【0032】従来の排ガス情報に基く脱炭量の推定は、
排ガス流量の測定値の信頼性が低く、推定精度が悪かっ
た。これに対して本発明の方法によれば、排ガス流量を
測定又は推定することなく、脱炭量を推定することがで
き、その推定精度を高めることができる。Estimation of the amount of decarburization based on conventional exhaust gas information is as follows:
The reliability of the measured value of the exhaust gas flow rate was low, and the estimation accuracy was poor. On the other hand, according to the method of the present invention, the decarburization amount can be estimated without measuring or estimating the exhaust gas flow rate, and the estimation accuracy can be improved.
【0033】実際に後記の実施例に示すように、本発明
の方法により脱炭量や溶鉄[C]の推移を精度良く推定し
うることが確かめられた。これにより、図2の例のよう
に溶鉄炭素濃度を実測することなく、精度の良い吹錬制
御を行うことができる。It was confirmed that the method of the present invention can accurately estimate the decarburization amount and the transition of the molten iron [C], as will be shown in Examples described later. Thereby, accurate blowing control can be performed without actually measuring the molten iron carbon concentration as in the example of FIG.
【0034】なお、本発明においては、図2の例のよう
に溶鉄温度及び炭素濃度を測定し、さらに図3のような
方法で、脱炭量の推定を行ってもよい。このように、脱
炭量と炭素濃度の情報を得る手段を重複して持つことに
より、測定等のトラブルにも対応することができ、確実
にかつ高い精度で炭素濃度の推移を判定しうる。In the present invention, the molten iron temperature and the carbon concentration may be measured as in the example of FIG. 2, and the decarburization amount may be estimated by the method as shown in FIG. As described above, by having the means for obtaining the information on the decarburization amount and the carbon concentration redundantly, it is possible to cope with troubles such as measurement, and it is possible to reliably and accurately determine the transition of the carbon concentration.
【0035】本発明の吹錬制御方法によれば、サブラン
スによる測定を行う必要がないため、プローブ等消耗品
のコストの低減が図れるとともに、加圧式の転炉吹錬に
おけるサブランス測定の設備上、作業上の負荷を無くす
ることができる。According to the blowing control method of the present invention, it is not necessary to perform measurement using a sub-lance, so that the cost of consumables such as probes can be reduced, and the equipment for measuring the sub-lance in pressurized converter blowing is required. Work load can be eliminated.
【0036】また、吹錬初期から未期に至るまで、連続
的に溶鉄温度又は溶鉄温度と炭素濃度の情報を得ること
ができるため、脱燐反応効率の向上や耐火物溶損の軽減
等の上でも有用である。Further, since the molten iron temperature or the information of the molten iron temperature and the carbon concentration can be continuously obtained from the initial stage to the early stage of the blowing, information such as improvement of dephosphorization reaction efficiency and reduction of refractory erosion can be obtained. Also useful above.
【0037】例えば、吹錬初期は溶鉄温度が低く脱燐能
力が非常に大きいが、従来初期の温度が測定できず温度
制御していなかったため、吹錬開始後短時間で、脱燐が
進行しにくい高温域になっていた。後記の実施例に示す
ように、本発明の方法により吹錬開始後3分から6分迄
の期間の温度を1350〜1500℃にすることによ
り、脱燐が極めて効率良く進行することが確かめられ
た。For example, in the early stage of blowing, the molten iron temperature is low and the dephosphorization ability is very large. However, since the initial temperature could not be measured and the temperature was not controlled, dephosphorization progressed in a short time after the start of blowing. It was a difficult high temperature range. As shown in Examples described later, it was confirmed that the dephosphorization proceeded extremely efficiently by setting the temperature in the period from 3 minutes to 6 minutes after the start of blowing to 1350 to 1500 ° C. by the method of the present invention. .
【0038】また、従来吹錬未期の溶鉄温度の推定精度
が十分でないため、温度を高めに推移させ、サプランス
による温度測定結果に基いて鉄鉱石等の冷材を投入し
て、所定の吹止め温度に調節していた。このため、吹錬
後期の高温期間が長く、耐火物の溶損量が多かった。In addition, since the accuracy of the estimation of the molten iron temperature before the conventional blowing is not sufficiently high, the temperature is changed to a higher temperature, and a cold material such as iron ore is charged based on the temperature measurement result by the suprense, and the predetermined blowing is performed. The stop temperature was adjusted. For this reason, the high temperature period in the latter half of the blowing was long, and the amount of erosion of the refractory was large.
【0039】後記の実施例に示すように、本発明の方法
により、吹止め前5分からの吹止め前1分迄の期間は冷
材を入れず所定の吹止め温度に調節することが可能とな
り、吹錬未期の高温期間が短縮されるため、耐火物の溶
損量を大幅に軽減することが可能になった。As will be shown in the examples described later, the method of the present invention makes it possible to adjust the temperature of the blow stop to a predetermined blow stop temperature without cooling material during a period from 5 minutes before the blow stop to 1 minute before the blow stop. Since the high-temperature period before blowing is shortened, the amount of erosion of the refractory can be greatly reduced.
【0040】[0040]
【実施例】(実施例1)図3に示すような、炉口シール
装置、ランス孔シール装置及び密閉型の副原料供給系を
有する6トン規模の上底吹き試験転炉を用いて、本発明
の方法により脱炭量の推定を行った。上吹きランスには
ノズルスロート径が12っmφの4孔ランスを用い、酸
素供給速度は1500〜1800Nm3/hとした。底
吹きは2重管羽口を用い酸素と冷却ガスであるLPGを
供給した。酸素流量は約100Nm3/hとした。(Example 1) Using a 6-ton scale top-bottom blow test converter having a furnace port sealing device, a lance hole sealing device, and a closed type auxiliary material supply system as shown in FIG. The amount of decarburization was estimated by the method of the invention. A four-hole lance having a nozzle throat diameter of 12 mφ was used as the upper blowing lance, and the oxygen supply rate was 1500 to 1800 Nm 3 / h. For bottom blowing, oxygen and LPG as a cooling gas were supplied using a double tube tuyere. The oxygen flow rate was about 100 Nm 3 / h.
【0041】排ガスダクトの後方の乾式粗集塵器の出口
側で、排ガスサンプルを連続的に採取し、CO、CO2
及びN2濃度を測定すると共に、フード直近の排ガスダ
クト内に60Nm3/hのN2ガスを吹き込んだ。At the outlet side of the dry coarse dust collector behind the exhaust gas duct, an exhaust gas sample is continuously taken and CO, CO 2
And while measuring the N 2 concentration was bubbled N 2 gas 60 Nm 3 / h in the hood nearest exhaust gas duct.
【0042】[C]約4.2%の溶銑を低炭域まで脱炭す
る際に、本発明の方法により排ガス情報から求めた溶鉄
[C]の推定値と、吹錬中にスポット的にサブランスによ
り溶鉄サンプルを採取した分析した溶鉄[C]実測値との
関係を調査した結果を図4に示す。[C] When degassing about 4.2% of hot metal to a low-carbon region, the molten iron obtained from the exhaust gas information by the method of the present invention.
FIG. 4 shows the result of investigating the relationship between the estimated value of [C] and the actually measured value of molten iron [C], which was obtained by analyzing a molten iron sample spot by sublance during blowing.
【0043】溶鉄[C]の推定値は、前記の排ガス組成分
析値及び吹き込みN2流量等のデータを計算機に入力
し、前記(1)式の関係に一定の補正を行って脱炭量の積
算値を求め、これと装入物のFe、C収支から算出した
ものである。The estimated value of the molten iron [C] is obtained by inputting data such as the exhaust gas composition analysis value and the flow rate of the blown N 2 into a computer, performing a certain correction on the relationship of the above equation (1), and calculating the decarburization amount. The integrated value is obtained and calculated from the integrated value and the balance of Fe and C of the charge.
【0044】図4に見るように、本発明の方法により求
めた溶鉄[C]の推定値は、サブランスのサンプルによる
実測値と良く一致する結果が得られた。As shown in FIG. 4, the estimated value of molten iron [C] obtained by the method of the present invention was in good agreement with the measured value of the sample of Sublance.
【0045】(実施例2)実施例1と同じ試験転炉で実
施例1と同様に脱炭量を推定するとともに、鉄浴部に温
度計を配して連続測温を行い、これらの脱炭量及び温度
の情報に基いて吹錬制御を行った。(Example 2) In the same test converter as in Example 1, the amount of decarburization was estimated in the same manner as in Example 1, and a thermometer was arranged in the iron bath to continuously measure the temperature. Blowing control was performed based on the information on the amount of coal and the temperature.
【0046】連続測温は、炉底に設けた5mmφのAr
ガス吹き込み孔にイメージファイバーを挿入し輝度イメ
ージを得ることによって行った。得られた輝度イメージ
は、Ar気泡を介して見た溶鋼の輝度だけではなく、周
囲のガス吹き込みパイプや吹き込み孔出口部に生成され
た地金(マッシュルーム)の輝度も含まれているため、
これを画像処理して、真の溶鋼部の輝度情報のみを抽出
し温度に換算した。Ar流量は6Nm3/hとした。The continuous temperature measurement was performed using a 5 mmφ Ar
This was performed by inserting an image fiber into the gas injection hole and obtaining a brightness image. The obtained brightness image includes not only the brightness of the molten steel seen through the Ar bubbles but also the brightness of the metal (mushroom) generated at the surrounding gas injection pipe and the outlet of the injection hole.
This was image-processed, and only the luminance information of the true molten steel portion was extracted and converted into temperature. The Ar flow rate was 6 Nm 3 / h.
【0047】脱珪と脱硫処理を実施したC:4.2%、
Si:0.15%、Mn:0.15%、P:0.095
%、S:0.011%、温度:1350℃の溶銑と、溶
銑比で10%のスクラップを転炉に装入後、上吹きラン
スから送酸し脱炭した。吹酸中の温度変化に対応して、
鉄鉱石を冷材として添加した。Desiliconized and desulfurized C: 4.2%,
Si: 0.15%, Mn: 0.15%, P: 0.095
%, S: 0.011%, temperature: 1350 ° C., and a scrap with a hot metal ratio of 10% were charged into a converter, and then acid-supplied from an upper blowing lance to decarbonize. In response to the temperature change during the blowing acid,
Iron ore was added as cold material.
【0048】吹酸開始から4分間は鉄鉱石10kg/t
を連続的に添加して温度を1350〜1450℃に制御
した。また、吹き止め前2分間は冷材を入れずに制御し
た。吹き止め条件は、C:0.06%、P:0.015
%、温度:1635℃であり、生石灰原単位は31kg
/tと少なく耐火物の損耗も極めて少なかった。Iron ore 10 kg / t for 4 minutes from the start of blowing acid
Was added continuously to control the temperature at 1350-1450 ° C. In addition, for 2 minutes before blowing, control was performed without adding a cold material. The blow stop conditions are as follows: C: 0.06%, P: 0.015
%, Temperature: 1635 ° C, and quicklime basic unit is 31 kg
/ T and the wear of the refractory was extremely small.
【0049】一方、比較例は、同一の試験転炉で吹錬中
にサブランスにより2〜3回溶鉄の温度と炭素濃度を測
定し、この情報に基いて吹錬制御を行った。送酸条件、
底吹き条件、装入溶銑及びスクラップの量は実施例とほ
ぼ同一にしたが、溶銑組成はC:4.3%、Si:0.
14%、Mn:0.16%、P:0.098%、S:
0.010%、溶銑温度は1355℃であった。On the other hand, in the comparative example, the temperature and carbon concentration of the molten iron were measured two to three times by a sublance during blowing in the same test converter, and blowing control was performed based on this information. Acid transfer conditions,
The bottom blowing conditions, the amount of hot metal charged and the amounts of scrap were almost the same as in the example, but the composition of the hot metal was C: 4.3% and Si: 0.4%.
14%, Mn: 0.16%, P: 0.098%, S:
0.010% and hot metal temperature was 1355 ° C.
【0050】吹錬開始から5分後に測定した温度は15
70℃に達していたため鉄鉱石を添加して冷却した。ま
た、吹き止め3分前に測定した温度が1670℃であっ
たため鉄鉱石を冷材として添加した。吹き止め条件は、
C:0.06%、P:0.018%、温度:1658℃
であったが、生石灰原単位は48kg/tと多く耐火物
の損耗も大きかった。The temperature measured 5 minutes after the start of blowing was 15
Since the temperature reached 70 ° C., iron ore was added and cooled. In addition, since the temperature measured 3 minutes before blowing was 1670 ° C., iron ore was added as a cold material. The blow stop condition is
C: 0.06%, P: 0.018%, temperature: 1658 ° C
However, the basic unit of quicklime was 48 kg / t, and the refractory was greatly worn.
【0051】[0051]
【発明の効果】本発明により、サブランスによる測定を
行うことなく、転炉の吹錬中の温度制御及び吹錬終点制
御を精度良くかつ確実に行うことが可能になった。とく
に本発明の方法によれば、吹錬全期間で溶鉄温度を精度
良く制御しうるため、吹錬初期の脱燐反応の効率向上や
吹錬末期の耐火物損耗の軽減を図ることができる。According to the present invention, it is possible to accurately and reliably perform temperature control and blowing end point control during blowing of a converter without performing measurement using a sublance. In particular, according to the method of the present invention, since the molten iron temperature can be accurately controlled during the entire blowing period, it is possible to improve the efficiency of the dephosphorization reaction at the beginning of blowing and to reduce the refractory wear at the end of blowing.
【0052】また、サブランスによる測定を必要としな
いため、そのプローブのコストを節減しうるとともに、
加圧式転炉における設備費、作業費の軽減を図ることが
できる。Further, since measurement by sublance is not required, the cost of the probe can be reduced, and
Equipment costs and work costs in the pressurized converter can be reduced.
【図1】本発明の実施形態の例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention.
【図2】請求項2記載の本発明の実施形態の例を示す説
明図である。FIG. 2 is an explanatory diagram showing an example of an embodiment of the present invention described in claim 2;
【図3】請求項3記載の本発明の実施形態の例を示す説
明図である。FIG. 3 is an explanatory diagram showing an example of an embodiment of the present invention described in claim 3;
【図4】本実施例における溶鉄[C]の推定値と実測値の
関係を示す図である。FIG. 4 is a diagram showing a relationship between an estimated value of molten iron [C] and an actually measured value in the present embodiment.
1:転炉、 2:鉄浴、 3:上吹きランス、
4:底吹き羽口、5:上吹きガスライン、 6:上吹
きガス流量制御装置、 7:ホッパー8:切り出し装
置、 9:投入シュート、 10:測温用羽口、1
1:パージガス供給ライン、 12:イメージファイ
バー、13:信号処理及び測温装置、 14:分析用
羽口、15:パージガス供給ライン、 16:分析用
ファイバー、17:分析装置、 18:炉口シール装
置、 19:フード、20:サンプリング孔、 2
1:ガス分析計、 22:ガス吹き込み口、23:流
量計、 24:ランス孔シール装置1: Converter, 2: Iron bath, 3: Top blowing lance,
4: bottom blowing tuyere, 5: top blowing gas line, 6: top blowing gas flow control device, 7: hopper 8: cutout device, 9: charging chute, 10: temperature measuring tuyere, 1
1: purge gas supply line, 12: image fiber, 13: signal processing and temperature measuring device, 14: analysis tuyere, 15: purge gas supply line, 16: analysis fiber, 17: analysis device, 18: furnace port sealing device , 19: food, 20: sampling hole, 2
1: gas analyzer, 22: gas inlet, 23: flow meter, 24: lance hole sealing device
Claims (3)
て溶鉄温度を連続的に測定し、当該温度情報に基づき送
酸速度、ランス−湯面間隔及び冷却用副原料添加量のう
ちの1又は2以上を調節して、吹錬中の溶鉄温度の制御
を行なうことを特徴とする転炉の吹錬制御方法。1. An iron bath in an upper and lower blown converter, a thermometer is continuously arranged to measure a molten iron temperature, and based on the temperature information, an acid feed rate, a lance-to-metal surface gap, and a cooling auxiliary material. A method for controlling the blowing of a converter, comprising controlling one or more of the addition amounts to control the temperature of molten iron during blowing.
濃度測定手段とを配して溶鉄の温度及び炭素濃度を測定
し、これらの温度及び炭素濃度の情報に基づき送酸速
度、ランス−湯面間隔及び冷却用副原料添加量のうちの
1又は2以上を調節して、吹錬中の溶鉄温度及び炭素濃
度の制御を行うことを特徴とする転炉の吹錬制御方法。2. A thermometer and a carbon concentration measuring means are arranged in an iron bath in the top and bottom blown converter to measure the temperature and the carbon concentration of the molten iron, and the acid transfer is performed based on the information on the temperature and the carbon concentration. Blowing control of a converter characterized by controlling one or more of a speed, a lance-gap and a cooling auxiliary material addition amount to control a molten iron temperature and a carbon concentration during blowing. Method.
て溶鉄温度を連続的に測定するとともに、吹錬時に転炉
の炉口部を密閉して外気の侵入を防止する手段と、排ガ
ス中のCO、CO2及び不活性ガス濃度を測定する手段
と、転炉炉内又は/及び排ガス組成測定点より上流の排
ガスダクト内に所定流量の不活性ガスを供給する手段と
を配して、前記の排ガス中の成分濃度及び不活性ガス流
量に基いて脱炭量を推定し、これらの温度及び脱炭量の
情報に基づき送酸速度、ランス−湯面間隔及び冷却用副
原料添加量のうちの1又は2以上を調節して、吹錬中の
溶鉄温度及び炭素濃度の制御を行うことを特徴とする転
炉の吹錬制御方法。3. A thermometer is provided in an iron bath in the top and bottom blown converter to continuously measure molten iron temperature, and a furnace opening of the converter is sealed during blowing to prevent outside air from entering. Means for measuring the concentration of CO, CO 2 and inert gas in the exhaust gas, and means for supplying a predetermined flow rate of the inert gas into the converter furnace or / and the exhaust gas duct upstream of the exhaust gas composition measurement point. The decarburization amount is estimated on the basis of the concentration of components in the exhaust gas and the flow rate of the inert gas. A method for controlling blowing of a converter, wherein one or more of the additional amounts of auxiliary raw materials are adjusted to control the molten iron temperature and carbon concentration during blowing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4923498A JPH11246907A (en) | 1998-03-02 | 1998-03-02 | Method for controlling blowing in converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4923498A JPH11246907A (en) | 1998-03-02 | 1998-03-02 | Method for controlling blowing in converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11246907A true JPH11246907A (en) | 1999-09-14 |
Family
ID=12825217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4923498A Withdrawn JPH11246907A (en) | 1998-03-02 | 1998-03-02 | Method for controlling blowing in converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11246907A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100554143B1 (en) * | 2001-12-21 | 2006-02-20 | 주식회사 포스코 | Method for AOD working of controlling of crom oxidation |
JP2012117090A (en) * | 2010-11-29 | 2012-06-21 | Sumitomo Metal Ind Ltd | Converter blowing method and converter blowing system |
CN108165700A (en) * | 2018-03-02 | 2018-06-15 | 北京科技大学 | A kind of thermometric spray gun for being installed on converter bottom and application method |
KR20190061219A (en) * | 2017-11-27 | 2019-06-05 | 주식회사 포스코 | Appatatus for blowing of converter and blowing method of converter |
CN117587191A (en) * | 2023-11-21 | 2024-02-23 | 江苏众之恒智能科技有限公司 | Converter bottom blowing spray gun alarm device |
-
1998
- 1998-03-02 JP JP4923498A patent/JPH11246907A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100554143B1 (en) * | 2001-12-21 | 2006-02-20 | 주식회사 포스코 | Method for AOD working of controlling of crom oxidation |
JP2012117090A (en) * | 2010-11-29 | 2012-06-21 | Sumitomo Metal Ind Ltd | Converter blowing method and converter blowing system |
KR20190061219A (en) * | 2017-11-27 | 2019-06-05 | 주식회사 포스코 | Appatatus for blowing of converter and blowing method of converter |
CN108165700A (en) * | 2018-03-02 | 2018-06-15 | 北京科技大学 | A kind of thermometric spray gun for being installed on converter bottom and application method |
CN108165700B (en) * | 2018-03-02 | 2023-06-02 | 北京科技大学 | Temperature measuring spray gun installed at bottom of converter and application method |
CN117587191A (en) * | 2023-11-21 | 2024-02-23 | 江苏众之恒智能科技有限公司 | Converter bottom blowing spray gun alarm device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI804075B (en) | Operation method of converter and blowing control system of converter | |
JP5924186B2 (en) | Method of decarburizing and refining hot metal in converter | |
JPH11246907A (en) | Method for controlling blowing in converter | |
CN106795573B (en) | Method and device for determining the ignition time point in an oxygen converting process | |
US6830606B2 (en) | Method for decarbonization refining of chromium-containing molten steel | |
JP5630324B2 (en) | Method of decarburizing and refining hot metal in converter | |
JP2012067378A (en) | Method for decarburization refining of molten pig iron in converter | |
CN115341069B (en) | Molten steel carbon content predictive control method for converter converting end point based on online dynamic detection model | |
US8192521B2 (en) | Method of suppressing slag foaming in continuous melting furnace | |
JP2803542B2 (en) | Converter operation method | |
JPH0689393B2 (en) | Method for estimating molten iron C concentration in iron-containing cold material melting method | |
US20020180124A1 (en) | Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace | |
JP2803534B2 (en) | Converter blowing control method | |
US20230151448A1 (en) | Method for detecting fluctuation of solidified layer and method for operating blast furnace | |
JP7193032B1 (en) | Supplied heat amount estimation method, supplied heat amount estimation device, and blast furnace operation method | |
WO2023017674A1 (en) | Cold iron source melting rate estimation device, converter-type refining furnace control device, cold iron source melting rate estimation method, and molten iron refining method | |
JPH07118723A (en) | Converter refining method | |
JP2002013881A (en) | Slag level detecting method and method for controlling lance based on it | |
JPH01195217A (en) | Operation of melting and reducing furnace | |
JP2897363B2 (en) | Hot metal production method | |
JPH0219416A (en) | Converter blow-refining method | |
JPS5928515A (en) | Method and apparatus for refining steel | |
Abramenko et al. | System for continuously monitoring gas composition over the radius of the top of blast furnaces | |
JPH01195218A (en) | Operation of melting and reducing furnace | |
JPS6335716A (en) | Method and instrument for measuring secondary combustion rate in smelting reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050510 |