JPS62167840A - Magnetic material and its manufacture - Google Patents
Magnetic material and its manufactureInfo
- Publication number
- JPS62167840A JPS62167840A JP61009593A JP959386A JPS62167840A JP S62167840 A JPS62167840 A JP S62167840A JP 61009593 A JP61009593 A JP 61009593A JP 959386 A JP959386 A JP 959386A JP S62167840 A JPS62167840 A JP S62167840A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- annealed
- permeability
- ribbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000005291 magnetic effect Effects 0.000 claims abstract description 108
- 230000035699 permeability Effects 0.000 claims abstract description 27
- 230000005284 excitation Effects 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 6
- 230000005389 magnetism Effects 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 48
- 229910052742 iron Inorganic materials 0.000 abstract description 21
- 229910000808 amorphous metal alloy Inorganic materials 0.000 abstract description 13
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 239000011162 core material Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 13
- 230000004907 flux Effects 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005280 amorphization Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15316—Amorphous metallic alloys, e.g. glassy metals based on Co
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、Coを主成分とする非晶質合金から成る高
周波域における鉄損が極めて低い磁性材料及びその製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic material that is made of an amorphous alloy containing Co as a main component and has extremely low core loss in a high frequency range, and a method for manufacturing the same.
一般に非晶質合金は軟磁気特性にすぐれ、磁気損失が低
く、かつ、高い電気抵抗と薄い板厚を持つために渦電流
による損失が小さく鉄損が極めて小さい長所を持ってい
る。そしてかかる非晶質合金は製造のままでは急冷され
たときに導入される歪等が、磁壁のピンニングや磁気異
方性の原因となり、その結果良好な磁気特性が得られず
、通常焼鈍を行って軟磁気特性全改善している。しかじ
薄帯では長手方向に一軸異方性が存在し上記の如き単な
る焼鈍では長手方向に180°磁壁がのびた磁区構造と
なる。これを長手方向に励磁し友場合VCは直流では抗
磁力が小さく高透磁率のすぐれた磁気特性を示すが高周
波域で励磁すると、渦電流損が増して必ずしも良好な性
質金示さない。In general, amorphous alloys have excellent soft magnetic properties and low magnetic loss, and because they have high electrical resistance and thin plate thickness, they have the advantage of low loss due to eddy current and extremely low iron loss. If such an amorphous alloy is manufactured as is, the strain introduced when it is rapidly cooled causes domain wall pinning and magnetic anisotropy, and as a result, good magnetic properties cannot be obtained, so it is usually annealed. The soft magnetic properties have been completely improved. In the thin ribbon, uniaxial anisotropy exists in the longitudinal direction, and mere annealing as described above results in a magnetic domain structure with domain walls extending 180° in the longitudinal direction. When VC is excited in the longitudinal direction, it exhibits excellent magnetic properties such as small coercive force and high magnetic permeability in direct current, but when excited in a high frequency range, eddy current loss increases and does not necessarily exhibit good properties.
そこでこのような性質を改善するため斜め磁場中での熱
処理、薄帯表面へのスクラッチの尋人。In order to improve these properties, we applied heat treatment in an oblique magnetic field and scratched the surface of the ribbon.
微細結晶粒の析出などの手段によって磁区を細分化し低
鉄損化することが試みられている。たとえば特開昭57
−202709では、Fe系非晶質合金においてキュリ
一点以下の温度で、励磁方向と実質的に直角の方向に磁
場をかけながら焼鈍することにより、直流で低角型比の
B−H特性を持つ磁性材料を得ることが提案されており
、又JJppl。Attempts have been made to subdivide magnetic domains and reduce iron loss by means such as precipitation of fine crystal grains. For example, JP-A-57
-202709 has B-H characteristics with a low squareness ratio in direct current by annealing an Fe-based amorphous alloy at a temperature below the Curie point while applying a magnetic field in a direction substantially perpendicular to the excitation direction. It has been proposed to obtain magnetic materials, and also JJppl.
Phys、 、 Mol 、54 、 Nll 1 、
1983 、 p6554では、遷移金属を添加して磁
歪を低減させて磁区の細分化を行い、低鉄損化をはかる
ことが報告されている。Phys, , Mol, 54, Nll 1,
1983, p. 6554, it is reported that transition metals are added to reduce magnetostriction and subdivide magnetic domains, thereby reducing iron loss.
かかる低鉄損化に対する工業的要求は高まる一方でめり
、たとえばスイッチング電源においては、より一層の小
型軽量化、高効率化、扁信頼性化。The industrial demand for lower iron loss is increasing, and switching power supplies, for example, are becoming smaller and lighter, more efficient, and more reliable.
低コスト化を目上して開発がすすめられているが、有力
な対処法のひとつとしてスイッチング周波数の一層の高
周波化が試みられており、電源の重要な部品のひとつで
ある磁性部品に高周波域での使用に耐える磁性材料が要
求されている。トランス。Development is progressing with the aim of lowering costs, and one promising solution is attempting to raise the switching frequency even higher. There is a need for magnetic materials that can withstand use in Trance.
コイルに使用される磁性材料は一般に飽和磁束密度が高
い程、作@磁束密度の振巾を大きくとることができるの
で有利であるが、その反面数十KHz以上の高周波域に
なると鉄損が増大して発熱により使用が制限されるよう
になる。したがって鉄損を低減することが最も重要なポ
イントとなる。一方直流を重畳して使用するタイプのト
ランスやコイルでは透磁率が一定であり、飽和磁束密度
が高くかつ残留磁化の低い磁性材料が有利となる。従来
は磁性材料に空気ギャップを設けて恒透磁率性を得てお
り、自身が恒透磁率性を持つ磁性材料の開発も持重され
ている。In general, the higher the saturation magnetic flux density of the magnetic material used for the coil, the greater the amplitude of the magnetic flux density, which is advantageous, but on the other hand, iron loss increases in the high frequency range of tens of KHz or more Its use is restricted due to the heat it generates. Therefore, reducing iron loss is the most important point. On the other hand, for transformers and coils of the type that are used with superimposed direct current, magnetic materials with constant magnetic permeability, high saturation magnetic flux density, and low residual magnetization are advantageous. Conventionally, constant magnetic permeability has been obtained by creating an air gap in magnetic materials, and efforts are being made to develop magnetic materials that themselves have constant magnetic permeability.
上記の如< Co系非晶質合金は磁歪が零の組成を選ぶ
ことができ、抗磁力が小さく、Fe系非晶質合金よりも
磁気損失が低く、理論的には高周波域における銖損金よ
り小さくできる。しかし他面低鉄損化を目的としたCo
系非晶質合金の熱処理方法は十分に研究されていなかっ
た。これはコア材料には高飽和L8束密度が必要とされ
るという常識によるためで、Fe系非晶質合金と比べ飽
和m密度度が低いCo系非晶質合金は専ら高透磁率を生
かした用途にのみ限定されているのが実情である。又前
述したごとくスイッチング電源のスイッチング周波数の
高周波化に対応するには飽和磁束密度の大小よりも鉄損
を低減することが技術的によシ重要であり、Co系非晶
質合金の熱処理方法の改善による低鉄損の磁性材料の開
発が工業的に重要であり、又低鉄損かつ恒透磁率性を持
つ磁性材料の開発も期待されている。As mentioned above, Co-based amorphous alloys can be selected to have a composition with zero magnetostriction, have low coercive force, have lower magnetic loss than Fe-based amorphous alloys, and are theoretically more effective than metal loss in the high frequency range. Can be made smaller. However, on the other hand, Co
Heat treatment methods for amorphous alloys have not been sufficiently studied. This is due to the common sense that a high saturated L8 flux density is required for the core material, and the Co-based amorphous alloy, which has a lower saturated m-density than the Fe-based amorphous alloy, takes advantage of its high magnetic permeability. The reality is that it is limited to only one use. In addition, as mentioned above, in order to cope with the increasing switching frequency of switching power supplies, it is technically more important to reduce iron loss than to determine the saturation magnetic flux density. The development of magnetic materials with low core loss through improvement is industrially important, and the development of magnetic materials with low core loss and constant magnetic permeability is also expected.
本発明は高周波域において鉄損の極めて低い磁性材料と
その製造方法を提供することを目的とする。そして又多
数の試験研究の結果、恒透磁率性の磁性材料は、ヒステ
リシス損が小さく、鉄損を低減できることが判明したた
め、併せて恒透磁率性の磁性材料とその製造方法を提供
しようとするものである。An object of the present invention is to provide a magnetic material with extremely low core loss in a high frequency range and a method for manufacturing the same. Furthermore, as a result of numerous test and research studies, it has been found that magnetic materials with constant magnetic permeability have small hysteresis loss and can reduce iron loss, so we will also provide magnetic materials with constant magnetic permeability and a method for manufacturing the same. It is something.
本発明はこのような問題を解決すべくなされたものであ
り、即ち組成式(col−X Fex ) toO−a
−b−c MaSibBcで表され、MはNi、Mn、
Cr、Mo、W、V、Nb。The present invention was made to solve such problems, that is, the composition formula (col-X Fex) toO-a
−b−c Represented by MaSibBc, M is Ni, Mn,
Cr, Mo, W, V, Nb.
Ta、 Ru、 Ti 、 Zrのいづれか1〒■又は
2 )ff1以上であリ、原子比でO≦x≦0.2 、
O≦a≦20≦a≦20゜O≦c≦20,5≦b+c
≦30 の関係を満しかつその80チ以上が非晶質状態
である材料であシ、恒透磁率の磁気特性を有することを
特徴とする磁性材料である。そして更に本発明は、上記
Co系非晶質合金を焼鈍する際キュリ一点以下の温度で
使用時に励磁される方向と実質的に直角の方向に磁場を
かけ、恒透磁率の磁気特性を具備させ、高周波域におけ
る鉄損を低減した磁性材料tS造しようとするものであ
る。Any one of Ta, Ru, Ti, Zr 1〒■ or 2) ff1 or more, atomic ratio O≦x≦0.2,
O≦a≦20≦a≦20゜O≦c≦20, 5≦b+c
A magnetic material is a material that satisfies the relationship of ≦30 and in which 80 or more parts thereof are in an amorphous state, and is characterized by having a magnetic property of constant magnetic permeability. Furthermore, the present invention provides magnetic properties of constant magnetic permeability by applying a magnetic field in a direction substantially perpendicular to the direction of magnetization during use at a temperature below one Curie point when annealing the Co-based amorphous alloy. This is an attempt to create a magnetic material tS with reduced iron loss in the high frequency range.
本発明磁性材料において、その主成分はCoであり、又
Feは主に磁歪を零にするための添加元素であり、Mは
副次成分で、磁歪を小さくする他、結晶化温度をあげる
効果や磁区構造を変えて高周波域における鉄損を下げる
ためのものである。そして3i及びBは非晶質化の友め
に必須のメタロイド元素であり、b十cが5 at%未
満あるいは30atチをこえると、非晶質化が極めて困
難となる。Si及びBt−共に含有すると、単独で用い
た場合より非晶質化が容易となり、安定した製造が可能
となる几めす、cはそれぞれ20at%以下とすること
が実用上はより好ましい。そしてFeを多く含有すると
飽和磁束密度は増大するが、磁歪が大きくlり、鉄損低
減に不利となるためXを0.2以下に限定する必要があ
る。副次成分の添加量が過剰になると磁歪零の組成から
のずれが大きくなり、飽和磁束密度が低下し過ぎるなど
磁気特性が劣化するので、aは20at%以下に限定さ
れる。In the magnetic material of the present invention, the main component is Co, Fe is an additive element mainly to reduce magnetostriction to zero, and M is a secondary component, which has the effect of reducing magnetostriction and raising the crystallization temperature. This is to reduce iron loss in the high frequency range by changing the magnetic domain structure. 3i and B are metalloid elements essential for amorphization, and if b~c is less than 5 at% or exceeds 30 at%, amorphization becomes extremely difficult. When both Si and Bt are contained, it is easier to make the material amorphous than when they are used alone, and stable production is possible. Practically speaking, it is more preferable for each of Si and B to be 20 at % or less. If a large amount of Fe is contained, the saturation magnetic flux density will increase, but the magnetostriction will be greatly reduced, which is disadvantageous in reducing iron loss, so it is necessary to limit X to 0.2 or less. If the amount of the secondary component added is excessive, the deviation from the zero magnetostriction composition will increase, and the magnetic properties will deteriorate, such as the saturation magnetic flux density being too low, so a is limited to 20 at % or less.
本発明の上述OCO系非晶質合金を、キュリ一点以下の
温度で使用時の励磁方向と実質的に直角の方向に磁場を
かけながら焼鈍すると抗磁力が小さく、残留磁化が実質
的にほぼ零である材料が得られる。又焼鈍される材料の
d−1(但し、式中Wは焼鈍される材料の質量(rl、
dは密[(r/ffd)、tは磁場印加方向の長さ−)
に応じて、焼鈍時に印加する磁場の強さを変化させ、そ
の値が適切であると、恒透磁率の直流磁気特性を持った
磁性材料が得られる。該材料は数十KH2以上の高周波
域においても恒透磁率特性を保持し、鉄損も従来材料と
比べ著しく小さいという特徴を有する。When the above-mentioned OCO-based amorphous alloy of the present invention is annealed at a temperature below one Curie point while applying a magnetic field in a direction substantially perpendicular to the excitation direction during use, the coercive force is small and the residual magnetization is substantially zero. A material is obtained. Also, d-1 of the material to be annealed (where W is the mass of the material to be annealed (rl,
d is density [(r/ffd), t is length in the direction of magnetic field application -)
The strength of the magnetic field applied during annealing is changed according to the value, and if the value is appropriate, a magnetic material with constant magnetic permeability and direct current magnetic properties can be obtained. This material maintains a constant magnetic permeability characteristic even in a high frequency range of several tens of KH2 or more, and has a characteristic that the core loss is significantly smaller than that of conventional materials.
Co系非晶質合金は一般に溶湯急冷法で製造され、細長
い薄帯として提供されるので励磁方向は薄帯の長手方向
、焼鈍時の磁場の方向は薄帯の巾方向であることが実用
的である。Co-based amorphous alloys are generally manufactured by a molten metal quenching method and provided as long thin ribbons, so it is practical to set the excitation direction in the longitudinal direction of the ribbon and the direction of the magnetic field during annealing to be in the width direction of the ribbon. It is.
ここで、焼鈍時に印加する磁場と焼鈍される材料の(−
g)との関係について若干説明しておく。Here, the magnetic field applied during annealing and the (−
Let me briefly explain the relationship with g).
一般に、有限の大きさをもつ強磁性体を磁場中に入れて
磁化すると、該磁化のためにその両端に磁極が生じ、反
磁場と呼ばれる、外部から印加した磁場とは逆向きの磁
場が生じる。この反磁場によって外部からの印加磁場が
打ち消される定め、材料に人質的に印加される磁場(有
効磁場)の強さは外部−場よりも小さくなる。焼鈍され
る材料の、磁場印加方向に垂直7j:断面積(りが大き
いほど・d−を
材料の両端表面に生じる磁極は大きくなシ、その結果、
反磁場は強くなると考えられる。上記本発明のように、
磁場中で焼鈍することによって材料の磁気特性を変化さ
せて所望の特性を得ようとする場合には、外部からの印
加磁場よジも、有効出湯の強さが重要であり、焼鈍され
る材料の(1)−t
に応じて焼鈍時の外部磁場の強さを変えることによって
、はじめて、所定の磁気特性を得るのに必要な有効磁場
が得られると考えられる。Generally, when a ferromagnetic material with a finite size is placed in a magnetic field and magnetized, magnetic poles are generated at both ends due to the magnetization, and a magnetic field in the opposite direction to the magnetic field applied from the outside, called a demagnetizing field, is generated. . This demagnetizing field cancels out the externally applied magnetic field, and the strength of the magnetic field (effective magnetic field) that is hostage applied to the material becomes smaller than the external field. Perpendicular to the direction of magnetic field application 7j of the material to be annealed: The larger the cross-sectional area (d), the larger the magnetic poles generated on both end surfaces of the material.
It is thought that the demagnetizing field becomes stronger. Like the above invention,
When attempting to obtain desired properties by changing the magnetic properties of a material by annealing it in a magnetic field, the strength of the effective tapping of the externally applied magnetic field is important, and the strength of the material to be annealed is important. It is considered that the effective magnetic field necessary to obtain predetermined magnetic properties can only be obtained by changing the strength of the external magnetic field during annealing according to (1) - t.
本発明においては、材料組成を上記式による組成を満足
させたものとしたことにより、上記の各種の要望に応じ
得る適切な材料を提供し得たのである。In the present invention, by setting the material composition to one that satisfies the composition according to the above formula, it has been possible to provide an appropriate material that can meet the various demands mentioned above.
実施例、1
(COo、94 F’e0.06 )755i15 B
IOの組成ヲ有し、単ロール法で製造した非晶質合金薄
帯を、薄帯の巾方向に磁場をかけながら焼鈍して得た磁
性材料の直流磁気特性を第1図に示す。上記薄帯をトロ
イグル状に巻回して、内径14.7m、外径15.9r
XIRの巻鉄心とし、0.9KOeの磁場をかけながら
、キュリ一点以下の温度310℃で10分間焼鈍した。Example, 1 (COo, 94 F'e0.06)755i15 B
FIG. 1 shows the DC magnetic properties of a magnetic material obtained by annealing an amorphous alloy ribbon having a composition of IO and manufactured by a single roll method while applying a magnetic field in the width direction of the ribbon. The above thin strip was wound in a troigle shape, with an inner diameter of 14.7 m and an outer diameter of 15.9 r.
An XIR wound core was used and annealed for 10 minutes at a temperature of 310° C. below the Curie point while applying a magnetic field of 0.9 KOe.
焼鈍された巻鉄心に対して励磁コイルと検出コイル全巻
線して直流磁気特性を測定した。励磁方向は巻鉄心円周
方向で、薄帯の長手方向にあたり巾方向と亘角である。The DC magnetic characteristics were measured by fully winding the excitation coil and detection coil on the annealed wound core. The excitation direction is the circumferential direction of the wound core, which corresponds to the longitudinal direction of the ribbon and is at an angle with the width direction.
直流磁気特性は恒透磁率を示し、抗磁力が小さく、残留
磁化が実質的に零である。The DC magnetic properties exhibit constant magnetic permeability, low coercive force, and essentially zero residual magnetization.
次に第2図は同材料の50 KHzにおける交流B−H
曲線図であるが高周波域における磁気特性も恒透磁率を
示している。ここで第6図及び第7図は従来のものの磁
気特性を示す比較図であり回転磁場中で実施例1と同一
組成の材料を同一温度で熱処理したものの磁気特性を示
す。第6図の直流B−H曲線図は高透磁率、低抗磁力を
示し高角型比であるが、高周波域においては第7図に示
すごとく抗磁力が大きくなり、ヒステリシス損が上記実
施例の磁性材料と比べ大きい。第3図には実施例磁性材
料と従来材料との高周波域における鉄損の比較を示す。Next, Figure 2 shows the AC B-H of the same material at 50 KHz.
Although this is a curve diagram, the magnetic properties in the high frequency range also show constant magnetic permeability. Here, FIGS. 6 and 7 are comparative diagrams showing the magnetic properties of conventional products, and show the magnetic properties of a material having the same composition as in Example 1 and heat treated at the same temperature in a rotating magnetic field. The DC B-H curve diagram in Fig. 6 shows high magnetic permeability and low coercive force, and has a high squareness ratio, but in the high frequency range, as shown in Fig. 7, the coercive force becomes large, and the hysteresis loss is lower than that of the above embodiment. Larger than magnetic materials. FIG. 3 shows a comparison of iron loss in the high frequency range between the example magnetic material and the conventional material.
同図によれば本発明の磁性材料が従来ノスーノソーマロ
イ、フェライト、従来の熱処理を行つ友非晶質合金(ア
ライド社2605−83)などと比べ著しく鉄損が低減
されていることが明らかである。The figure shows that the magnetic material of the present invention has significantly reduced iron loss compared to conventional non-noso-malloy, ferrite, and amorphous alloy (Allied Co., Ltd. 2605-83) that undergoes conventional heat treatment. is clear.
実施例、2
(COo、04 Feo、o6)71 MnLaWLa
Si7 B15の組成を有する巾IC1mの非晶質合
金薄帯(密度d = 8.16 (Jlcす)を巻回し
てトロイダルコアを作製し、磁場中で焼鈍し友場合の鉄
損及び直流磁気特性の、焼鈍時の印加磁場の強さ依存性
を第4図に示す。測定に供したコアは質量3.31、磁
場は薄帯の巾方向に印加した。Example, 2 (COo, 04 Feo, o6) 71 MnLaWLa
A toroidal core was prepared by winding an amorphous alloy ribbon (density d = 8.16 (Jlc)) with a width of IC 1 m having a composition of Si7B15, and the iron loss and DC magnetic properties were annealed in a magnetic field. Figure 4 shows the dependence of the strength of the applied magnetic field during annealing.The core used for the measurement had a mass of 3.31, and the magnetic field was applied in the width direction of the ribbon.
第4図0印で示したものは断面積に比し印加磁場が弱す
ぎる場合であり第4図(a)に示し7’CB−H曲線図
のごとく低角型比となっても恒透磁率とならず、鉄損の
低減も少ない。第4図Δ印で示した印加磁場が強すぎる
場合には第4図(c)に示したB−H曲線図のごとく恒
透磁率となるが鉄損は第4図口印で示した最適な磁場の
強さの場合より少し大きくなる。かつ第4図(c)のB
−H曲線図に示したごと< BIO(100eにおける
磁束密度)が減少し、コアの動作磁束密度を高くする用
途に関しては、実用上不利な性質が生じてくる。The case marked with 0 in Fig. 4 is a case where the applied magnetic field is too weak compared to the cross-sectional area, and it remains transparent even when the squareness ratio is low as shown in Fig. 4(a) and the 7'CB-H curve diagram. There is no magnetic flux, and there is little reduction in iron loss. If the applied magnetic field indicated by the Δ mark in Figure 4 is too strong, the permeability becomes constant as shown in the B-H curve diagram shown in Figure 4 (c), but the iron loss is the optimum value shown by the mouth mark in Figure 4. It is slightly larger than that for magnetic field strength. and B in Figure 4(c)
As shown in the −H curve diagram, the BIO (magnetic flux density at 100e) decreases, resulting in practically disadvantageous properties for applications where the operating magnetic flux density of the core is increased.
実施例、3
上記実施例2と同様の組成を肩する、各極板中の非晶質
1合金薄帯を作製し、これを巻回して、各種火きさと形
状を肩する巻鉄心を作製した。この鉄心について、薄帯
の巾方向に磁場を印加しながら熱処理しfc場合の、鉄
心のπ(但し式中のWは鉄心の質量(?)、dは薄帯の
密度(f/l:d )、tは薄帯の巾−)と印加磁場の
強さと熱処理後の直流磁気特性との相関関係を第5図に
示す。Example 3 Amorphous 1-alloy thin strips in each electrode plate having the same composition as in Example 2 above were prepared, and this was wound to produce wound cores having various scorches and shapes. did. This iron core is heat-treated while applying a magnetic field in the width direction of the ribbon. When f ), t is the width of the ribbon -), the strength of the applied magnetic field, and the DC magnetic properties after heat treatment are shown in FIG.
同図において、口は恒透磁率に近いが完全にはならなか
つ友もの、○は恒透磁率となったもの、Δは恒透磁率と
なったが13toが低下したもの、×は恒透磁率となら
なかったものを夫々示す。第5図より最適磁場の強さは
、被処理材料の−W−に比d−を
例することが明らかであり、その最適範囲は、4.3(
−3M−)−1,5≦H≦4.3(−!−)+2.3(
但し、Hは焼d−1d−を
鈍時の印加磁場の強さくKOe)で必ず零より大である
)にある。In the same figure, the mouth is close to constant magnetic permeability but not perfect, ○ is constant magnetic permeability, Δ is constant magnetic permeability but 13to has decreased, × is constant magnetic permeability. Indicate the cases that did not occur. From FIG. 5, it is clear that the optimum magnetic field strength is the ratio d- to -W- of the material to be treated, and its optimum range is 4.3 (
-3M-)-1,5≦H≦4.3(-!-)+2.3(
However, H is always greater than zero at the strength of the applied magnetic field (KOe) when annealing d-1d- is dull.
この発明は上記のように高周波域における鉄損の低減お
よび恒透磁率性を持つ磁性材料を提供することを目的と
して成されたものであるが、高周波域における使用、あ
るいはスイッチング電源への使用などに用途は限定され
ない。As mentioned above, this invention was made for the purpose of reducing iron loss in a high frequency range and providing a magnetic material with constant magnetic permeability. The use is not limited to.
又実施例は主に巻鉄心について説明したが、この発明は
巻鉄心に限定されるものではなく、磁性材料の形状は薄
帯のまま、薄帯を積層し次磁心あるいは他の形状であっ
てもよい。Further, although the embodiments have mainly been described with respect to wound cores, the present invention is not limited to wound iron cores, and the shape of the magnetic material may be a thin ribbon, a secondary magnetic core made by laminating thin ribbons, or other shapes. Good too.
以上のようにこの発明によれば、Co系非晶質合金を励
磁方向と実質的に直角の方向に磁場をかけながら焼鈍し
、かつ磁場の強さを熱処理される材料の上記工に応じて
適当に選ぶことにより、直流においても高周波域におい
ても恒透磁率特性を持つ磁性材料が得られ、又該材料の
使用により高周波域における鉄損が極めて低い砒心が得
られる効果がありその工業的利用効果は非常に太きい。As described above, according to the present invention, a Co-based amorphous alloy is annealed while applying a magnetic field in a direction substantially perpendicular to the excitation direction, and the strength of the magnetic field is adjusted according to the above-mentioned processing of the material to be heat treated. By appropriately selecting a magnetic material, it is possible to obtain a magnetic material with constant magnetic permeability characteristics both in direct current and in the high frequency range, and by using this material, it is possible to obtain a core with extremely low core loss in the high frequency range. The effect of its use is very strong.
第1図はこの発明の一実施例の磁気特性を示す直流B−
4曲線図、第2図は同実施例の又流B−H曲線図、第3
図はこの発明の−SIt、施例と従流側磁性材料との鉄
損の比較を示す鉄損−磁束密度図、第4図はこの発明の
他の実施例の鉄損及びiM流磁気特性の焼鈍時の印加磁
場依存性を示す図、第5W
図は、焼鈍される材料のnと焼鈍時の印加磁場が磁気特
性に与える影響を示す図、第6図は従来の熱処理による
Co基非晶質合金の磁気特性を示す直流B−H曲線図、
第7図は第6図と同一材料の交流B−H曲線図である。FIG. 1 shows the magnetic characteristics of an embodiment of the present invention.
4 curve diagram, Figure 2 is the crossflow B-H curve diagram of the same example, and Figure 3 is
The figure is an iron loss-magnetic flux density diagram showing a comparison of the iron loss between -SIt and the example of this invention and the secondary magnetic material, and Fig. 4 is the iron loss and iM flow magnetic characteristics of another example of this invention. Figure 5W is a diagram showing the dependence of the applied magnetic field during annealing, and Figure 6 is a diagram showing the influence of n of the material to be annealed and the magnetic field applied during annealing on the magnetic properties. DC B-H curve diagram showing magnetic properties of crystalline alloy,
FIG. 7 is an AC B-H curve diagram of the same material as FIG. 6.
Claims (6)
0_−_a_−_b_−_cM_aSi_bB_cで表
され、MはNi、Mn、Cr、Mo、W、V、Nb、T
a、Ru、Ti、Zrのいずれか1種又は2種以上であ
り、原子比で0≦x≦0.2、0≦a≦20、0≦b≦
20、0≦c≦20、5≦b+c≦30の関係を満しか
つその80%以上が非晶質状態である材料であり、恒透
磁率の磁気特性を有することを特徴とする磁性材料。(1) Composition formula (Co_1_-_xFe_x)_1_0_
0_-_a_-_b_-_cM_aSi_bB_c, M is Ni, Mn, Cr, Mo, W, V, Nb, T
Any one or more of a, Ru, Ti, and Zr, and the atomic ratio is 0≦x≦0.2, 0≦a≦20, 0≦b≦
20. A magnetic material that satisfies the following relationships: 0≦c≦20, 5≦b+c≦30, and that 80% or more of the material is in an amorphous state, and has a magnetic property of constant magnetic permeability.
0_−_a_−_b_−_cM_aSi_bB_cで表
され、MはNi、Mn、Cr、Mo、W、V、Nb、T
a、Ru、Ti、Zrのいずれか1種又は2種以上であ
り)原子比で0≦x≦0.2、0≦a≦20、0≦b≦
20、0≦c≦20、5≦b+c≦30の関係を満し、
かつその80%以上が非晶質状態である材料を使用時の
励磁方向と実質的に直角の方向に磁場をかけながら焼鈍
し、恒透磁率の磁気特性を具備させたことを特徴とする
磁性材料の製造方法。(2) Composition formula (Co_1_-_xFe_x)_1_0_
0_-_a_-_b_-_cM_aSi_bB_c, M is Ni, Mn, Cr, Mo, W, V, Nb, T
a, Ru, Ti, and Zr) 0≦x≦0.2, 0≦a≦20, 0≦b≦ in atomic ratio
20, satisfies the relationships 0≦c≦20, 5≦b+c≦30,
Magnetism, characterized in that a material of which 80% or more is in an amorphous state is annealed while applying a magnetic field in a direction substantially perpendicular to the excitation direction during use, and is made to have magnetic properties of constant magnetic permeability. Method of manufacturing the material.
磁場の方向が薄帯の巾方向であることを特徴とする特許
請求の範囲第2項記載の磁性材料の製造方法。(3) The method for manufacturing a magnetic material according to claim 2, wherein the excitation direction is the longitudinal direction of the ribbon, and the direction of the applied magnetic field during annealing is the width direction of the ribbon.
/(d・l)(但し、式中Wは焼鈍される材料の質量(
g)、dは密度(g/cm^3)、lは磁場印加方向の
長さ(cm)に比例して大きくすることを特徴とする特
許請求の範囲第2項又は第3項記載の磁性材料の製造方
法。(4) Adjust the strength of the magnetic field applied during annealing to the W of the material to be annealed.
/(d・l) (where W is the mass of the material to be annealed (
Magnetism according to claim 2 or 3, wherein g) and d are density (g/cm^3), and l is increased in proportion to the length (cm) in the direction of magnetic field application. Method of manufacturing the material.
−1.5≦H≦4.3(W/(d・l))+2.3(但
し、式中Hは磁場の強さ(KOe)でH>0である)の
関係を満すことを特徴とする特許請求の範囲第4項記載
の磁性材料の製造方法。(5) Magnetic field strength during annealing is 4.3 (W/(d・l))
-1.5≦H≦4.3(W/(d・l))+2.3 (where H is the strength of the magnetic field (KOe) and H>0). A method for producing a magnetic material according to claim 4.
ことを特徴とする特許請求の範囲の範囲第2項ないし第
5項いづれかに記載の磁性材料の製造方法。(6) A method for producing a magnetic material according to any one of claims 2 to 5, wherein the material to be annealed is a wound core made of a thin ribbon wound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61009593A JPS62167840A (en) | 1986-01-20 | 1986-01-20 | Magnetic material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61009593A JPS62167840A (en) | 1986-01-20 | 1986-01-20 | Magnetic material and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62167840A true JPS62167840A (en) | 1987-07-24 |
Family
ID=11724627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61009593A Pending JPS62167840A (en) | 1986-01-20 | 1986-01-20 | Magnetic material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62167840A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06163235A (en) * | 1991-07-31 | 1994-06-10 | Toshiba Corp | Transformer |
CN108091466A (en) * | 2017-12-19 | 2018-05-29 | 青岛云路先进材料技术有限公司 | Cobalt base amorphous alloy, the preparation method of cobalt base amorphous alloy band and the preparation method of cobalt base amorphous alloy magnetic core |
CN110983112A (en) * | 2019-12-30 | 2020-04-10 | 华南理工大学 | Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof |
WO2024190617A1 (en) * | 2023-03-15 | 2024-09-19 | 日本製鉄株式会社 | Laminated core, rotary electric machine, and manufacturing method for laminated core |
-
1986
- 1986-01-20 JP JP61009593A patent/JPS62167840A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06163235A (en) * | 1991-07-31 | 1994-06-10 | Toshiba Corp | Transformer |
CN108091466A (en) * | 2017-12-19 | 2018-05-29 | 青岛云路先进材料技术有限公司 | Cobalt base amorphous alloy, the preparation method of cobalt base amorphous alloy band and the preparation method of cobalt base amorphous alloy magnetic core |
CN110983112A (en) * | 2019-12-30 | 2020-04-10 | 华南理工大学 | Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof |
CN110983112B (en) * | 2019-12-30 | 2021-11-02 | 华南理工大学 | Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof |
WO2024190617A1 (en) * | 2023-03-15 | 2024-09-19 | 日本製鉄株式会社 | Laminated core, rotary electric machine, and manufacturing method for laminated core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4038073A (en) | Near-zero magnetostrictive glassy metal alloys with high saturation induction | |
US4268325A (en) | Magnetic glassy metal alloy sheets with improved soft magnetic properties | |
JP2007299838A (en) | Magnetic core for current transformer, current transformer using same, and electric power meter | |
JP2008231462A (en) | Magnetic alloy, amorphous alloy strip and magnetic component | |
JP2018508978A (en) | Magnetic cores based on nanocrystalline magnetic alloys | |
JP2013100603A (en) | Magnetic glassy alloy for high frequency application | |
JP2011102438A (en) | Iron-based amorphous alloy having linear bh loop | |
JPS6328483B2 (en) | ||
JPH01294847A (en) | Soft-magnetic alloy | |
KR950014314B1 (en) | Iron-base soft magnetic alloy | |
KR920007579B1 (en) | Soft magnetic materials | |
JPS6332244B2 (en) | ||
JP2823203B2 (en) | Fe-based soft magnetic alloy | |
JPS62167840A (en) | Magnetic material and its manufacture | |
US4769091A (en) | Magnetic core | |
JPS61261451A (en) | Magnetic material and its production | |
JP2004519554A (en) | Metallic glass alloys for electronic article surveillance | |
JP2000119821A (en) | Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same | |
JPH0277555A (en) | Fe-base soft-magnetic alloy | |
JP2009293132A (en) | Soft magnetic thin band, magnetic core, magnetic component and method for producing soft magnetic thin band | |
EP0145245B1 (en) | Core of a noise filter comprised of an amorphous alloy | |
JPH01290746A (en) | Soft-magnetic alloy | |
JPH055164A (en) | Iron base soft magnetic alloy | |
JPH0480523B2 (en) | ||
JP2713980B2 (en) | Fe-based soft magnetic alloy |