JPS6177273A - Control system for fuel cell power generation plant - Google Patents
Control system for fuel cell power generation plantInfo
- Publication number
- JPS6177273A JPS6177273A JP59198068A JP19806884A JPS6177273A JP S6177273 A JPS6177273 A JP S6177273A JP 59198068 A JP59198068 A JP 59198068A JP 19806884 A JP19806884 A JP 19806884A JP S6177273 A JPS6177273 A JP S6177273A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- steam
- fuel cell
- steam generator
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04358—Temperature; Ambient temperature of the coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04723—Temperature of the coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04738—Temperature of auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fuel Cell (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、燃料電池発電プラント制御システム、特に負
荷急増時において必要な蒸気を安定に供給し得る燃料電
池発電プラント制御システムに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation plant control system, and particularly to a fuel cell power generation plant control system that can stably supply necessary steam during a sudden load increase.
[背m技術の問題点]
一般にミノjの発生は、蒸気タービン等の原動機で発電
機を回転させ、この与えられた駆動エネルギーを発電機
にて交流電力に変換し、交流のまま需用側へ送る方式が
、電力の発生より消費に至る迄の最も都合の良い方法と
して採用されており、従って現在の電力系統は交流系統
が殆んどを占めている。[Problems with back technology] In general, mino-j is generated by rotating a generator using a prime mover such as a steam turbine, converting this given drive energy into AC power in the generator, and then using the AC power as it is on the demand side. This method has been adopted as the most convenient method from generation to consumption of electric power, and therefore most current electric power systems are AC systems.
一方、蒸気タービン等を駆動する蒸気は、ボイラ等にて
石油、ガス等の燃料を燃焼させた熱エネルギーにより発
生させているが、この燃料エネルギーを熱エネルギーど
して取出して蒸気エネルギーに変換し、更に電気エネル
ギーとして取出すことは効率面で不利であるため、近年
、燃料に化学的変化を起させ、この化学的変化の際に発
生ずる電子の流れにより直接電気エネルギーを取出そう
とする燃料電池発電方式が、省エネルギー発電の一つと
して採用されるようになってきた。On the other hand, the steam that drives steam turbines, etc. is generated from the thermal energy of burning fuel such as oil and gas in boilers, etc., but this fuel energy is extracted as thermal energy and converted into steam energy. Furthermore, since extracting electrical energy as electrical energy is disadvantageous in terms of efficiency, in recent years fuel cells have been developed that attempt to produce electrical energy directly by causing a chemical change in the fuel and using the flow of electrons generated during this chemical change. This power generation method has come to be adopted as an energy-saving power generation method.
この燃わl電池は供給された燃11を化学的変化させ□
ることににり電力を発生ずるものであるが、その出力は
直流出力であり、このまま特定区域で消費する場合は直
流で消費され、又、省エネルギ一対策の一環として大爪
の電力を賄う場合には、直流−交流変換器により交流に
変換して電力系統と接続している。This combustion cell chemically changes the supplied fuel □
In particular, it generates electricity, but its output is DC output, so if it is consumed in a specific area, it will be consumed as DC, and as part of energy saving measures, it will be used to cover large amounts of electricity. In some cases, the DC-AC converter converts the AC into AC and connects it to the power system.
第4図は代表的な燃料電池発電プラントの構成図である
。図中で一点鎖線で示される1の部分が燃料電池発電プ
ラントである。先ず、燃料は原燃料制御弁10により流
量が制御されてミキサ14に入る。一方、ミキサ14へ
は蒸気発生器15より蒸気制御弁16を介して流量が制
御された蒸気が入る。そしてミキサ14にて混合された
燃r1は改質器4へ入り、ここで6加熱されて改質され
る。改質された燃わlは次に高温変成器8、低温変成器
9を経て水素含有率の高い改質燃料とイ【る。そしてこ
の改質燃料は改質燃料制御弁11により流量が制御され
て燃料電池5の水素極5Aに流入し、電気エネルギーと
して一部がil′j費され、残りは前述の改質器4のメ
インバーナ12で燃焼し、改質器4の加熱用高温ガスと
なり、燃料電池5の酸素極5Bからの11ガスと合流し
、更に燃焼器7を経てターボコンブ1ノツサのタービン
2に流入して、これに連結されたコンプレッサ3を駆動
する。なa3、]ンブレツサ3の吐出空気は空気制御弁
13ににり流量制御され−C燃r1雷池5の酸素極5B
に入る。酸素極5Bに入った酸素の一部は水素ll5A
の水素と反応して消費され、残りは酸素極5Bから排出
されて、前述の改質器4のメインバーブづ2からの排ガ
スと合流し、燃焼器7を経由してターボコンプレツザの
タービン2を駆動するために利用される。又、燃料電池
5の冷却は、蒸気発生器15より電池冷IJ1水循環ポ
ンプ1つにより冷却板5C,蒸気発生器15へと循環し
て行なっている。更に電池冷却水の温度制御は蒸気発生
器15より発生した蒸気の一部を熱交換器20で冷して
電池冷却水温度制御弁17により行なっている。FIG. 4 is a block diagram of a typical fuel cell power generation plant. In the figure, a portion 1 indicated by a dashed line is a fuel cell power generation plant. First, the fuel enters the mixer 14 with its flow rate controlled by the raw fuel control valve 10. On the other hand, steam whose flow rate is controlled enters the mixer 14 from the steam generator 15 via the steam control valve 16 . The fuel r1 mixed in the mixer 14 enters the reformer 4, where it is heated and reformed. The reformed fuel then passes through a high temperature shift converter 8 and a low temperature shift converter 9 to become reformed fuel with a high hydrogen content. The flow rate of this reformed fuel is controlled by the reformed fuel control valve 11, and it flows into the hydrogen electrode 5A of the fuel cell 5, where part of it is used as electrical energy, and the rest is used in the reformer 4 described above. It is combusted in the main burner 12, becomes high-temperature gas for heating the reformer 4, merges with gas 11 from the oxygen electrode 5B of the fuel cell 5, and further flows into the turbine 2 of the turbo combiner 1 through the combustor 7. , drives the compressor 3 connected thereto. The flow rate of the discharged air from the baffle sensor 3 is controlled by the air control valve 13, and the flow rate is controlled by the -C fuel r1 oxygen electrode 5B of the lightning pond 5.
to go into. A part of the oxygen that entered the oxygen electrode 5B becomes hydrogen ll5A
The remaining gas is exhausted from the oxygen electrode 5B, joins the exhaust gas from the main barbs 2 of the reformer 4, and passes through the combustor 7 to the turbine of the turbo compressor. It is used to drive 2. The fuel cell 5 is cooled by circulating the water from the steam generator 15 to the cooling plate 5C and the steam generator 15 by one cell cooling IJ1 water circulation pump. Further, temperature control of the battery cooling water is performed by cooling a part of the steam generated from the steam generator 15 with a heat exchanger 20 and using a battery cooling water temperature control valve 17.
ここで燃r3+電池5は水素極5Aの水素と酸素極5B
の酸素との触媒反応によって、酸素i!i!iBが正極
、水素極5Aが負極となるJ:うに、その電気エネルギ
ーを発生し、その両極間に接続された電気的負荷に電気
エネルギーを供給する。この際、電気負荷に吸収された
電気エネルギーに略比例して両極入口に夫々供給された
水素と酸素が反応して水となり、未反応分が各極出口よ
り排出されることとなる。この燃料電池5の直流出力は
変換器6に供給されて交流に変換され、電力系統に対し
て交流電力として送り出される。Here, the fuel r3+ battery 5 is the hydrogen of the hydrogen electrode 5A and the oxygen electrode 5B.
By catalytic reaction with oxygen, oxygen i! i! J: where iB is the positive electrode and the hydrogen electrode 5A is the negative electrode, generates electrical energy and supplies the electrical energy to an electrical load connected between the two electrodes. At this time, the hydrogen and oxygen supplied to the inlets of both electrodes react in approximately proportion to the electrical energy absorbed by the electrical load to become water, and the unreacted portion is discharged from the outlet of each electrode. The DC output of the fuel cell 5 is supplied to a converter 6, where it is converted into AC power, and sent to the power system as AC power.
[背狽技術の問題点]
上記構成を有する燃料電池発電プラントの場合、無負荷
状態から100%負荷迄を短時間で立上げるためには、
改質燃料が瞬時多量に必要となる。従って改質燃料の元
になる原燃料も急激に原燃料制御弁10を介して導入さ
れてミキサ14へ入る。[Problems with backlash technology] In the case of a fuel cell power generation plant with the above configuration, in order to start up from a no-load state to 100% load in a short time,
A large amount of reformed fuel is required instantaneously. Therefore, the raw fuel that is the source of the reformed fuel is also suddenly introduced via the raw fuel control valve 10 and enters the mixer 14.
一方、改質器4においては水素含有率を増加させるべく
燃料改質を行なうためには、次に示す化学反応式の如く
蒸気が必要となる。On the other hand, in the reformer 4, in order to reform the fuel to increase the hydrogen content, steam is required as shown in the following chemical reaction formula.
CH4→−H20→Co +3H2
G O+H20→CO2+ H2
従って、この必要とされる蒸気も蒸気制御弁16を介し
て急激にミキサ14へ入る。ぞしてミキサ14にて蒸気
と混合された原燃料は改質器4へ入って改質されて改質
燃料となる。CH4→-H20→Co+3H2 G O+H20→CO2+ H2 Therefore, this required steam also rapidly enters the mixer 14 via the steam control valve 16. The raw fuel mixed with steam in the mixer 14 then enters the reformer 4 and is reformed to become reformed fuel.
又、ミキサ14へ入る蒸気量は、通常下記に示す式によ
って理論的に定められた格が必要どなる。Further, the amount of steam entering the mixer 14 usually needs to be theoretically determined by the formula shown below.
但し、実プラントにおいては、余裕を見越して即論値の
約倍とする。以降、この値をS/Cと言う。However, in an actual plant, the value should be approximately twice the initial value to allow for some margin. Hereinafter, this value will be referred to as S/C.
主燃I31のモル流量
(通常S/C= 4 >
ぞして従来、蒸気発生器15は圧力制御弁18によって
圧力制御が行なわれ、更に電池冷却水温度制御弁17に
J:り温度検出器21の測定温度、即ち、電池冷却水の
湿度制御が行なわれていた。そして上記制御では下記の
欠点があった。The molar flow rate of the main combustion I31 (usually S/C = 4) Therefore, conventionally, the pressure of the steam generator 15 is controlled by a pressure control valve 18, and the battery cooling water temperature control valve 17 is further controlled by a temperature detector. The measurement temperature of No. 21, that is, the humidity of the battery cooling water was controlled.The above control had the following drawbacks.
■負荷急増時、S/C比にそって多量の蒸気が必要とな
り、これが蒸気発生器15の能力限度を越えた場合にS
/C比が低下してしまう。ここでS/C比が低下して、
ある決められた値(例えば3.5)より一 〇 −
低くなると、改質器4の内部にある触媒にカーボンが付
着し、従って触媒の反応面積が少なくなり改質反応が劣
化してしまう。■When the load suddenly increases, a large amount of steam is required according to the S/C ratio, and if this exceeds the capacity limit of the steam generator 15, the S
/C ratio will decrease. Here, the S/C ratio decreases,
When the value is lower than a certain value (for example, 3.5), carbon adheres to the catalyst inside the reformer 4, resulting in a reduction in the reaction area of the catalyst and deterioration of the reforming reaction.
■蒸気発生器15より一気に5母の蒸気を取出すと、蒸
気発生器15の内部の温度及び圧力が低下し、その気泡
を吸い込み電池冷却水循環ポンプ19を損傷し、ミキサ
14への蒸気導入が出来なくなる恐れがある。■If five batches of steam are taken out at once from the steam generator 15, the temperature and pressure inside the steam generator 15 will drop, and the bubbles will be sucked in, damaging the battery cooling water circulation pump 19, making it impossible to introduce steam to the mixer 14. There is a risk that it will disappear.
■上記した■、■の欠点を解決しようどすれば、負荷急
増と言う過渡的な状態に対処するためだ(プに、人容量
の蒸気発生器15を設置しなければならない。■If the above-mentioned drawbacks of ■ and ■ are to be solved, it is necessary to install a steam generator 15 with a human capacity in order to deal with the transient situation of a sudden increase in load.
■高負荷時に電池の発熱を押えるため、電池冷却水の温
度、肌ち、温度検出器21の測定温度を下げるよう制御
するので、この方式の場合、蒸気発生器15の温度まで
低下してしまい、従って圧力も一緒に低下し、上記■の
場合と同じ現象が発生ずる。■In order to suppress the heat generation of the battery during high loads, the temperature of the battery cooling water, skin temperature, and temperature measured by the temperature detector 21 are controlled to be lowered, so in this method, the temperature will drop to the temperature of the steam generator 15. , Therefore, the pressure also decreases, and the same phenomenon as in case ① above occurs.
[発明の目的]
本発明は上記問題点を解決するためになされたものであ
り、負荷急増時及び高負荷時において、燃料改質に必要
な蒸気を安定に供給し得る燃料電池発電プラント制御シ
ステムを提供することを目的としている。[Object of the Invention] The present invention has been made to solve the above-mentioned problems, and provides a fuel cell power generation plant control system that can stably supply the steam necessary for fuel reforming during sudden load changes and during high loads. is intended to provide.
[発明の概要]
本発明では、電池冷却水温度制御と蒸気発生器温度制御
とを夫々独立制御としてこれを分離し、負荷急増時のよ
うな過渡的状態時には、蒸気発生器内部の圧力を一時的
に下げることにJ:す、蒸気量を確保しようとするもの
である。[Summary of the Invention] The present invention separates battery cooling water temperature control and steam generator temperature control as independent controls, and temporarily reduces the pressure inside the steam generator during a transient state such as a sudden increase in load. J: The objective is to lower the amount of steam and secure the amount of steam.
[発明の実施例]
以下図面を参照して実施例を説明する。第1図及び第2
図は本発明による燃料電池発電プラント制御システムの
一実施例構成図であり、第1図は蒸気流量制御系及び電
池冷却水温度制御系を主として示しており、第2図は蒸
気発生器の圧力制御系を主として示している。なお、第
1図及び第2図において、第4図と同一部分については
、同一符号を付して説明を省略する。[Embodiments of the Invention] Examples will be described below with reference to the drawings. Figures 1 and 2
The figure is a configuration diagram of one embodiment of the fuel cell power generation plant control system according to the present invention, in which Figure 1 mainly shows the steam flow rate control system and the battery cooling water temperature control system, and Figure 2 shows the pressure of the steam generator. Mainly shows the control system. Note that in FIGS. 1 and 2, the same parts as those in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted.
第1図において、Uは蒸気流量制御系、銭は電池冷却水
温度制御系を示している。ここで蒸気流量制御系荏の制
御そのものは従来同様であるが、全体説明の都合上簡単
に説明する。In FIG. 1, U indicates a steam flow rate control system and Qin indicates a battery cooling water temperature control system. Although the control of the steam flow rate control system itself is the same as the conventional one, it will be briefly explained for the sake of overall explanation.
即ち、この部分は原燃料流量検出器24、関数発生部2
5、比較部26、出力制御演算部28及び蒸気の流量検
出器27から構成されており、先ず、原燃料の流量検出
器24からの実流量信号をもとにして、関数発生部25
によりS/C比に見合った蒸気流量指令を求める。そし
て前記蒸気流量指令信号と蒸気の流量検出器27からの
実流量信号とを比較部26に入力し、ここで偏差演算が
行なわれ、その偏差が出力制御演“筒部28を通して蒸
気制御弁16へ伝えられて、ミキサ14への蒸気流量を
制御する。That is, this part includes the raw fuel flow rate detector 24 and the function generator 2.
5. It is composed of a comparison section 26, an output control calculation section 28, and a steam flow rate detector 27. First, based on the actual flow rate signal from the raw fuel flow rate detector 24, the function generation section 25
A steam flow rate command commensurate with the S/C ratio is determined. Then, the steam flow rate command signal and the actual flow rate signal from the steam flow rate detector 27 are inputted to the comparison section 26, where a deviation calculation is performed, and the deviation is outputted to the steam control valve 16 through the output control cylinder section 28. and controls the steam flow rate to the mixer 14.
次に電池冷却水温度制御弁象について説明する。Next, the battery cooling water temperature control valve will be explained.
そして、この制御系の従来との差違は制御対象が燃料電
池5への電池冷却水の温度制御のみを対象にしている点
のみである。即ち、従来は燃r1電池5への冷却水の温
度と蒸気発生器15の温度との二つの温度制御を電池冷
却水温度制御弁17で制御していたが、本発明による実
施例では前者の燃1111電池5への冷却水の温度のみ
を制御対象とし、後者の蒸気発生器15の温度制御は後
述する制御へ移行している。The only difference between this control system and the conventional one is that the only object to be controlled is temperature control of the cell cooling water to the fuel cell 5. That is, conventionally, two temperatures, the temperature of the cooling water to the fuel R1 battery 5 and the temperature of the steam generator 15, were controlled by the battery cooling water temperature control valve 17, but in the embodiment of the present invention, the former Only the temperature of the cooling water to the fuel cell 5 is controlled, and the temperature control of the latter steam generator 15 is shifted to the control described later.
上記電池冷却水温度制御系ひは、電流検出器29、関数
発生部30、比較部31、出力制御演算部32からなり
、その他の構成は第1図と同様である。The battery cooling water temperature control system consists of a current detector 29, a function generating section 30, a comparing section 31, and an output control calculation section 32, and the other configurations are the same as in FIG.
上記構成において、先ず、関数発生部30は・電流検出
器29からの実電流信号をもとに、燃料電池5の反応に
よる発熱を考慮して、燃料電池の温度を一定に保つこと
の可能/Z冷却水の温石指令信号を出力する。前記温度
指令信号と温度検出器21による実温度信号とを比較部
31へ人力して偏差演算を行ない、その結果が出力制御
演算部32を通して電池冷却水温度制御弁17に伝えら
れる。これにより蒸気発生器15からの蒸気の一部が熱
交換器20にて冷却されて水になる。この水の混入量の
変化により電池冷却水の温度制御を行なう。この様に制
御対象を分けることにより、ミキサ14への蒸気の安定
供給、又、高負荷時における蒸気発生器15の圧力及び
温度低下を防ぐことが可能となる。なお、33は蒸気発
生器15の熱源である。In the above configuration, first, the function generating section 30 is capable of keeping the temperature of the fuel cell constant based on the actual current signal from the current detector 29 and taking into account the heat generated by the reaction of the fuel cell 5. Outputs the Z cooling water warm stone command signal. The temperature command signal and the actual temperature signal from the temperature detector 21 are manually input to a comparator 31 to perform a deviation calculation, and the result is transmitted to the battery cooling water temperature control valve 17 through the output control calculation unit 32. As a result, a portion of the steam from the steam generator 15 is cooled in the heat exchanger 20 and becomes water. The temperature of the battery cooling water is controlled by changing the amount of water mixed in. By dividing the objects to be controlled in this way, it is possible to stably supply steam to the mixer 14 and prevent pressure and temperature drops in the steam generator 15 during high loads. Note that 33 is a heat source of the steam generator 15.
第3図において、蒸気発生器15の温度制御と圧力制御
とを説明する。第3図において、Uは温度制御系を示し
、長は圧ツノ制御系を示す。In FIG. 3, temperature control and pressure control of the steam generator 15 will be explained. In FIG. 3, U indicates a temperature control system, and length indicates a pressure horn control system.
温度制御系Mは、温度検出器36、比較部37及び出力
制御部3Bから構成され、温度検出器36によって蒸気
発生器15の実温度信号が比較部37へ入力されて温度
設定値Tsetと比較が行なわれる。この際、蒸気発生
器15の実温度が温度設定値T(8)よりも高ければ、
出力制御部38を介して蒸気発生器15内の熱源33を
切る。又、温度設定値Tsegよりも低ければ、出力制
御部38を介して前記熱源33を入れる。The temperature control system M is composed of a temperature detector 36, a comparison section 37, and an output control section 3B, and the temperature detector 36 inputs the actual temperature signal of the steam generator 15 to the comparison section 37, where it is compared with the temperature set value Tset. will be carried out. At this time, if the actual temperature of the steam generator 15 is higher than the temperature setting value T(8),
The heat source 33 in the steam generator 15 is turned off via the output control section 38. If the temperature is lower than the temperature set value Tseg, the heat source 33 is turned on via the output control section 38.
なお、熱源33の種類はヒータ及び燃焼器等の種々のも
のである。そして前記した温度設定値Tsezは、先に
述べた電池冷却水温度制御の設定温度よりも高い値に設
定する。なんとなれば温度設定値が低い場合には、電池
冷却水の温度が電池冷却水温度制御の設定温度よりも低
くなってしまうからである。Note that the heat source 33 includes various types such as a heater and a combustor. The temperature setting value Tsez described above is set to a value higher than the setting temperature of the battery cooling water temperature control described above. This is because if the temperature setting value is low, the temperature of the battery cooling water will become lower than the temperature setting of the battery cooling water temperature control.
次に圧ツ制御系亜は、変化率算出部40、比較部41、
ランプ信号発生部42、下限リミッタ部43、比枝部4
4、出力制御演算部45及び設定部46からなり、燃料
電池5からの実電流と蒸気発生器15からの圧力とによ
り、圧力制御弁18を調整する。Next, the pressure control system sub-section includes a change rate calculation section 40, a comparison section 41,
Ramp signal generation section 42, lower limiter section 43, ratio branch section 4
4. Consists of an output control calculating section 45 and a setting section 46, which adjusts the pressure control valve 18 based on the actual current from the fuel cell 5 and the pressure from the steam generator 15.
次に動作説明をする。先ず、燃料電池5からの実電流信
号を電流検出器39にJ:って検出して変化率算出部4
0へ入力する。そして、この演算結果信号を比較部41
へ入力して変化率設定値Cmと比較する。この結果、実
電流の変化率が変化率設定値C5eaよりも大であれば
ランプ信号発生部42にて圧力設定値を順次下げる。こ
のランプ信号発生部42にお(プる時間設定は、蒸気発
生器15にて圧力低下にJ:る突沸が発生しないように
する。次にランプ信号発生部42からの信号は下限リミ
ッタ部43に入り、下限圧力設定値PLSI!tに抑え
るようにする。Next, the operation will be explained. First, the actual current signal from the fuel cell 5 is detected by the current detector 39 and the change rate calculation unit 4
Enter 0. Then, this calculation result signal is sent to the comparison section 41.
and compare it with the rate of change set value Cm. As a result, if the rate of change of the actual current is greater than the rate of change set value C5ea, the ramp signal generator 42 sequentially lowers the pressure set value. The ramp signal generation section 42 is set for a time such that bumping does not occur due to pressure drop in the steam generator 15. Next, the signal from the ramp signal generation section 42 is set to to suppress the pressure to the lower limit pressure set value PLSI!t.
なお、下限圧力設定値PLsetの値はミキサ14、改
質器4等の燃わ1改質を行なうラインの圧力よりも高く
、そして電池冷却水温度に見合う圧力J:りも高く設定
する必要がある。即ち、もし圧力が低くなった場合、又
はそれに近づいた場合は、燃料改質用の蒸気がミキサ1
4へ導入することが困難になるからである。次に下限リ
ミッタ部43からの圧力設定信号は比較部44へ入り、
ここで圧力検出器47による蒸気発生器15の実圧力信
号と偏差演算が行なわれる。そして、偏差信号は出力制
御演算部45を介して圧力制御弁18へ伝えられる。Note that the value of the lower limit pressure set value PLset needs to be set higher than the pressure of the line that performs combustion 1 reforming such as the mixer 14 and the reformer 4, and also higher than the pressure J that corresponds to the battery cooling water temperature. be. That is, if the pressure is low or close to it, the fuel reforming steam will flow to mixer 1.
This is because it will be difficult to introduce into 4. Next, the pressure setting signal from the lower limiter section 43 enters the comparison section 44,
Here, the actual pressure signal of the steam generator 15 by the pressure detector 47 and a deviation calculation are performed. The deviation signal is then transmitted to the pressure control valve 18 via the output control calculation section 45.
一方、比較部41による比較結果が変化率設定値Cmよ
りも小であれば、設定部46にて通常圧力設定値Pg!
tが設定され、この信号が比較部44へ入力される。上
記した様に燃料電池5からの実電流の変化の割合を計算
し、この変化率が大きくなった場合、即ち、負荷急増時
などに蒸気発生器15の内部圧ノコを下げることにより
、多量の蒸気をミキサ14へ供給することが可能となる
。On the other hand, if the comparison result by the comparing section 41 is smaller than the change rate set value Cm, the setting section 46 sets the normal pressure set value Pg!
t is set, and this signal is input to the comparison section 44. As described above, the rate of change in the actual current from the fuel cell 5 is calculated, and when this rate of change becomes large, in other words, when the load suddenly increases, the internal pressure saw of the steam generator 15 is lowered, and a large amount of current is reduced. It becomes possible to supply steam to the mixer 14.
第3図は本発明による他の実施例の要部のみを示す図で
ある。FIG. 3 is a diagram showing only the main parts of another embodiment according to the present invention.
本実施例では変化率の急激な変化を抑え、電池電流変化
に応じて圧力設定値を連続的に変えようとするものであ
る。In this embodiment, an attempt is made to suppress rapid changes in the rate of change and to continuously change the pressure setting value in accordance with changes in battery current.
即ち、圧力制御系長部分に第3図の構成を入れ、変化率
算出部40を介した信号を変化率制限部48へ入力して
急激な変化を抑え、更に関数発生部49にて圧力の設定
値を連続化して比較部44へ入力するものである。その
他の構成は第2図と同様である。That is, the configuration shown in FIG. 3 is installed in the pressure control system length section, the signal via the rate of change calculating section 40 is input to the rate of change limiting section 48 to suppress sudden changes, and the function generating section 49 controls the pressure. The set values are made continuous and input to the comparator 44. The other configurations are the same as in FIG. 2.
[発明の効果1
以上説明した如く、本発明によれば電池冷却水温度制御
と蒸気発生器温度制御とを夫々独立制御として分離する
と共に、負荷急増時に蒸気発生器内部の圧力を一時的に
下げるように構成したので、大容量の蒸気発生器を必要
としないばかりか、むしろ小形化でき、負荷急増時の蒸
気量不足及び蒸気発生器内の温度、圧力低下が解消し、
電池冷却水系の制御性能が向上し得る燃料電池発電プラ
ント制御システムを提供できる。[Effect of the invention 1 As explained above, according to the present invention, battery cooling water temperature control and steam generator temperature control are separated as independent controls, and the pressure inside the steam generator is temporarily lowered when the load suddenly increases. With this structure, not only does a large-capacity steam generator not be required, but it can even be made more compact, eliminating insufficient steam volume and temperature and pressure drops within the steam generator when the load suddenly increases.
A fuel cell power generation plant control system that can improve control performance of a battery cooling water system can be provided.
第1図及び第2図は本発明による燃料電池発電プラン]
・制御システムの一実施例構成図であり、第1図は蒸気
流量制御系及び電池冷却水温度制御系を主として示した
図、第2図は蒸気発生器の圧力制御系を主として示した
図、第3図は伯の実施例の要部のみを示す図、第4図は
従来例図である。
1・・・燃料電池プラント 2・・・ターどン3・・・
コンプレッサ 4・・・改質器5・・・燃料電池
5八・・・水素極5B・・・酸素極
5C・・・冷却板6・・・変換器 7・・
・燃焼器8・・・高温変成器 9・・・低温変成
器10・・・原潜お1制御弁 11・・・改質燃料
制御弁12・・・メインバーナ 13・・・空気制
御弁14・・・ミキサ 15・・・蒸気発生
器16・・・蒸気制御弁
17・・・電池冷却水湿度制御弁
18・・・圧力制御弁
19・・・電池冷却水循環ポンプ
20・・・熱交換器 21.36・・・温度検
出器22・・・蒸気流量制御系
23−=電池冷却水温度制御系
24.27・・・流量検出器Figures 1 and 2 are fuel cell power generation plans according to the present invention]
・This is a configuration diagram of one embodiment of the control system; FIG. 1 is a diagram mainly showing a steam flow rate control system and a battery cooling water temperature control system, and FIG. 2 is a diagram mainly showing a steam generator pressure control system. FIG. 3 is a diagram showing only the essential parts of Haku's embodiment, and FIG. 4 is a diagram of a conventional example. 1...Fuel cell plant 2...Tardon 3...
Compressor 4...Reformer 5...Fuel cell
58... Hydrogen electrode 5B... Oxygen electrode
5C...Cooling plate 6...Converter 7...
- Combustor 8... High temperature transformer 9... Low temperature shift converter 10... Nuclear submarine O1 control valve 11... Reformed fuel control valve 12... Main burner 13... Air control valve 14. ...Mixer 15...Steam generator 16...Steam control valve 17...Battery cooling water humidity control valve 18...Pressure control valve 19...Battery cooling water circulation pump 20...Heat exchanger 21 .36...Temperature detector 22...Steam flow rate control system 23-=Battery cooling water temperature control system 24.27...Flow rate detector
Claims (1)
する燃料供給手段と、タービン及びコンプレッサとによ
り燃料電池に空気を供給する空気供給手段と、前記原燃
料に対して蒸気を供給する蒸気発生器及びポンプ等から
なる電池冷却水供給手段とを夫々備え、前記改質器から
の供給燃料に応じて所要電力を発生する燃料電池発電プ
ラントにおいて、蒸気発生器の温度制御と電池冷却水の
温度制御とを夫々独立制御として分離すると共に、負荷
急増時の如き過渡的状態時には蒸気発生器内部の圧力を
一時的に下げる制御を行ない、必要蒸気量を確保するこ
とを特徴とする燃料電池発電プラント制御システム。a fuel supply means for mixing raw fuel and steam and supplying the mixture to the fuel cell via a reformer; an air supply means for supplying air to the fuel cell using a turbine and a compressor; and supplying steam to the raw fuel. In a fuel cell power generation plant, which is equipped with a steam generator and a battery cooling water supply means consisting of a pump, etc., and generates the required electric power according to the fuel supplied from the reformer, temperature control of the steam generator and battery cooling are performed. The fuel is characterized in that the temperature control of water is separated from each other as independent controls, and the pressure inside the steam generator is controlled to be temporarily lowered during transient conditions such as when the load suddenly increases, thereby securing the required amount of steam. Battery power plant control system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59198068A JPS6177273A (en) | 1984-09-21 | 1984-09-21 | Control system for fuel cell power generation plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59198068A JPS6177273A (en) | 1984-09-21 | 1984-09-21 | Control system for fuel cell power generation plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6177273A true JPS6177273A (en) | 1986-04-19 |
Family
ID=16384985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59198068A Pending JPS6177273A (en) | 1984-09-21 | 1984-09-21 | Control system for fuel cell power generation plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6177273A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100317347B1 (en) * | 1999-04-20 | 2001-12-22 | 손재익 | Method and apparatus for controlling a feul cell power generation system |
JP2008016319A (en) * | 2006-07-06 | 2008-01-24 | Matsushita Electric Ind Co Ltd | Fuel cell system |
-
1984
- 1984-09-21 JP JP59198068A patent/JPS6177273A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100317347B1 (en) * | 1999-04-20 | 2001-12-22 | 손재익 | Method and apparatus for controlling a feul cell power generation system |
JP2008016319A (en) * | 2006-07-06 | 2008-01-24 | Matsushita Electric Ind Co Ltd | Fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4923768A (en) | Fuel cell power generation system | |
JP2511866B2 (en) | Fuel cell power generation system and method of starting the same | |
US3976507A (en) | Pressurized fuel cell power plant with single reactant gas stream | |
JPH0789494B2 (en) | Combined power plant | |
JPS62278764A (en) | Fuel cell power generating plant | |
JP2000331697A (en) | Fuel cell generating device injecting vapor into anode exhaust gas line | |
JPH11238520A (en) | Fuel cell power generating apparatus | |
JPH10106607A (en) | Solid polymer electrolyte fuel cell power generator | |
JPS6177273A (en) | Control system for fuel cell power generation plant | |
JP3208970B2 (en) | Fuel cell temperature control method and apparatus | |
JP3513933B2 (en) | Fuel cell power generator | |
JPH0461464B2 (en) | ||
JP2001015134A (en) | Combined power generating device of fuel cell with gas turbine | |
JPH07208200A (en) | Combustion equipment for turbine compressor and method thereof | |
JP2000348749A (en) | Starting method of fuel cell power generation plant | |
JP3928675B2 (en) | Combined generator of fuel cell and gas turbine | |
JP2741580B2 (en) | Molten carbonate fuel cell system | |
JP3467759B2 (en) | Control method of outlet temperature of reformer | |
JPH08339815A (en) | Fuel cell power generation device | |
JPH0261099B2 (en) | ||
JPH0778626A (en) | Fuel cell power-generating device | |
JP2557336B2 (en) | Fuel cell power generation system | |
JPS62119869A (en) | Control system for fuel cell power generation plant | |
JPH01112671A (en) | Operating method for fuel cell power plant | |
JPH03101060A (en) | Fuel cell power generating system |