JPS6187869A - Sputter device - Google Patents
Sputter deviceInfo
- Publication number
- JPS6187869A JPS6187869A JP20815684A JP20815684A JPS6187869A JP S6187869 A JPS6187869 A JP S6187869A JP 20815684 A JP20815684 A JP 20815684A JP 20815684 A JP20815684 A JP 20815684A JP S6187869 A JPS6187869 A JP S6187869A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- electrons
- microwave
- sputtering
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はマイクロ波を用いてプラズマを発生し、特に1
メガビツトメモリを始めとするVLSIの配線膜や絶縁
膜を形成するのに好適なスパッタ装置に関するも゛ので
ある。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses microwaves to generate plasma, and in particular,
The present invention relates to a sputtering apparatus suitable for forming wiring films and insulating films for VLSIs including megabit memories.
今日スパッタ装置として広く用いられているマグネトロ
ンスパッタ装置は、特公昭55−19319号に記載の
ように成膜材料からなる陰極の裏面に磁石が設けられカ
ソード表面に磁場を形成することによりカソードから放
出される2次電子をカソード近傍に捕捉し、Ar等の雰
囲気ガスをイオン化し、プラズマ形成している。Magnetron sputtering equipment, which is widely used as a sputtering equipment today, is equipped with a magnet on the back side of a cathode made of a film-forming material as described in Japanese Patent Publication No. 55-19319, and a magnetic field is formed on the surface of the cathode to emit light from the cathode. The secondary electrons are captured near the cathode, ionize atmospheric gas such as Ar, and form plasma.
通常カソードに接続される電源は、膜形成物質が導電物
質の場合には定電流電源が、絶縁膜には、RF (Ra
dio Frequency ) 電源が用いられる。Normally, the power supply connected to the cathode is a constant current power supply when the film forming material is a conductive material, and an RF (Ra
dio Frequency) power source is used.
この様なタイプのスパッタ装置では、Ar等の雰囲気ガ
スをプラズマ化するtめのエネルギと、プラズマからA
r等のイオンを引き出しターゲットをスパッタするため
のエネルギが同一電源から供給される。In this type of sputtering equipment, the energy of t to turn atmospheric gas such as Ar into plasma and the energy of
Energy for extracting ions such as r and sputtering the target is supplied from the same power source.
さて1メガビットDRAM等のVLS Iでは微細なス
ルーホールやコンタクトホールへの膜の埋込みが必要で
あるが、従来のマグネトロン型スパッタ装置ではAr圧
力が高く(数mtorr )カソードから放出された成
膜物質が基板に到達する前に散乱され、微細穴(13〜
0.8μm)への膜の埋込みが困難であった。例えばA
r圧力5mTorr Fでの平均自由行程は16rmで
あり、基板−カソード間隔をjDOmと仮定すると8回
近くの衝突をくりかえすことになる。そこで成膜物質が
衝突せず基板へ到達するためには、Ar圧力を10−’
mTorr以下にする必要がある。従来のマグネトロン
型スパッタ装置は% Arイオンがカソード面に衝突し
たとき放出される2次電子が消費されたArイオンを生
み出し放電を持続しているためAr圧力が低くなると、
放電を持続するのに必要なArイオンや電子が不足し、
放電が停止する。またたとえ放電が持続したとしても、
Arイオンや電子が少ないため放電インピーダンスが高
くなり、この結果放電電圧も上昇する。放電電圧が高く
なると、Arイオンのカソードへの衝撃力が増加するが
、Arイオンのエネルギは放出される成膜材料粒子へエ
ネルギを与えるだけでなく、多くはカソード表面の温度
上昇に消費される。その結果、カソードは内部に大きな
内部応力を生じ破壊することがある。Now, in VLSI devices such as 1 megabit DRAM, it is necessary to fill minute through holes and contact holes with a film, but in conventional magnetron type sputtering equipment, the Ar pressure is high (several mtorr), and the film forming material emitted from the cathode. is scattered before reaching the substrate, and the micro holes (13~
It was difficult to embed the membrane in the area (0.8 μm). For example, A
The mean free path at an r pressure of 5 mTorr F is 16 rm, and if the substrate-cathode distance is assumed to be jDOm, collisions will be repeated nearly eight times. Therefore, in order for the film-forming substance to reach the substrate without collision, the Ar pressure must be increased to 10-'
It is necessary to keep it below mTorr. In conventional magnetron type sputtering equipment, the secondary electrons released when Ar ions collide with the cathode surface generate consumed Ar ions and sustain the discharge, so when the Ar pressure decreases,
There is a lack of Ar ions and electrons necessary to sustain the discharge,
Discharge stops. Moreover, even if the discharge continues,
Since there are fewer Ar ions and electrons, the discharge impedance increases, and as a result, the discharge voltage also increases. As the discharge voltage increases, the impact force of the Ar ions on the cathode increases, but the energy of the Ar ions not only gives energy to the ejected film-forming material particles, but also is mostly consumed by increasing the temperature of the cathode surface. . As a result, the cathode may develop a large internal stress and break.
本発明の目的は、10 mTorr以下の圧力下で、
スパッタリングが行なえるスパッタ装置を提供すること
にある。また低圧下でも放電電圧を低く保ち、成膜材料
からなるカソードの破壊を防止する様にしたスパッタ装
置を提供することにある。The object of the present invention is to: under a pressure of 10 mTorr or less,
An object of the present invention is to provide a sputtering device that can perform sputtering. Another object of the present invention is to provide a sputtering device that maintains the discharge voltage low even under low pressure and prevents the cathode made of the film-forming material from being destroyed.
10−4以下の低圧下で放電を発生させる為、ターゲッ
トと基板間の空間にマイクロ波を導入し、磁石を用いて
上記空間内の電子の固有撮動とマイクロ波周波数が一致
するような磁場を形成し、電子共振状態を作る。共振状
態の電子は、マイクロ波エネルギを有効に吸収し、高エ
ネルギを持つので、従来より低い圧力にもかかわらず、
高密度のプラズマが形成できる。またプラズマ密度は供
給するマイクロ波のエネルギにより制御できるので、放
電電圧を適当な値に設定できる。In order to generate a discharge under a low pressure of 10-4 or less, microwaves are introduced into the space between the target and the substrate, and a magnetic field is applied using a magnet so that the microwave frequency matches the specific imaging of electrons in the space. , creating an electronic resonance state. Electrons in a resonant state effectively absorb microwave energy and have high energy, so even though the pressure is lower than before,
High-density plasma can be formed. Furthermore, since the plasma density can be controlled by the energy of the supplied microwave, the discharge voltage can be set to an appropriate value.
以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
真空チェンバ1は排気装置(図示せず)により排気口2
より所定の圧力まで排気され、その後、所定のAr圧力
になる様にArガスを導管3より導入する。基板ホルダ
4に載置された被膜基板5と成膜材料であるカソード6
は対向して配置されている。軸7を中心として2つの電
磁石コイル8.9が巻かれ、ミラー磁場10を形成して
おり基板ホルダとスパッタ電極間の空間のほぼ中央の位
置Pにおけるa場の強さを所定のマイクロ波周波数き電
子の共振周波数が一致する様に決めている。例えば2゜
45 GHzのマイクロ波の場合、電子が共振運動をす
るために必要な出来密度は約875ガウスである。マイ
クロ波は導波管11.12によって真空チェンバ内に導
入されている。マイクロ波発生源は図示していない。The vacuum chamber 1 is connected to an exhaust port 2 by an exhaust device (not shown).
The gas is evacuated to a predetermined pressure, and then Ar gas is introduced through the conduit 3 so that the predetermined Ar pressure is reached. A coated substrate 5 placed on a substrate holder 4 and a cathode 6 which is a film forming material
are placed facing each other. Two electromagnetic coils 8.9 are wound around the axis 7 to form a mirror magnetic field 10, and the intensity of the a field at a position P approximately in the center of the space between the substrate holder and the sputtering electrode is adjusted to a predetermined microwave frequency. The resonant frequencies of the electrons are determined to match. For example, in the case of microwaves of 2°45 GHz, the required density for electrons to perform resonant motion is approximately 875 Gauss. Microwaves are introduced into the vacuum chamber by waveguides 11.12. The microwave source is not shown.
カソード6には電源13が接続され、ターゲツト材が絶
縁物の場合にはRF電源を4電物の場合にはDC電源ま
たはRF電源を接続する。基板ホルダ4はアースに接続
されている。本実施例のスパッタ装置の動作を説明する
。A power source 13 is connected to the cathode 6, and if the target material is an insulator, an RF power source is connected, and if the target material is a four-electric material, a DC power source or an RF power source is connected. The substrate holder 4 is connected to ground. The operation of the sputtering apparatus of this embodiment will be explained.
一度高真空(10Torr以下)に排気され1、所定の
圧力(10〜1o Torr )になる様にArガス
が供給された真空チェンバ内にマイクロ波を導入し、基
板ホルダ4とカソード6間の空間のほぼ中央Pで電子に
共振運動を起こさせ、マイクロ波からのエネルギを電子
に効率よく吸収させる。さらにこの電子はミラー出場1
0内に閉じ込められる。この様にして高エネルギを得た
電子は、まわりのAr原子をイオン化するため、Ar圧
力が従来より低いにもかかわらず、高密度のプラズマ1
4を得ることが可能である。またプラズマ密度は印加す
るマイクロ波エネルギにより制御できるので、スパッタ
時の放電インピーダンスを制御でき、その結果ターゲッ
トのスパッタ率を最大にできる放電電圧に設定すること
が可能である。よって、効率よくスパッタリングが行な
える。Microwaves are introduced into a vacuum chamber that has been evacuated to a high vacuum (10 Torr or less) and supplied with Ar gas to a predetermined pressure (10 to 1 Torr), and the space between the substrate holder 4 and the cathode 6 is The electrons are caused to undergo resonant motion at approximately the center P, and the energy from the microwave is efficiently absorbed by the electrons. Furthermore, this electron is mirror appearance 1
Trapped within 0. The electrons that have obtained high energy in this way ionize the surrounding Ar atoms, so even though the Ar pressure is lower than before, the high-density plasma 1
It is possible to obtain 4. Furthermore, since the plasma density can be controlled by the applied microwave energy, the discharge impedance during sputtering can be controlled, and as a result, it is possible to set the discharge voltage to maximize the sputtering rate of the target. Therefore, sputtering can be performed efficiently.
本実施例では2方向からマイクロ波を導入したが、これ
はカソード面上でのプラズマが均一になる様にするため
であり、より均一にするためには複数方向からマイクロ
波を導入するのが望ましい。In this example, microwaves were introduced from two directions, but this was to make the plasma uniform on the cathode surface.In order to make the plasma more uniform, it is recommended to introduce microwaves from multiple directions. desirable.
本発明の第2の実施例を第2図に示す。本実施例は第1
の実施例のコイル配置をマイクロ波の導入方向に対して
垂直にしたものである。本実施例でも第1の実施例と同
一の効果があるが、基板がプラズマにさらされるため、
荷電粒子のダメージを受ける可能性がある。しかし、基
板にバイアス電圧を加えて、基板を軽く荷電粒子によっ
てスパッタしなから成膜を行なうバイアススパッタ装置
としては用いることができる。A second embodiment of the invention is shown in FIG. This example is the first
In this embodiment, the coil arrangement is perpendicular to the microwave introduction direction. This embodiment has the same effect as the first embodiment, but since the substrate is exposed to plasma,
Possible damage from charged particles. However, it can be used as a bias sputtering apparatus that applies a bias voltage to the substrate and sputters the substrate with lightly charged particles before forming a film.
本実施例では、基板側にも電源16を接続し、バイアス
電圧を適当に選択できる様にしている。In this embodiment, a power supply 16 is also connected to the substrate side so that the bias voltage can be appropriately selected.
本発明によれば、10 〜10 Torrの圧力下で
も高密度のプラズマが形成でき、スパッタリングによる
膜形成が可能であるので、0.8〜13μmの微細穴に
も膜を形成することが可能である。According to the present invention, high-density plasma can be formed even under a pressure of 10 to 10 Torr, and a film can be formed by sputtering, so it is possible to form a film even in minute holes of 0.8 to 13 μm. be.
また、出船するマイクロ波のエネルギによりプラズマ密
度を制御できるので、スパッタ時の放電電圧を制御する
ことが可能である。この結果、カソード材料に適した放
電電圧に設定することができ、スパッタ効率の向上が計
れる。In addition, since the plasma density can be controlled by the energy of the microwave being emitted, it is possible to control the discharge voltage during sputtering. As a result, a discharge voltage suitable for the cathode material can be set, and sputtering efficiency can be improved.
第1図は本発明によるスパッタ装置の実施例を示す図、
第2図は本発明によるスパッタ装置の他の実施例を示す
図である。
1・・・真壁チェンバ、 2・・・排気口、3・・・
Ar導入口、 4・・・基板ホルダ、5・・・基
板、 6・・・カソード、7・・・軸、
8.9・・・コイル、10・・・ミラー磁場
、 11 、12・・・磁場、13 、 IS・・・
電源、14・・・プラズマ、15・・・ガラス窓。FIG. 1 is a diagram showing an embodiment of a sputtering apparatus according to the present invention;
FIG. 2 is a diagram showing another embodiment of the sputtering apparatus according to the present invention. 1...Makabe chamber, 2...Exhaust port, 3...
Ar inlet, 4... Substrate holder, 5... Substrate, 6... Cathode, 7... Shaft,
8.9... Coil, 10... Mirror magnetic field, 11, 12... Magnetic field, 13, IS...
Power supply, 14... plasma, 15... glass window.
Claims (1)
膜処理室内にミラー磁場を形成し、かつ該ミラー磁場内
にマイクロ波を導入することを特徴とするスパッタ装置
。 2、特許請求の範囲第1項記載のスパッタ装置において
、前記スパッタ成膜処理室内に被膜形成基板と成膜材料
から成るカソードとが対向して設置され、両者の間に前
記ミラー磁場を形成することを特徴とするスパッタ装置
。 3、特許請求の範囲第1項又は第2項記載のスパッタ装
置において、前記ミラー磁場は同一軸上に巻かれた複数
個のコイルであって、該磁場内の電子のサイクロトン周
波数と前記マイクロ波の周波数とが整合するに必要な磁
束密度を発生するものによって与えられることを特徴と
するスパッタ装置。[Scope of Claims] 1. A high frequency or direct current sputtering apparatus, characterized in that a mirror magnetic field is formed in a sputter film forming processing chamber, and microwaves are introduced into the mirror magnetic field. 2. In the sputtering apparatus according to claim 1, a film-forming substrate and a cathode made of a film-forming material are installed facing each other in the sputter film-forming processing chamber, and the mirror magnetic field is formed between them. A sputtering device characterized by: 3. In the sputtering apparatus according to claim 1 or 2, the mirror magnetic field is a plurality of coils wound on the same axis, and the cycloton frequency of electrons in the magnetic field and the micro A sputtering device characterized in that the magnetic flux density necessary to match the frequency of waves is provided by a generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20815684A JPS6187869A (en) | 1984-10-05 | 1984-10-05 | Sputter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20815684A JPS6187869A (en) | 1984-10-05 | 1984-10-05 | Sputter device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6187869A true JPS6187869A (en) | 1986-05-06 |
Family
ID=16551574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20815684A Pending JPS6187869A (en) | 1984-10-05 | 1984-10-05 | Sputter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187869A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63118064A (en) * | 1986-11-07 | 1988-05-23 | Matsushita Electric Ind Co Ltd | Vapor deposition device |
JPS63227777A (en) * | 1987-03-17 | 1988-09-22 | Nippon Telegr & Teleph Corp <Ntt> | Device for forming thin film |
JPS6411403A (en) * | 1987-07-03 | 1989-01-17 | New Japan Radio Co Ltd | Plasma generation reacting device |
JPS6431336A (en) * | 1987-07-27 | 1989-02-01 | Nippon Telegraph & Telephone | Ion source |
JPS6431969A (en) * | 1987-07-27 | 1989-02-02 | Nippon Telegraph & Telephone | Thin film-forming equipment |
JPS6452062A (en) * | 1987-08-21 | 1989-02-28 | Nippon Telegraph & Telephone | Ionic source |
JPS6456869A (en) * | 1987-08-28 | 1989-03-03 | Nippon Telegraph & Telephone | Thin film forming device |
US5162633A (en) * | 1988-06-29 | 1992-11-10 | Hitachi, Ltd. | Microwave-excited plasma processing apparatus |
WO2002061165A1 (en) * | 2001-02-02 | 2002-08-08 | Robert Bosch Gmbh | Device for ceramic-type coating of a substrate |
JP2008016404A (en) * | 2006-07-10 | 2008-01-24 | Micro Denshi Kk | Microwave plasma device |
-
1984
- 1984-10-05 JP JP20815684A patent/JPS6187869A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63118064A (en) * | 1986-11-07 | 1988-05-23 | Matsushita Electric Ind Co Ltd | Vapor deposition device |
JPS63227777A (en) * | 1987-03-17 | 1988-09-22 | Nippon Telegr & Teleph Corp <Ntt> | Device for forming thin film |
JPS6411403A (en) * | 1987-07-03 | 1989-01-17 | New Japan Radio Co Ltd | Plasma generation reacting device |
JPS6431336A (en) * | 1987-07-27 | 1989-02-01 | Nippon Telegraph & Telephone | Ion source |
JPS6431969A (en) * | 1987-07-27 | 1989-02-02 | Nippon Telegraph & Telephone | Thin film-forming equipment |
JPS6452062A (en) * | 1987-08-21 | 1989-02-28 | Nippon Telegraph & Telephone | Ionic source |
JPS6456869A (en) * | 1987-08-28 | 1989-03-03 | Nippon Telegraph & Telephone | Thin film forming device |
US5162633A (en) * | 1988-06-29 | 1992-11-10 | Hitachi, Ltd. | Microwave-excited plasma processing apparatus |
WO2002061165A1 (en) * | 2001-02-02 | 2002-08-08 | Robert Bosch Gmbh | Device for ceramic-type coating of a substrate |
JP2008016404A (en) * | 2006-07-10 | 2008-01-24 | Micro Denshi Kk | Microwave plasma device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5006218A (en) | Sputtering apparatus | |
KR900006488B1 (en) | Method and apparatus for microwave assising sputering | |
KR100228534B1 (en) | Arrangement for generating a plasma by means of cathode sputtering | |
TW460602B (en) | Method and apparatus for ionized sputtering of materials | |
KR100437956B1 (en) | Method and apparatus for ionized physical vapor deposition | |
KR940000874B1 (en) | Film forming apparatus | |
US5032205A (en) | Plasma etching apparatus with surface magnetic fields | |
JPS60135573A (en) | Method and device for sputtering | |
US5707452A (en) | Coaxial microwave applicator for an electron cyclotron resonance plasma source | |
US6444099B1 (en) | Ionizing sputtering method | |
EP1236381A1 (en) | Device for hybrid plasma processing | |
WO1999035302A1 (en) | Coaxial resonant multiport microwave applicator for an ecr plasma source | |
US20090314636A1 (en) | Capacitive-coupled magnetic neutral loop plasma sputtering system | |
US4716340A (en) | Pre-ionization aided sputter gun | |
JPS6187869A (en) | Sputter device | |
JPH0641739A (en) | High-vacuum and high-speed ion treatment device | |
KR100196038B1 (en) | Helison wave plasma processing method and device therefor | |
KR100273326B1 (en) | High frequency sputtering apparatus | |
JPH01184922A (en) | Plasma processor useful for etching, ashing, film formation and the like | |
JP4384295B2 (en) | Plasma processing equipment | |
JPH0585633B2 (en) | ||
JP2621728B2 (en) | Sputtering method and apparatus | |
JPS6270569A (en) | Sputtering device | |
JPH01139762A (en) | Sputtering apparatus | |
JP2777657B2 (en) | Plasma deposition equipment |