JPH01290746A - Soft-magnetic alloy - Google Patents
Soft-magnetic alloyInfo
- Publication number
- JPH01290746A JPH01290746A JP63118334A JP11833488A JPH01290746A JP H01290746 A JPH01290746 A JP H01290746A JP 63118334 A JP63118334 A JP 63118334A JP 11833488 A JP11833488 A JP 11833488A JP H01290746 A JPH01290746 A JP H01290746A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic
- soft
- temp
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 27
- 239000000956 alloy Substances 0.000 claims abstract description 27
- 230000004907 flux Effects 0.000 claims abstract description 13
- 229910052796 boron Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 230000000737 periodic effect Effects 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 239000013078 crystal Substances 0.000 claims description 27
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000007779 soft material Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 abstract description 14
- 229910000808 amorphous metal alloy Inorganic materials 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000010791 quenching Methods 0.000 abstract description 5
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000000171 quenching effect Effects 0.000 abstract description 4
- 239000000843 powder Substances 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 239000011888 foil Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 230000000694 effects Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、軟磁性合金に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to soft magnetic alloys.
(従来技術)
従来から、スイッチングレギュレータなど高周波で使用
する磁心としては、パーマロイ、フェライトなどの結晶
質材料が用いられている。(Prior Art) Crystalline materials such as permalloy and ferrite have conventionally been used as magnetic cores used in high frequency applications such as switching regulators.
しかしながら、パーマロイは比抵抗が小さいので高周波
での鉄損が大きくなる。また、フェライトは高周波での
損失は小さいが、磁束密度もせいぜい5000Gと小さ
く、そのため大きな動作磁束密度での使用時にあっては
飽和に近くなり、その結果鉄損が増大する。近時、スイ
ッチングレギュレータに使用される電源トランス、平滑
チョークコイル、コモンモードチョークコイルなど高周
波で使用されるトランスにおいては、形状の小形化が望
まれているが、その場合、動作磁束密度の増大が必要と
なるため、フェライトの鉄損増大は実用上大きな問題と
なる。However, since permalloy has a low resistivity, iron loss at high frequencies increases. Further, although ferrite has a small loss at high frequencies, its magnetic flux density is as low as 5000G at most, and therefore, when used at a large operating magnetic flux density, it approaches saturation, resulting in an increase in iron loss. Recently, there has been a desire to reduce the size of transformers used at high frequencies, such as power transformers used in switching regulators, smoothing choke coils, and common mode choke coils. Therefore, the increase in iron loss of ferrite becomes a big problem in practice.
このため、結晶構造を持たない非晶質磁性合金が、高透
磁率、低保磁力など優れた軟質磁気特性を示すので最近
注目を集めて一部実用化されている。これらの非晶質磁
性合金は、Fe5Co、Niなどを基本とし、これに非
晶質化元素(メタロイド)としてP、C,B55t、A
I、Geなどを包含するものである。For this reason, amorphous magnetic alloys that do not have a crystalline structure have recently attracted attention and have been partially put into practical use because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are based on Fe5Co, Ni, etc., and include P, C, B55t, A as amorphous elements (metalloids).
This includes I, Ge, etc.
しかしながら、これら非晶性質磁性合金の全てが高周波
領域で鉄損が小さいというわけではない。However, not all of these amorphous magnetic alloys have small iron loss in the high frequency range.
例えば、Fe基非晶質合金は、安価であり50〜60H
zの低周波領域ではケイ素鋼の約1/4という非常に小
さい鉄損を示すが、10〜50Hzという高周波領域に
あっては著しく大きな鉄損を示し、とてもスイッチング
レギュレータ等の高周波領域での使用に適合するもので
はない。これを改善するために、Feの一部をNbSM
o、Cr等の非磁性金属で置換することにより低磁歪化
し、低鉄損、高透磁率を図っているが、例えば樹脂モー
ルド時の樹脂の硬化収縮等による磁気特性の劣化も比較
的大きく、高周波領域で用いられる軟磁性材料としては
、充分な特性を得られるに至っていない。For example, Fe-based amorphous alloys are inexpensive and 50~60H
In the low frequency range of 10 to 50 Hz, the iron loss is very small, about 1/4 of that of silicon steel, but in the high frequency range of 10 to 50 Hz, it shows a significantly large iron loss, making it difficult to use in high frequency ranges such as switching regulators. It is not suitable for In order to improve this, some of the Fe was replaced with NbSM.
By substituting non-magnetic metals such as O, Cr, etc., magnetostriction is reduced, and low iron loss and high magnetic permeability are achieved. As a soft magnetic material used in a high frequency region, sufficient characteristics have not yet been obtained.
一方、CO基非晶質合金は、高周波領域で低鉄損、高角
形比が得られるため可飽和リアクトルになどの電子機器
用磁性部品に実用化されるが、コストが比較的高いもの
である。On the other hand, CO-based amorphous alloys have low iron loss and a high squareness ratio in the high frequency range, so they are put to practical use in magnetic parts for electronic devices such as saturable reactors, but they are relatively expensive. .
(発明が解決しようとする課題)
以上に述べたように、Fe基非晶質合金は安価な軟磁性
材料でありながら、磁歪が比較的大きく、Co基非晶質
合金に比べ鉄損、透磁率とも劣っており、高周波領域に
おける用途には問題があった。(Problems to be Solved by the Invention) As described above, although Fe-based amorphous alloys are inexpensive soft magnetic materials, they have relatively large magnetostriction and have lower iron loss and permeability than Co-based amorphous alloys. It also has poor magnetic property, which poses a problem for use in high frequency ranges.
一方Co基非晶質合金は磁気特性は良好であるものの、
素材の値段が高いため工業上有利ではなかった。On the other hand, although Co-based amorphous alloys have good magnetic properties,
It was not industrially advantageous due to the high cost of the material.
したがって本発明は、上記問題点に鑑み、高周波領域に
おいて高飽和磁束密度で優れた軟磁気特性を有する軟磁
性合金を提供することを目的とする。Therefore, in view of the above problems, it is an object of the present invention to provide a soft magnetic alloy having excellent soft magnetic properties at high saturation magnetic flux density in a high frequency region.
[発明の概要]
(課題を解決するための手段と作用)
上記目的を達成するために本願発明者らは合金粗性およ
び組織について種々検討を重ねた結果、まず第1の合金
として
(F81−a−b−c ’a C0b ”c )10
0−d”dM−二周期律表IV a 、 V a 、
VI a族元素またはMn。[Summary of the Invention] (Means and Effects for Solving the Problems) In order to achieve the above object, the inventors of the present invention have conducted various studies on alloy roughness and structure, and have developed a first alloy (F81- a-b-c 'a C0b "c)10
0-d”dM-2 Periodic Table IV a, Va,
VI Group a element or Mn.
Ni、AIから選ばれる少なくとも1種以上Y :
Sl、B、P、Cから選ばれる少なくとも1種以上
0.005≦a≦0.05
0.01≦b≦0.7
0≦c≦0.1
15≦d≦28(原子%)
で表わされ、微細結晶粒を有する合金、および第2の合
金として、
(F81−a−b−c ’a C0b ”c )100
−dYdM : Ag、Au、Zn、Sn、Pb、S
b、Biから選ばれる少なくとも1種以上
M′:周期律表IVa、Va、Vla族元素またはMn
。At least one or more selected from Ni and AI Y:
At least one selected from Sl, B, P, and C 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28 (atomic %) (F81-a-b-c'a C0b "c)100
-dYdM: Ag, Au, Zn, Sn, Pb, S
b, at least one or more selected from Bi M': element of group IVa, Va, Vla of the periodic table or Mn
.
Ni、AIから選ばれる少なくとも1種以上Y :
81.B、P、Cから選ばれる少なくとも1種以上
0.005≦a≦0.05
0.01≦b≦0.7
0≦c≦0.1
15≦d≦28(原子%)
で表わされ、微細結晶粒を有する合金が、軟磁性材料と
して優れた特性を有することを初めて見い出し、本発明
に至ったものである。At least one or more selected from Ni and AI Y:
81. At least one selected from B, P, and C, expressed as 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28 (atomic %) discovered for the first time that an alloy having fine crystal grains has excellent properties as a soft magnetic material, leading to the present invention.
本発明は上記組成を有する合金中に特に微細結晶粒を有
することを特徴とする
特に微細結晶粒は、合金中に面積比で30%以上存在す
ることが好ましく、さらには前記微細結晶粒中に50〜
aooAの結晶粒が80%以上存在することが好ましい
。The present invention is characterized by having particularly fine crystal grains in the alloy having the above composition.The particularly fine crystal grains preferably exist in the alloy in an area ratio of 30% or more; 50~
It is preferable that 80% or more of aooA crystal grains exist.
以下に、本発明合金の組成限定理由および微細結晶粒の
限定理由について説明する。The reason for limiting the composition of the alloy of the present invention and the reason for limiting the fine crystal grains will be explained below.
まず組成限定理由について説明する。First, the reason for limiting the composition will be explained.
CuあるいはMは耐食性を高め、結晶粒の粗大化を防ぐ
と共に、鉄損、透磁率など軟磁気特性を改善するのに有
効な元素であるが、その量があまり少ないと添加の効果
が得られず、逆にあまり多M′は結晶粒径の均一化に有
効であると共に、磁歪および磁気異方性を低減させ軟磁
気特性の改善、および温度変化に対する磁気特性の改善
に有効な元素であるが、その量があまり多いとキュリー
温度が低くなると共に飽和磁束密度が低くなるため、そ
の量を0〜0.1とした。好ましくは0.02〜0.1
、さらに好ましくは0.02〜0.07である。ここで
M′における各添加元素は上記効果と共にさらにそれぞ
れ、IVa族元素は最適磁気特性を得るための熱処理条
件の範囲の拡大、Va族元素およびMnは耐脆化性の向
上および切断等の加工性の向上、VTa族元素は耐食性
の向上および表面性状の向上、A1は結晶粒の微細化と
共に磁気異方性の低減に有効であり、これにより磁歪、
軟磁気特性の改善、等の効果を有している。Cu or M is an effective element for increasing corrosion resistance, preventing coarsening of crystal grains, and improving soft magnetic properties such as iron loss and magnetic permeability, but if the amount is too small, the effect of addition cannot be obtained. On the other hand, too much M' is an element that is effective in making the crystal grain size uniform, reducing magnetostriction and magnetic anisotropy, improving soft magnetic properties, and improving magnetic properties against temperature changes. However, if the amount is too large, the Curie temperature and saturation magnetic flux density will decrease, so the amount is set to 0 to 0.1. Preferably 0.02-0.1
, more preferably 0.02 to 0.07. Here, each additive element in M' has the above-mentioned effect, and the IVa group element expands the range of heat treatment conditions to obtain optimal magnetic properties, and the Va group element and Mn improve embrittlement resistance and processing such as cutting. VTa group elements are effective in improving corrosion resistance and surface texture, and A1 is effective in refining crystal grains and reducing magnetic anisotropy.
It has effects such as improving soft magnetic properties.
COは低磁歪化、高飽和磁束密度化に有効な元素である
が、その量があまり少ないと添加の効果が得られず、逆
にあまり多いと飽和磁束密度が低減するため、その量を
0.01〜0.7とした。CO is an effective element for reducing magnetostriction and increasing saturation magnetic flux density, but if the amount is too small, the effect of addition cannot be obtained, and on the other hand, if it is too large, the saturation magnetic flux density will decrease, so the amount should be reduced to 0. It was set as .01 to 0.7.
特に磁歪の低減を重視する場合は0.01〜0.1が好
ましく、高飽和磁束密度化を重視する場合は0.3〜0
.7が好ましいが、 0.1〜0.3でも優れた軟磁気
特性が得られる。In particular, it is preferably 0.01 to 0.1 when placing emphasis on reducing magnetostriction, and 0.3 to 0 when placing emphasis on high saturation magnetic flux density.
.. Although 7 is preferable, excellent soft magnetic properties can also be obtained with a value of 0.1 to 0.3.
なおCuまたはM、M−Coの複合添加により磁気特性
の温度変化に対する改善が図れる。Note that by adding Cu or a composite of M and M-Co, the magnetic properties can be improved against temperature changes.
Yは製造時における合金の非結晶化または直接微細結晶
を析出させるのに有効な元素であり、その量があまり少
ないと製造時における超急冷の効果が得られにくく上記
状態が得られず、逆にあまり多いと飽和磁束密度が低く
なり上記状態が得られに<<、優れた磁気特性が得られ
なくなるため、その量を15〜28原子%とした。好ま
しくは18〜2B原子%である。特に(S i、C)/
(B、P)の比は1以上が好ましい。Y is an effective element for making the alloy amorphous or directly precipitating fine crystals during manufacturing, and if its amount is too small, it will be difficult to obtain the effect of ultra-quenching during manufacturing, and the above state will not be obtained, and vice versa. If the amount is too large, the saturation magnetic flux density will be low and the above state will not be obtained, making it impossible to obtain excellent magnetic properties. Therefore, the amount is set to 15 to 28 at %. Preferably it is 18 to 2 B atom %. Especially (S i, C)/
The ratio of (B, P) is preferably 1 or more.
上記本発明の軟磁性合金は、例えば液体急冷法により、
非晶質合金薄帯を得た後、または、アトマイズ法などに
より急冷粉末を得た後、前記非晶質合金の結晶化温度に
対し一50〜+120℃、好ましくは一30〜+100
℃の温度で1分〜10時間、好ましくは10分〜5時間
の熱処理を行い、意図する微細結晶を析出させる方法、
あるいは液体急冷法の急冷速度を制御して微細結晶粒を
析出させる方法等により得ることが可能となる。The above-mentioned soft magnetic alloy of the present invention can be produced by, for example, a liquid quenching method.
After obtaining an amorphous alloy ribbon, or after obtaining a rapidly cooled powder by an atomization method, the temperature is -50 to +120°C, preferably -30 to +100°C, relative to the crystallization temperature of the amorphous alloy.
A method of precipitating the intended fine crystals by performing heat treatment at a temperature of 1 minute to 10 hours, preferably 10 minutes to 5 hours,
Alternatively, it can be obtained by controlling the quenching rate of liquid quenching to precipitate fine crystal grains.
次に本発明の軟磁合金の微細結晶粒について述べる。Next, the fine crystal grains of the soft magnetic alloy of the present invention will be described.
本発明の合金中において、あまり微細結晶粒が少ないと
、すなわち非晶質相があまり多いと鉄損が大きく、透磁
率が低く、磁歪が大きく、樹脂モールドによる磁気特性
の劣化が増大するため、合金中の微細結晶粒は面積比で
30%以上存在することが好ましい。In the alloy of the present invention, if there are too few fine crystal grains, that is, if there are too many amorphous phases, the iron loss will be large, the magnetic permeability will be low, the magnetostriction will be large, and the deterioration of magnetic properties due to resin molding will increase. It is preferable that the fine crystal grains in the alloy exist in an area ratio of 30% or more.
さらに上記微細結晶粒中においても結晶粒径があまり小
さいと磁気特性の改善が図れず、逆にあまり大きいと磁
気特性の劣化が発生するため、上記微細結晶粒中におい
ても、結晶粒径50〜300人の結晶が80%以上存在
することが好ましい。Furthermore, if the grain size of the fine crystal grains is too small, the magnetic properties cannot be improved, and if the grain size is too large, the magnetic properties deteriorate. Preferably, 80% or more of 300 crystals are present.
本発明の軟磁性合金は高周波での軟磁気特性に優れてい
るため、例えば磁気ヘッド、薄膜ヘッド、大電力用を含
む高周波トランス、可飽和リアクトル、コモンモードチ
ョークコイル、ノーマルモ−トチヨークコイル、高電圧
パルス用ノイズフィルタ、レーザ電源等に用いられる磁
気スイッチなど高周波で用いられる磁心、電源センサー
、方位センサー、セキュリティセンサー等の各種センサ
ー用の磁性材料等磁性部品の合金として優れた特性を示
している。The soft magnetic alloy of the present invention has excellent soft magnetic properties at high frequencies, so it can be used, for example, in magnetic heads, thin film heads, high frequency transformers including high power ones, saturable reactors, common mode choke coils, normal motor chain yoke coils, It exhibits excellent properties as an alloy for magnetic components such as noise filters for voltage pulses, magnetic cores used in high frequencies such as magnetic switches used in laser power supplies, magnetic materials for various sensors such as power sensors, orientation sensors, and security sensors. .
(実施例)
下記第1表に示す本願の第1の発明の組成の合金および
第2表に示す本願の第2の発明の組成の合金より単ロー
ル法により厚さ約21μmの非晶質合金薄帯を得た。そ
の後得られた非晶質合金薄帯を巻回し、外径18mm、
内径12+am、高さ4.5mmのトロイダル状磁心に
成形し、各試料の結晶化温度(昇温速度10deg/a
linで測定)より約50℃高い温度で約40分間熱処
理し測定に供した。(Example) An amorphous alloy with a thickness of about 21 μm was prepared by a single roll method from an alloy having a composition according to the first invention of the present application shown in Table 1 below and an alloy having a composition according to the second invention of the present application shown in Table 2 below. I got a thin strip. Thereafter, the obtained amorphous alloy ribbon was wound to an outer diameter of 18 mm.
It was formed into a toroidal magnetic core with an inner diameter of 12+am and a height of 4.5mm.
The sample was heat-treated for about 40 minutes at a temperature about 50° C. higher than (measured by lin) and then subjected to measurement.
また比較として前記巻回後の磁心に各試料の結晶化温度
(昇温速度10deg/winで測定)より約70℃低
い温度で約40分間熱処理した非晶質状態の磁心を作成
した。For comparison, a magnetic core in an amorphous state was prepared by heat-treating the wound core described above for about 40 minutes at a temperature about 70° C. lower than the crystallization temperature of each sample (measured at a heating rate of 10 deg/win).
得られた磁心を構成する薄帯中の微細結晶粒の割合とそ
の中での50〜300λの微細結晶粒の割合をそれぞれ
A、B(%)として併せて第1表および第2表に示す。The proportion of fine crystal grains in the ribbon constituting the obtained magnetic core and the proportion of fine crystal grains of 50 to 300λ in it are shown in Tables 1 and 2 as A and B (%), respectively. .
さらに本発明の微細結晶が存在する磁心と比較例の微細
結晶粒が存在しない磁心についてそれぞれ5個用い、B
−3KG、f−50KHzでの熱処理後の鉄損、磁歪I
KHz2mOeでの透磁率、飽和磁化を併せて第1表お
よび第2表に示す。Further, five magnetic cores were used for each of the magnetic core in which fine crystal grains of the present invention were present and the magnetic core in which fine crystal grains were not present in the comparative example.
Iron loss, magnetostriction I after heat treatment at -3KG, f-50KHz
The magnetic permeability and saturation magnetization at KHz2mOe are also shown in Tables 1 and 2.
以下余白
上記第1表および第2表により明らかなように、本願発
明の合金は微細結晶を設けることにより、同組成の非晶
性質合金薄帯よりなる磁心または他の合金組成の磁心に
比べ鉄損が低く、低磁歪で高透磁率であり、高周波にお
いて優れた軟磁気特性を示している。As is clear from Tables 1 and 2 above, the alloy of the present invention, by providing fine crystals, has a stronger It has low loss, low magnetostriction, and high magnetic permeability, and exhibits excellent soft magnetic properties at high frequencies.
また、これらの磁心をエポキシ系樹脂により含浸硬化を
行ったところ、本発明の微細結晶粒を有する磁心の鉄損
の増大はいずれも5%以下であり、良好な磁気特性を保
持しているが、比較として示した合金および非晶質合金
薄帯を用いた磁心の鉄損の増大は3倍程度となり、本発
明との差が一層顕著となった。Furthermore, when these magnetic cores were impregnated and hardened with epoxy resin, the increase in core loss of the magnetic cores having fine crystal grains of the present invention was 5% or less, and they maintained good magnetic properties. The increase in iron loss of the magnetic core using the alloy shown as a comparison and the amorphous alloy ribbon was about three times, and the difference from the present invention became even more remarkable.
[発明の効果]
本発明の合金は、所望の合金組成において、微細結晶粒
を設けることにより、高周波領域において高飽和磁束密
度で優れた軟磁気特性を有するFe基基磁磁性合金提供
することが可能となる。[Effects of the Invention] By providing fine crystal grains in a desired alloy composition, the alloy of the present invention can provide an Fe-based magnetomagnetic alloy having excellent soft magnetic properties at high saturation magnetic flux density in a high frequency region. It becomes possible.
Claims (1)
o_bM′_c)_1_0_0_−_dY_dM′:周
期律表IVa,Va,VIa族元素またはMn,Ni,Al
から選ばれる少なくとも1種以上 Y:Si,B,P,Cから選ばれる少なくとも1種以上 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28(原子%) で表わされ、微細結晶粒を有することを特徴とする高飽
和磁束密度で優れた軟磁気特性を有する軟磁性合金。 (2)一般式 (Fe_1_−_a_−_b_−_cM_aCo_bM
′_c)_1_0_0_−_dY_dM:Ag,Au,
Zn,Sn,Pb,Sb,Biから選ばれる少なくとも
1種以上 M′:周期律表IVa,Va,VIa族元素またはMn,N
i,Alから選ばれる少なくとも1種以上Y:Si,B
,P,Cから選ばれる少なくとも1種以上 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28(原子%) で表わされ、微細結晶粒を有することを特徴とする高飽
和磁束密度で優れた軟磁気特性を有する軟磁性合金。 (3)微細結晶粒は合金中に面積比で30%以上存在し
、その中で結晶粒径50〜300Åの結晶が80%以上
存在することを特徴とする請求項1および請求項2の軟
磁性合金。[Claims] (1) (Fe_1_-_a_-_b_-_cCu_aC
o_bM'_c)_1_0_0_-_dY_dM': Group IVa, Va, VIa elements of the periodic table or Mn, Ni, Al
At least one kind selected from Y: At least one kind selected from Si, B, P, and C 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦ A soft magnetic alloy having a high saturation magnetic flux density and excellent soft magnetic properties, expressed as d≦28 (atomic %) and characterized by having fine crystal grains. (2) General formula (Fe_1_-_a_-_b_-_cM_aCo_bM
'_c)_1_0_0_-_dY_dM: Ag, Au,
At least one or more selected from Zn, Sn, Pb, Sb, Bi M': Group IVa, Va, VIa elements of the periodic table or Mn, N
At least one member selected from i, Al: Si, B
, P, C 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28 (atomic %) A soft magnetic alloy with fine crystal grains, high saturation magnetic flux density, and excellent soft magnetic properties. (3) The soft material according to claims 1 and 2, characterized in that the fine crystal grains are present in the alloy in an area ratio of 30% or more, and among them, crystals with a grain size of 50 to 300 Å are present in 80% or more. magnetic alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63118334A JP2823204B2 (en) | 1988-05-17 | 1988-05-17 | Soft magnetic alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63118334A JP2823204B2 (en) | 1988-05-17 | 1988-05-17 | Soft magnetic alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01290746A true JPH01290746A (en) | 1989-11-22 |
JP2823204B2 JP2823204B2 (en) | 1998-11-11 |
Family
ID=14734093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63118334A Expired - Lifetime JP2823204B2 (en) | 1988-05-17 | 1988-05-17 | Soft magnetic alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2823204B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0222445A (en) * | 1988-07-08 | 1990-01-25 | Nippon Steel Corp | Alloy having superfine crystalline structure and its manufacture |
WO1992006480A1 (en) | 1990-09-28 | 1992-04-16 | Kabushiki Kaisha Toshiba | Magnetic core |
US5639566A (en) * | 1990-09-28 | 1997-06-17 | Kabushiki Kaisha Toshiba | Magnetic core |
WO2008114611A1 (en) | 2007-03-16 | 2008-09-25 | Hitachi Metals, Ltd. | Magnetic alloy, amorphous alloy ribbon, and magnetic part |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287250A (en) * | 1988-05-11 | 1989-11-17 | Hitachi Metals Ltd | Super fine crystal soft magnetic alloy having excellent heat resistance |
-
1988
- 1988-05-17 JP JP63118334A patent/JP2823204B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287250A (en) * | 1988-05-11 | 1989-11-17 | Hitachi Metals Ltd | Super fine crystal soft magnetic alloy having excellent heat resistance |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0222445A (en) * | 1988-07-08 | 1990-01-25 | Nippon Steel Corp | Alloy having superfine crystalline structure and its manufacture |
WO1992006480A1 (en) | 1990-09-28 | 1992-04-16 | Kabushiki Kaisha Toshiba | Magnetic core |
US5639566A (en) * | 1990-09-28 | 1997-06-17 | Kabushiki Kaisha Toshiba | Magnetic core |
WO2008114611A1 (en) | 2007-03-16 | 2008-09-25 | Hitachi Metals, Ltd. | Magnetic alloy, amorphous alloy ribbon, and magnetic part |
EP2128291A1 (en) * | 2007-03-16 | 2009-12-02 | Hitachi Metals, Ltd. | Magnetic alloy, amorphous alloy ribbon, and magnetic part |
EP2128291A4 (en) * | 2007-03-16 | 2010-09-08 | Hitachi Metals Ltd | Magnetic alloy, amorphous alloy ribbon, and magnetic part |
US8298355B2 (en) | 2007-03-16 | 2012-10-30 | Hitachi Metals, Ltd. | Magnetic alloy, amorphous alloy ribbon, and magnetic part |
Also Published As
Publication number | Publication date |
---|---|
JP2823204B2 (en) | 1998-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5316920B2 (en) | Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components | |
US5340413A (en) | Fe-NI based soft magnetic alloys having nanocrystalline structure | |
US4881989A (en) | Fe-base soft magnetic alloy and method of producing same | |
JPH044393B2 (en) | ||
JPH01242755A (en) | Fe-based magnetic alloy | |
US5178689A (en) | Fe-based soft magnetic alloy, method of treating same and dust core made therefrom | |
JP2894561B2 (en) | Soft magnetic alloy | |
JP3231149B2 (en) | Noise filter | |
JPH03146615A (en) | Production of fe-base soft-magnetic alloy | |
KR920007579B1 (en) | Soft magnetic materials | |
JP2823203B2 (en) | Fe-based soft magnetic alloy | |
US5225006A (en) | Fe-based soft magnetic alloy | |
JP2848667B2 (en) | Method for manufacturing ultra-thin soft magnetic alloy ribbon | |
JP2778697B2 (en) | Fe-based soft magnetic alloy | |
EP0342922B1 (en) | Fe-based soft magnetic alloy and dust core made therefrom | |
JPH01290746A (en) | Soft-magnetic alloy | |
JP2919886B2 (en) | Fe-based soft magnetic alloy | |
JP2704157B2 (en) | Magnetic parts | |
JPH08153614A (en) | Magnetic core | |
JP2713980B2 (en) | Fe-based soft magnetic alloy | |
JP2760539B2 (en) | Fe-based soft magnetic alloy | |
JP2777161B2 (en) | Fe-based soft magnetic alloy | |
JPH02138444A (en) | Fe-base soft-magnetic alloy and fe-base dust core | |
JPS62167840A (en) | Magnetic material and its manufacture | |
JPH01290745A (en) | Fe-base soft-magnetic alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070904 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080904 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080904 Year of fee payment: 10 |