[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0461464B2 - - Google Patents

Info

Publication number
JPH0461464B2
JPH0461464B2 JP58144989A JP14498983A JPH0461464B2 JP H0461464 B2 JPH0461464 B2 JP H0461464B2 JP 58144989 A JP58144989 A JP 58144989A JP 14498983 A JP14498983 A JP 14498983A JP H0461464 B2 JPH0461464 B2 JP H0461464B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
control
current
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58144989A
Other languages
Japanese (ja)
Other versions
JPS6037673A (en
Inventor
Motoyuki Sato
Akira Ishigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58144989A priority Critical patent/JPS6037673A/en
Publication of JPS6037673A publication Critical patent/JPS6037673A/en
Publication of JPH0461464B2 publication Critical patent/JPH0461464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04902Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数台の燃料電池を運転するための
制御手段を備えた燃料電池プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell plant equipped with control means for operating a plurality of fuel cells.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電力の発生は通常、発電機を蒸気タービン等の
原動機で回転させ、この与えられた駆動エネルギ
ーを発電機にて交流電力として発生させ、交流の
まま需要側へ送る事が、電力の発生より消費に到
る迄、最も都合の良い方法として採用されて居
り、現在の電力系統は交流系統がほとんどを占め
ている。
Normally, electric power is generated by rotating a generator with a prime mover such as a steam turbine, generating this driving energy as AC power in the generator, and sending it to the demand side as AC power, which reduces consumption rather than power generation. Until now, it has been adopted as the most convenient method, and most current power systems are AC systems.

一方、蒸気タービン等を駆動する蒸気はボイラ
等にて石油、ガス等の燃料を燃焼させた熱エネル
ギーにより発生させているが、この燃料エネルギ
ーを熱エネルギーとして取り出し、蒸気エネルギ
ーに変換し、さらに電気エネルギーとして取り出
す事は効率面で不利な事から、近年燃料の化学的
変化をさせ、この化学的変化の際に発生する電子
の流れより直接電気エネルギーを取り出そうとす
る燃料電池発電方式が省エネルギー発電の一つと
して採用されるようになつて来た。
On the other hand, the steam that drives steam turbines, etc. is generated from the thermal energy of burning fuel such as oil and gas in boilers, etc., but this fuel energy is extracted as thermal energy, converted to steam energy, and then used to generate electricity. Since extracting energy as energy is disadvantageous in terms of efficiency, in recent years fuel cell power generation methods have been developed as an energy-saving power generation method, which involves chemically changing the fuel and directly extracting electrical energy from the flow of electrons generated during this chemical change. It has come to be adopted as one.

この燃料電池は供給された燃料を化学変化させ
て、電力を発生するのであるがその出力は直流出
力であり、このまま特定区域で消費する場合は直
流で消費され、又省エネルギー政策の一環として
大量の電力をまかなう場合には、直流−交流変換
器により交流に変換し電力系統と接続している。
These fuel cells chemically change the supplied fuel to generate electricity, but the output is direct current, and if it is consumed as is in a specific area, it will be consumed as direct current, and as part of energy conservation policy, large amounts of electricity will be generated. In the case of electricity, it is converted to alternating current using a DC-AC converter and connected to the power grid.

第1図は従来の代表的な燃料電池プラントとそ
の制御方法についての説明図である。以下第1図
により従来の燃料電池プラントの運転制御につい
て説明する。
FIG. 1 is an explanatory diagram of a typical conventional fuel cell plant and its control method. The operation control of a conventional fuel cell plant will be explained below with reference to FIG.

図中で1の一点鎖線で示される部分が燃料電池
プラントである。燃料は燃料制御弁8により流量
を制御され、改質器4に入る。改質器4に入つた
燃料は、ここで加熱されて改質され、水素含有率
の高い改質燃料となる。改質燃料は改質燃料制御
弁9により流量を制御され制御され燃料電池5の
水素極5Aに流入し電気エネルギーとして一部が
消費され残りは、前述の改質器4の燃焼部にて燃
焼し、改質器4の加熱用高温ガスとなり、燃料電
池5の酸素極5Bからの排ガスと合流し、燃焼器
7を経てターボコンプレツサのタービン2に流入
してこれに連結したコンプレツサ3を駆動する。
In the figure, the part indicated by the dashed line 1 is the fuel cell plant. The fuel enters the reformer 4 with its flow rate controlled by a fuel control valve 8. The fuel that has entered the reformer 4 is heated and reformed here to become reformed fuel with a high hydrogen content. The flow rate of the reformed fuel is controlled by the reformed fuel control valve 9, and it flows into the hydrogen electrode 5A of the fuel cell 5, where part of it is consumed as electrical energy, and the rest is combusted in the combustion section of the reformer 4 mentioned above. The gas becomes high-temperature gas for heating the reformer 4, merges with the exhaust gas from the oxygen electrode 5B of the fuel cell 5, flows into the turbine 2 of the turbo compressor via the combustor 7, and drives the compressor 3 connected thereto. do.

コンプレツサ3の吐出空気は空気制御弁10に
より流量制御されて、燃料電池5の酸素極5Bに
入る。酸素極5Bに入つた酸素の一部は水素極5
Aの水素と反応し消費され、残りの一部は酸素極
5Bから排出され、前述の改質器4の燃焼部から
の燃焼ガスと合流し、燃焼器7を経由して、ター
ボコンプレツサのタービン2を駆動するために利
用される。
The air discharged from the compressor 3 is controlled in flow rate by an air control valve 10 and enters the oxygen electrode 5B of the fuel cell 5. A part of the oxygen that entered the oxygen electrode 5B is transferred to the hydrogen electrode 5
The remaining part reacts with hydrogen in A and is consumed, and the remaining part is discharged from the oxygen electrode 5B, joins with the combustion gas from the combustion section of the reformer 4, and passes through the combustor 7 to the turbo compressor. It is used to drive the turbine 2.

燃料電池5は水素極5Aの水素と酸素極5Bの
酸素との触媒反応によつて酸素極5Bが正極、水
素極5Aが負極となるような電気エネルギーを発
生し、その両極間に接続された電気的負荷にその
電気エネルギーを供給する。この際電気負荷によ
り吸収された電気エネルギーに略比例して、両極
入口に夫々供給された水素と酸素が反応して水と
なり未反応分が、各極出口より排出される事にな
る。
The fuel cell 5 generates electrical energy such that the oxygen electrode 5B becomes a positive electrode and the hydrogen electrode 5A becomes a negative electrode through a catalytic reaction between hydrogen at the hydrogen electrode 5A and oxygen at the oxygen electrode 5B, and the fuel cell 5 is connected between the two electrodes. Supplying the electrical energy to an electrical load. At this time, in approximately proportion to the electrical energy absorbed by the electrical load, the hydrogen and oxygen supplied to the inlets of both poles react to form water, and the unreacted portion is discharged from the outlet of each pole.

燃料電池プラントでは、この燃料電池5の直流
出力は変換器6に供給されて交流に変換され、電
力系統に交流電力として送り出される。
In the fuel cell plant, the DC output of the fuel cell 5 is supplied to a converter 6, where it is converted into AC power, and sent to the power grid as AC power.

以上が燃料電池プラントの基本構成と概略の動
作であるが、次にこのプラントの従来の制御方法
について説明する。制御は、基本的に先ず変換器
6にて交流出力を制御し、これに見合う出力を燃
料電池5が発生するように、水素と酸素の電池へ
の流入量を制御し、この電池への水素と酸素の流
入量を補うように、改質器4への燃料供給量とコ
ンプレツサ3の吐出空気を制御する。
The basic configuration and general operation of the fuel cell plant have been described above. Next, a conventional control method for this plant will be explained. Basically, the control is performed by first controlling the alternating current output using the converter 6, and then controlling the amount of hydrogen and oxygen flowing into the battery so that the fuel cell 5 generates an output commensurate with this output. The amount of fuel supplied to the reformer 4 and the air discharged from the compressor 3 are controlled so as to compensate for the inflow of oxygen.

変換器有効電力設定信号Psは実有効電力検出
器21の出力信号Paと比較器26により偏差演
算され、有効電力制御演算部33は、この偏差信
号を入力として制御演算し、変換器交流出力の位
相指令を変換器出力制御器35に出力する。
The converter active power setting signal Ps is subjected to a deviation calculation from the output signal Pa of the actual active power detector 21 by the comparator 26, and the active power control calculation section 33 performs control calculation using this deviation signal as input, and adjusts the converter AC output. The phase command is output to the converter output controller 35.

変換器無効電力設定信号Qsは実無効電力検出
器20の出力信号Qaと比較器27により偏差演
算され、無効電力制御演算部34は、この偏差信
号を入力として制御演算し、変換器交流出力の電
圧指令を変換器出力制御器35に出力する。変換
器出力制御器35はその出力信号により変換器6
の交流出力の位相と電圧を制御する。変換器6の
出力と系統との電圧位相差は主として変換器の有
効電力に寄与し、変換器6の出力電圧は主として
無効電力に寄与する。従つて有効電力設定値Ps
及び無効電力設定値Qsと実際値Pa、Qaとの偏差
信号の大小に応じて有効電力と無効電力が加減さ
れ、変換器6は所定の出力を電力系統へ出す事に
なる。
The converter reactive power setting signal Qs is subjected to a deviation calculation from the output signal Qa of the actual reactive power detector 20 by the comparator 27, and the reactive power control calculation section 34 performs control calculation using this deviation signal as input, and adjusts the converter AC output. A voltage command is output to the converter output controller 35. The converter output controller 35 controls the converter 6 by its output signal.
Controls the phase and voltage of the AC output. The voltage phase difference between the output of the converter 6 and the grid mainly contributes to the active power of the converter, and the output voltage of the converter 6 mainly contributes to the reactive power. Therefore, the active power setpoint Ps
The active power and the reactive power are adjusted depending on the magnitude of the deviation signal between the reactive power set value Qs and the actual values Pa and Qa, and the converter 6 outputs a predetermined output to the power system.

次に燃料電池5への改質燃料の制御について述
べる。交換器6の交流出力エネルギーは、燃料電
池5より送られたものであるから、燃料電池の直
流出力電流は変換器6の交流出力に、略比例し、
電流検出器19はこの直流出力電流に比例した発
生直流電流信号Iを出力する。
Next, control of reformed fuel to the fuel cell 5 will be described. Since the AC output energy of the exchanger 6 is sent from the fuel cell 5, the DC output current of the fuel cell is approximately proportional to the AC output of the converter 6.
Current detector 19 outputs a generated DC current signal I that is proportional to this DC output current.

燃料電池の発生直流電流信号Iは改質燃料制御
演算部30により演算され、この直流電流負荷に
見合うだけの改質燃料要求指令を加算器24に出
力する。加算器24は、後述する改質温度制御演
算部29の出力信号と改質燃料制御演算部30の
信号を出力制御演算部36に送り、出力制御演算
部36はこの出力の大小に応じて改質燃料制御弁
9の開度制御をし、燃料電池5への改質燃料流入
量を制御する。燃料電池5へ流入した改質燃料は
燃料電池の直流出力に見合うだけ、電池内で消費
され、残りは改質器4の燃焼部で燃焼するが、こ
の燃焼により改質器4は加熱され、温度上昇す
る。
The direct current signal I generated by the fuel cell is computed by the reformed fuel control computing section 30, and outputs a reformed fuel request command corresponding to this direct current load to the adder 24. The adder 24 sends an output signal of a reforming temperature control calculation section 29 and a signal of a reformed fuel control calculation section 30, which will be described later, to an output control calculation section 36, and the output control calculation section 36 performs reforming according to the magnitude of the output. The opening degree of the reformed fuel control valve 9 is controlled to control the amount of reformed fuel flowing into the fuel cell 5. The reformed fuel that has flowed into the fuel cell 5 is consumed within the cell in an amount corresponding to the DC output of the fuel cell, and the remainder is combusted in the combustion section of the reformer 4, but the reformer 4 is heated by this combustion. Temperature rises.

改質器4は改質に適した動作温度がある。この
動作温度設定信号TRsは、温度検出器17の実
温度信号TRaと比較器23により偏差演算され、
この偏差演算信号は改質温度制御演算部29に与
えられ、演算されて改質燃料要求指令を加算器2
4に送る。加算器24はこの信号と前述の発生直
流電流に応じた改質燃料制御演算部30の出力信
号を加算し、出力制御演算部36を通して、改質
燃料の燃料電池5への流入を制御する事になる。
以上の動作を要約すると、燃料電池5の発生直流
電流によりまず改質燃料の燃料電池5への流入量
を先行制御し、燃料電池5内で消費される改質燃
料との過不足は、改質器4の温度変化として検出
され、この改質器4の温度を目標値になるよう
に、さらに改質燃料の流入量を修正制御する事に
なる。
The reformer 4 has an operating temperature suitable for reforming. This operating temperature setting signal TRs is subjected to a deviation calculation from the actual temperature signal TRa of the temperature detector 17 by a comparator 23.
This deviation calculation signal is given to the reforming temperature control calculation section 29, where it is calculated and the reformed fuel request command is sent to the adder 2.
Send to 4. The adder 24 adds this signal to the output signal of the reformed fuel control calculation unit 30 corresponding to the generated DC current, and controls the inflow of the reformed fuel into the fuel cell 5 through the output control calculation unit 36. become.
To summarize the above operation, first, the amount of reformed fuel flowing into the fuel cell 5 is controlled in advance using the DC current generated by the fuel cell 5, and the excess or deficiency of the reformed fuel consumed within the fuel cell 5 is determined. This is detected as a temperature change in the reformer 4, and the inflow amount of reformed fuel is further corrected and controlled so that the temperature of the reformer 4 reaches the target value.

次に改質器4への燃料制御について説明する。
改質器4への燃料の過不足は燃料制御弁8と改質
燃料制御弁9との間の配管系の圧力変化としてと
らえられる。即ち燃料供給過多では圧力上昇し、
燃料供給過少では圧力下降する。又この系では反
応に適した動作圧力がある。動作圧力設定信号
PFsは圧力検出器18の出力信号PFaと比較器2
2により、偏差演算され、この偏差信号は圧力制
御演算部28に与えられ、圧力制御演算部28は
この演算出力により、燃料制御弁8を開度制御
し、燃料供給量を制御する。改質器4へ供給され
た熱量はここで加熱され水素含有率の高い改質燃
料となる。
Next, fuel control to the reformer 4 will be explained.
Excess or deficiency of fuel to the reformer 4 is understood as a pressure change in the piping system between the fuel control valve 8 and the reformed fuel control valve 9. In other words, if there is too much fuel supply, the pressure will increase,
If the fuel supply is insufficient, the pressure will drop. This system also has an operating pressure suitable for the reaction. Operating pressure setting signal
PFs is the output signal PFa of pressure detector 18 and comparator 2
2, the deviation signal is given to the pressure control calculation unit 28, and the pressure control calculation unit 28 controls the opening of the fuel control valve 8 based on the calculation output to control the fuel supply amount. The amount of heat supplied to the reformer 4 is heated here and becomes reformed fuel with a high hydrogen content.

次に燃料電池5への空気供給制御について説明
する。発生直流電流信号Iは、空気量制御演算部
31に与えられる。空気量制御演算部31は発生
直流電流に見合つた酸素量に対し定められた過剰
分の酸素を供給するように空気制御弁10を制御
する。この過剰分の酸素を供給する事により、燃
料電池内での反応が進行し、残りの酸素は、前述
の改質器4の燃焼ガスと合流し燃焼器7の燃焼に
使用され、タービン2を駆動するために消費され
る。
Next, air supply control to the fuel cell 5 will be explained. The generated DC current signal I is given to the air amount control calculation section 31. The air amount control calculation unit 31 controls the air control valve 10 to supply a predetermined excess amount of oxygen to the amount of oxygen commensurate with the generated DC current. By supplying this excess oxygen, the reaction within the fuel cell progresses, and the remaining oxygen joins the combustion gas from the reformer 4 mentioned above and is used for combustion in the combustor 7, which drives the turbine 2. Consumed for driving.

次にコンプレツサ3の吐出制御について述べ
る。コンプレツサ3はタービン2によつて駆動さ
れ、圧縮空気を供給するが、この空気は空気制御
弁10、燃料電池5を経て燃焼器7の直前で、前
述したように改質器4を経由した燃料電池排ガス
と合流しており、この点で空気系ラインの圧力と
燃料系ラインの圧力とは等しくなつている。これ
は燃料電池5の水素極5A側と酸素極5B側の圧
力差を低く抑えるためであり、両極の圧力はこの
合流点の圧力に各ガス系のわずかな流路圧力損失
を加えたものとなる。従つてコンプレツサ3の吐
出圧力も両系の合流点に一定差圧を持たせた方
が、空気制御弁10による燃料電池5への空気流
入制御の容易さ、空気制御弁10が全開した時の
両極の差圧の過大防止の面で望ましい。差圧調節
弁11はこの差圧を制御するために設けてある。
Next, the discharge control of the compressor 3 will be described. The compressor 3 is driven by the turbine 2 and supplies compressed air, but this air passes through the air control valve 10, the fuel cell 5, and immediately before the combustor 7, where it is fed with fuel via the reformer 4 as described above. It merges with the battery exhaust gas, and at this point the pressure in the air system line and the pressure in the fuel system line are equal. This is to keep the pressure difference between the hydrogen electrode 5A side and the oxygen electrode 5B side of the fuel cell 5 low, and the pressure at both electrodes is the pressure at this junction plus the slight pressure loss of each gas system. Become. Therefore, if the discharge pressure of the compressor 3 has a constant differential pressure at the confluence point of both systems, it will be easier to control the air inflow to the fuel cell 5 by the air control valve 10, and it will be easier to control the air flow into the fuel cell 5 when the air control valve 10 is fully opened. This is desirable in terms of preventing excessive differential pressure between the two poles. A differential pressure regulating valve 11 is provided to control this differential pressure.

差圧設定信号DPsは差圧検出器16の実差圧信
号DPaと比較器25により偏差演算され、この偏
差信号は差圧演算部32により演算され、差圧調
節弁11の開度を制御する事により、弁前後の圧
力差を調節する。即ち吐出側圧力過大の差圧の時
は開方向、吐出側圧力過小の時は閉方向に制御さ
れる。
The difference between the differential pressure setting signal DPs and the actual differential pressure signal DPa of the differential pressure detector 16 is calculated by the comparator 25, and this deviation signal is calculated by the differential pressure calculating section 32 to control the opening degree of the differential pressure regulating valve 11. Depending on the situation, the pressure difference before and after the valve can be adjusted. That is, the control is performed in the opening direction when the differential pressure on the discharge side is too high, and in the closing direction when the pressure on the discharge side is too low.

尚弁13は燃料加湿用蒸気の制御弁であり、通
常は燃料制御弁8と連動して制御している。弁1
4は空気加湿用蒸気の制御弁であり、通常は空気
制御弁10と連動して制御している。制御弁12
は前述の空気系と燃料系の合流点の圧力を制御す
るためのタービン2駆動用の燃料を補給するため
であり、図示せぬ制御装置により合流点の圧力を
制御するように、タービン2とこれに連結したコ
ンプレツサ3を駆動制御し、コンプレツサの吐出
空気を制御している。又弁15は安全用の吐出弁
であり、系の圧力が異常に上昇した時、図示せぬ
制御装置により開制御され余剰空気を外部へ吐出
する。
The valve 13 is a fuel humidification steam control valve, and is normally controlled in conjunction with the fuel control valve 8. Valve 1
4 is an air humidifying steam control valve, which is normally controlled in conjunction with the air control valve 10. control valve 12
is for replenishing fuel for driving the turbine 2 to control the pressure at the junction of the air system and fuel system mentioned above, and the turbine 2 and The compressor 3 connected to this is driven and controlled to control the air discharged from the compressor. Further, the valve 15 is a safety discharge valve, and when the system pressure rises abnormally, it is controlled to open by a control device (not shown) to discharge excess air to the outside.

以上の操作により燃料電池プラントは、燃料の
改質、圧縮空気の発生、燃料電池への改質燃料と
酸素の供給、変換器による電気エネルギーの電力
系統への供給がバランスをとらえ制御されてい
る。
Through the above operations, the fuel cell plant maintains and controls the reformation of fuel, the generation of compressed air, the supply of reformed fuel and oxygen to the fuel cell, and the supply of electrical energy to the power system by the converter. .

かかる燃料電池単体は未だ従来の火力発電プラ
ント等に比較し、1台当りの発生電力量は小さ
い。従つて大容量発電プラントの実現のためには
複数台の燃料電池を設置し、並列運転する事によ
つて実現するとともに1部の燃料電池が故障して
も発電所としては電力の供給を維持可能なプラン
トとしようとする燃料電池プラントが考えられて
いる。
The amount of power generated by such a single fuel cell is still small compared to conventional thermal power plants and the like. Therefore, in order to realize a large-capacity power generation plant, it is possible to install multiple fuel cells and operate them in parallel, and even if one of the fuel cells fails, the power plant can continue to supply electricity. A fuel cell plant is being considered as a possible plant.

しかし複数台の燃料電池を同時運転した時、各
各の燃料電池の特性のばらつきの為、燃料、空
気、流量を同一状態で運転しても、各々の発生電
力(電流及び電圧)は必ずしも同一とはならない
という問題があり、各電池の負荷分担が相異する
事により寿命も異なり保守周期が相異するため繁
雑な保守計画を運用しなければならなかつた。
However, when multiple fuel cells are operated simultaneously, due to variations in the characteristics of each fuel cell, the generated power (current and voltage) of each fuel cell is not necessarily the same even if the fuel, air, and flow rate are the same. There was a problem that the load distribution of each battery was different, and the lifespan was different as well as the maintenance cycle was different, so a complicated maintenance plan had to be implemented.

又容量の相異する電池同志の並列運転、もしく
は余寿命の相異する電池同志、劣化具合の相異す
る電池同志の運転では所要全負荷電流に対して、
夫々能力に応じた負荷分担が出来なかつた。
In addition, when operating batteries with different capacities in parallel, batteries with different remaining lives, or batteries with different degrees of deterioration, the required full load current
It was not possible to share the burden according to each person's ability.

また、燃料電池を複数台用いて負荷分担を均一
にする発明に、特開昭57−204927号公報に示され
る発明がある。しかしながら、この発明は、電気
回路側で取り出す電力を一定に制御してしまうの
で、電圧−電流特性は各電池により決まることに
なり、したがつて、各電池が異なる電圧−電流で
運転されてしまうので、過電圧過電流で運転され
る恐れがあつた。
Further, there is an invention disclosed in Japanese Patent Application Laid-Open No. 57-204927 that uses a plurality of fuel cells to evenly share the load. However, in this invention, the electric power extracted from the electric circuit is controlled to be constant, so the voltage-current characteristics are determined by each battery, and therefore each battery is operated at a different voltage-current. Therefore, there was a risk of operation due to overvoltage and overcurrent.

〔発明の目的〕[Purpose of the invention]

本発明の目的は複数台の燃料電池が並列運転さ
れている時、各燃料電池が過電流過電圧で運転さ
れることがなく、均一な電圧かつ良好な電流で運
転することができ、全ての燃料電池を、均一又は
所要の負荷分担で運転させることを可能ならしめ
る制御手段を備えた燃料電池プラントを提供する
ことにある。
The object of the present invention is that when multiple fuel cells are operated in parallel, each fuel cell can be operated with uniform voltage and good current without being operated with overcurrent or overvoltage, and all fuel cells can be operated in parallel. An object of the present invention is to provide a fuel cell plant equipped with a control means that allows batteries to be operated uniformly or with a required load sharing.

〔発明の概要〕[Summary of the invention]

本発明は、複数台の燃料電池の全発生直流電流
の1台当りの予め定められた分担比と個々の燃料
電池の発生直流電流との偏差により、燃料電池に
供給される燃料流量と空気流量のうち少なくとも
一方を制御し、複数台の燃料電池の発生直流電流
を予め定められた分担比で運転するものである。
ここで、予め定められた分担比は、各燃料電池ご
とに異なる分担比を与えることも、あるいは等し
い分担比(単に平均値)を与えることも可能であ
る。
The present invention provides a fuel flow rate and an air flow rate supplied to a fuel cell based on a deviation between a predetermined sharing ratio per unit of the total generated DC current of a plurality of fuel cells and the generated DC current of each individual fuel cell. At least one of the fuel cells is controlled to operate the direct current generated by the plurality of fuel cells at a predetermined sharing ratio.
Here, the predetermined sharing ratio can be a different sharing ratio for each fuel cell, or an equal sharing ratio (simply an average value).

〔発明の実施例〕[Embodiments of the invention]

次に第2図を用いて本発明の実施例の詳細な説
明を行う。第2図は複数台の並列運転に関するも
のであるが、その中のk番目の電池に注目したも
のであり各符号は第1図にあるものは同一符号で
k番目の電池に対応するものはさらに末尾にkを
符した。第2図に於て、各々の燃料電池の発生直
流電流(I1、…Ioよりn台の合計である全発生直
流電流を算出する為の加算器101、該全発生直
流電流から1台当りの平均電流を算出する割算器
102、該割算器102からの出力である1台当
りの平均電流と、個々の燃料電池の発生直流電流
との偏差量を算出する比較器103k、比較器1
03からの出力信号である該偏差量を入力し制御
演算を行なう制御演算部104k、該制御演算部
104からの出力信号を入力し、改質燃料制御の
補正信号を作成する燃料補正演算部105k、同
様に該制御演算部104からの出力信号を入力
し、空気量制御の補正信号を作成する空気補正演
算部106kさらに空気量制御演算部31kの出
力信号に該空気補正演算部106kの出力信号を
加算する為の加算器107kが付加されたもので
ある。またn台の燃料電池に対し、燃料電池から
の発生直流電流を交流電流に変換する変換器6が
1台となつている。従つてn台の燃料電池からの
発生直流電力は変換器6への入力側で共通母線に
接続されて変換器6へ入力されている。
Next, an embodiment of the present invention will be described in detail using FIG. Figure 2 relates to parallel operation of multiple units, and focuses on the k-th battery among them, and the symbols are the same as those in Figure 1, and those corresponding to the k-th battery are the same as those in Figure 1. Furthermore, I added a k at the end. In Fig. 2, an adder 101 is used to calculate the total generated DC current of n units from the generated DC current (I 1 , . . . I o ) of each fuel cell; A divider 102 that calculates the average current per fuel cell, a comparator 103k that calculates the deviation amount between the average current per unit that is the output from the divider 102 and the DC current generated by each fuel cell, and a comparison Vessel 1
A control calculation unit 104k inputs the deviation amount, which is an output signal from the control calculation unit 104, and performs control calculation, and a fuel correction calculation unit 105k receives the output signal from the control calculation unit 104 and creates a correction signal for reformed fuel control. Similarly, an air correction calculation unit 106k inputs the output signal from the control calculation unit 104 and creates a correction signal for air volume control, and the output signal of the air correction calculation unit 106k is added to the output signal of the air volume control calculation unit 31k. An adder 107k is added for adding . Furthermore, for n fuel cells, there is one converter 6 that converts the direct current generated from the fuel cells into alternating current. Therefore, the DC power generated from the n fuel cells is connected to a common bus on the input side to the converter 6 and is input to the converter 6.

加算器101にてn台の燃料電池からの発生直
流電流が加算され、割算器102にて算出された
1台の燃料電池当りの平均発生直流電流は比較器
103kに入力されると同時に、改質燃料制御演
算部30k、空気量制御演算部31kに入力され
る。第1図に於ては、電流検出器19からの実際
の発生直流電流信号を該演算部30k及び31k
の入力信号としていたが、第2図に於てはn台の
燃料電池からの平均発生直流電流を改質燃料及び
空気量の先行制御信号としている点が異なる。即
ち、本発明に於てはn台の燃料電池の平均発生直
流電流を基準として改質燃料及び空気量を制御
し、n台の燃料電池の発生直流電流を均一化しよ
うとするものである。
The adder 101 adds the generated DC currents from n fuel cells, and the divider 102 calculates the average generated DC current per fuel cell, which is input to the comparator 103k. It is input to the reformed fuel control calculation section 30k and the air amount control calculation section 31k. In FIG. 1, the actual generated DC current signal from the current detector 19 is input to the calculation units 30k and 31k.
However, in FIG. 2, the average generated DC current from n fuel cells is used as the advance control signal for the amount of reformed fuel and air. That is, the present invention attempts to equalize the DC current generated by the n fuel cells by controlling the amount of reformed fuel and air based on the average DC current generated by the n fuel cells.

さらに該平均発生直流電流は、比較器103k
により各々の燃料電池の発生直流電流との偏差信
号が作成されるが、該偏差信号により改質燃料及
び空気量の制御系へ補正信号として加えられ、一
層の発生直流電流の均一化を図ることができる点
に特徴がある。即ち比較器103kによつて作成
された該偏差信号は制御演算部104kに入力さ
れ、該演算部にて制御演算された制御信号は、燃
料補正演算部105k及び空気補正演算部106
kにて、燃料電池の発生直流電流が、n台の平均
発生直流電流になるよう補正演算され、それぞれ
補正信号として改質燃料及び空気量を制御する。
Furthermore, the average generated DC current is calculated by the comparator 103k.
A deviation signal from the DC current generated by each fuel cell is created, and this deviation signal is added as a correction signal to the reformed fuel and air amount control system to further equalize the generated DC current. It is characterized by the ability to That is, the deviation signal created by the comparator 103k is input to the control calculation unit 104k, and the control signal subjected to control calculation by the calculation unit is sent to the fuel correction calculation unit 105k and the air correction calculation unit 106.
At step k, the DC current generated by the fuel cell is corrected so that it becomes the average DC current generated by n units, and the amounts of reformed fuel and air are controlled as correction signals, respectively.

以上述べた実施例では比較器103kの出力信
号である偏差量からの補正信号を、第2図の加算
器24k,107kにてそれぞれ改質燃料、空気
量の制御系へ加えているが、燃料電池の特性とし
て改質燃料或いは空気量のどちらか一方のみを変
化させても、該電池の発生直流電流は変化する。
従つて該補正信号の一方のみを使用することによ
つても、本発明の目的であるn台の燃料電池の発
生直流電流を均一化することは可能である。
In the embodiment described above, the correction signal from the deviation amount, which is the output signal of the comparator 103k, is applied to the reformed fuel and air amount control systems by the adders 24k and 107k shown in FIG. Even if only either the reformed fuel or the amount of air is changed as a characteristic of the battery, the direct current generated by the battery will change.
Therefore, even by using only one of the correction signals, it is possible to equalize the DC currents generated by n fuel cells, which is the object of the present invention.

また以上の説明に於ては、改質燃料の制御系へ
の補正信号を加算器24kで加えることで行なつ
てきたが、該補正信号を加算器23kにて加えて
もよい。
Further, in the above description, the correction signal to the reformed fuel control system is added by the adder 24k, but the correction signal may be added by the adder 23k.

第2図に於て改質燃料制御演算部30kおよび
空気量制御演算器31kの入力信号として、n台
の平均発生直流電流を使用しているが、その両者
又は一方に該入力信号として出力設定値に係数を
乗じた信号を使うことによつてもよい。
In Fig. 2, the average generated DC current of n units is used as the input signal of the reformed fuel control calculation unit 30k and the air amount control calculation unit 31k, and the output is set to either or both of them as the input signal. It may also be possible to use a signal obtained by multiplying the value by a coefficient.

第2図に於て、制御弁12kを制御して、燃焼
器7kの入口側合流点圧力を制御することによつ
ても可能である。即ち、該制御弁12kを制御す
ることにより、燃焼器の7kの入口側合流点圧力
が制御され、この合流点圧力により燃料電池の系
統動作圧が決まり、ひいては燃料電池の発生直流
電流も決まる。同様主旨で比較器25の一方の入
力信号である差圧設定信号DPsにバイアスを加え
る形でもよい。
In FIG. 2, this is also possible by controlling the control valve 12k to control the confluence pressure on the inlet side of the combustor 7k. That is, by controlling the control valve 12k, the confluence pressure on the inlet side of the combustor 7k is controlled, and this confluence pressure determines the system operating pressure of the fuel cell, which in turn determines the direct current generated by the fuel cell. For the same purpose, a bias may be added to the differential pressure setting signal DPs, which is one input signal of the comparator 25.

尚上記説明では各電池に均一負荷分担をさせる
事で説明して来たが、各燃料電池の容量の相異、
劣化の相異等で分担比を変えたい場合は第2図の
102を平均電流演算用割算器の代りに夫々の分
担比に応じた複数の係数器102−1〜102n
を設け、夫々の出力信号を該当する電池に対応す
る比較器103−1〜103nに与えれば良い。
In the above explanation, we have explained by having each battery share the load uniformly, but due to the difference in capacity of each fuel cell,
If you want to change the sharing ratio due to differences in deterioration, etc., use multiple coefficient multipliers 102-1 to 102n according to the respective sharing ratios instead of the average current calculation divider 102 in FIG.
It is sufficient to provide the respective output signals to the comparators 103-1 to 103n corresponding to the corresponding batteries.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料流量と空気流量のうち少
なくとも一方を制御して、燃料電池自身の電圧−
電流特性を調節するので、並列接続された各燃料
電池が過電流過電圧で運転されることがなく、均
一な電圧かつ良好な電流で運転することができ
る。
According to the present invention, at least one of the fuel flow rate and the air flow rate is controlled to reduce the voltage of the fuel cell itself.
Since the current characteristics are adjusted, each fuel cell connected in parallel is not operated with overcurrent or overvoltage, and can be operated with uniform voltage and good current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシステム構成を示すブロツク
図、第2図は本発明の一実施例を示すブロツク図
である。 1k……燃料電池プラント、5k……燃料電
池、6……変換器、9k……改質燃料制御弁、1
0k……空気制御弁、19k……電流検出器、2
4k……加算器、30k……改質燃料制御演算
部、31k……空気量制御演算部、36k……出
力制御演算部、101,107k……加算器、1
02……割算器、103k……比較器、104k
……制御演算部、105k……燃料補正演算部、
106k……空気補正演算部。
FIG. 1 is a block diagram showing a conventional system configuration, and FIG. 2 is a block diagram showing an embodiment of the present invention. 1k... Fuel cell plant, 5k... Fuel cell, 6... Converter, 9k... Reformed fuel control valve, 1
0k...Air control valve, 19k...Current detector, 2
4k...Adder, 30k...Reformed fuel control calculation section, 31k...Air amount control calculation section, 36k...Output control calculation section, 101, 107k...Adder, 1
02...Divider, 103k...Comparator, 104k
...Control calculation section, 105k...Fuel correction calculation section,
106k...Air correction calculation section.

Claims (1)

【特許請求の範囲】[Claims] 1 複数台の燃料電池を並列接続し発生直流電流
を電力変換器により交流電力に変換する燃料電池
プラントにおいて、各々の前記燃料電池からの発
生直流電流と前記複数台の燃料電池の全発生直流
電流に対する各々の前記燃料電池の予め定められ
た分担比に応じた量との偏差量より、各々の燃料
電池の燃料流量と空気流量のうち少なくとも一方
を制御する手段を備えたことを特徴とする燃料電
池プラント。
1. In a fuel cell plant in which a plurality of fuel cells are connected in parallel and the generated DC current is converted into AC power by a power converter, the generated DC current from each of the fuel cells and the total generated DC current of the plurality of fuel cells The fuel is characterized by comprising means for controlling at least one of the fuel flow rate and the air flow rate of each fuel cell based on the amount of deviation from the amount corresponding to a predetermined sharing ratio of each fuel cell. battery plant.
JP58144989A 1983-08-10 1983-08-10 Fuel cell plant controller Granted JPS6037673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144989A JPS6037673A (en) 1983-08-10 1983-08-10 Fuel cell plant controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144989A JPS6037673A (en) 1983-08-10 1983-08-10 Fuel cell plant controller

Publications (2)

Publication Number Publication Date
JPS6037673A JPS6037673A (en) 1985-02-27
JPH0461464B2 true JPH0461464B2 (en) 1992-09-30

Family

ID=15374885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144989A Granted JPS6037673A (en) 1983-08-10 1983-08-10 Fuel cell plant controller

Country Status (1)

Country Link
JP (1) JPS6037673A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430174A (en) * 1987-07-24 1989-02-01 Hitachi Ltd Fuel cell power generating system
JP2745776B2 (en) * 1990-05-10 1998-04-28 富士電機株式会社 Fuel cell power generation system
JPH0426069A (en) * 1990-05-18 1992-01-29 Fuji Electric Co Ltd Operation controlling method for fuel cell generator
JPH0475420A (en) * 1990-07-13 1992-03-10 Nippon Telegr & Teleph Corp <Ntt> Dc parallel operating system for fuel cell
US6638652B1 (en) 1998-10-02 2003-10-28 Toyota Jidosha Kabushiki Kaisha Fuel cell control apparatus
US6465910B2 (en) * 2001-02-13 2002-10-15 Utc Fuel Cells, Llc System for providing assured power to a critical load
JP5711166B2 (en) * 2012-02-08 2015-04-30 日本電信電話株式会社 Solid oxide fuel cell system
CN112713291A (en) * 2020-12-30 2021-04-27 北京科技大学 Fuel cell system and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841352A (en) * 1971-09-28 1973-06-16
JPS57204927A (en) * 1981-06-11 1982-12-15 Mitsubishi Electric Corp Battery power generating system
JPS58100371A (en) * 1981-12-09 1983-06-15 Hitachi Ltd Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841352A (en) * 1971-09-28 1973-06-16
JPS57204927A (en) * 1981-06-11 1982-12-15 Mitsubishi Electric Corp Battery power generating system
JPS58100371A (en) * 1981-12-09 1983-06-15 Hitachi Ltd Fuel cell system

Also Published As

Publication number Publication date
JPS6037673A (en) 1985-02-27

Similar Documents

Publication Publication Date Title
CN103339773B (en) Control the method and apparatus of the running status in fuel cell device
JPS6030062A (en) Output controller of fuel cell
JPH0461464B2 (en)
JPS6056374A (en) Fuel flow controlling device for fuel cell
JPS60177565A (en) Operation method of fuel cell power generating system
JPH06267577A (en) Control device for fuel cell
JPS62278764A (en) Fuel cell power generating plant
JP5855955B2 (en) Energy management equipment
JP3930426B2 (en) Fuel cell combined power generation system
JP3422167B2 (en) Fuel cell power generation system
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP2674867B2 (en) Fuel cell generator
JP7515434B2 (en) Fuel Cell Systems
JP2814706B2 (en) Fuel cell generator
JPH08255621A (en) Power generating device for fuel cell
JPS62119869A (en) Control system for fuel cell power generation plant
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPS62222571A (en) Fuel cell power generating plant
JPH01112671A (en) Operating method for fuel cell power plant
JPH08339815A (en) Fuel cell power generation device
JPS61140071A (en) Fuel cell plant
JPS6177273A (en) Control system for fuel cell power generation plant
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JPH07288135A (en) Fuel cell power generating system
JP6643939B2 (en) Combined heat and power system