JPS6152361B2 - - Google Patents
Info
- Publication number
- JPS6152361B2 JPS6152361B2 JP4978178A JP4978178A JPS6152361B2 JP S6152361 B2 JPS6152361 B2 JP S6152361B2 JP 4978178 A JP4978178 A JP 4978178A JP 4978178 A JP4978178 A JP 4978178A JP S6152361 B2 JPS6152361 B2 JP S6152361B2
- Authority
- JP
- Japan
- Prior art keywords
- deaerator
- pressure
- steam
- heat recovery
- recovery boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 63
- 238000011084 recovery Methods 0.000 claims description 31
- 239000007789 gas Substances 0.000 claims description 24
- 238000000605 extraction Methods 0.000 claims description 15
- 239000002918 waste heat Substances 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】
本発明は、ガスタービンと、その排ガスによつ
て蒸気を発生させる排熱回収ボイラと、その発生
蒸気によつて駆動される蒸気タービンと、復水器
と、該復水器からの復水を前記蒸気タービンから
の抽気および前記排熱回収ボイラからの蒸気を熱
源として脱気する脱気器と、該脱気器によつて脱
気された水を排熱回収ボイラに送り込む給水系統
とを備える複合発電プラントにおける脱気器の圧
力制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas turbine, an exhaust heat recovery boiler that generates steam from its exhaust gas, a steam turbine that is driven by the generated steam, a condenser, and a condenser. a deaerator that deaerates condensate from the water heater using extraction air from the steam turbine and steam from the exhaust heat recovery boiler as a heat source; The present invention relates to a pressure control device for a deaerator in a combined power generation plant equipped with a water supply system that supplies water to the plant.
この種の複合発電プラントにおいては、排熱回
収ボイラへの給水は、該排熱回収ボイラの腐食防
止のために給水系統の途中に脱気器を備えて、れ
により給水中の酸素を抽出した後に排熱回収ボイ
ラへ給水するのが一般的である。前記脱気器は発
電プラントの熱効率向上の点から、通常は蒸気タ
ービンの中段から取出した抽気を熱源とするが、
蒸気タービンの低負荷運転時あるいは一時停止時
(複合発電プラントは早朝起動、夜間停止を行な
うことが多い)には、蒸気タービンから必要な熱
源を確保できないため、排熱回収ボイラのドラム
発生蒸気を減圧したものを熱源として使用してい
る。また排熱回収ボイラ入口の給水温度は低い方
が、排ガスの熱をより多く吸収することができ、
発電プラントの熱効率が良くなる。このため前記
脱気器の運転圧力を通常の火力発電プラントのも
のよりも低くして、低温の給水を排熱回収ボイラ
に送るのが一般的である。また蒸気タービン停止
時には、復水器は真空を破壊し大気圧とするの
で、脱気器の圧力が大気圧以下であると復水器側
から空気が漏入し脱気器貯水タンク内の保有水の
酸素濃度が増すので、これを防止するため脱気器
圧力を大気圧よりも僅かに高い圧力で保持する必
要がある。 In this type of combined cycle power plant, water is supplied to the waste heat recovery boiler by installing a deaerator in the middle of the water supply system to prevent corrosion of the waste heat recovery boiler, thereby extracting oxygen from the water supply. Generally, the water is then supplied to an exhaust heat recovery boiler. In order to improve the thermal efficiency of the power generation plant, the deaerator usually uses extracted air extracted from the middle stage of the steam turbine as its heat source.
When the steam turbine is operating at low load or temporarily stopped (combined power generation plants often start early in the morning and shut down at night), the necessary heat source cannot be secured from the steam turbine, so the steam generated by the drum of the heat recovery boiler is used. The reduced pressure is used as a heat source. In addition, the lower the temperature of the water supply at the exhaust heat recovery boiler inlet, the more heat from the exhaust gas can be absorbed.
Improves the thermal efficiency of power plants. For this reason, the operating pressure of the deaerator is generally lower than that of a normal thermal power plant, and low-temperature feed water is sent to the waste heat recovery boiler. In addition, when the steam turbine is stopped, the condenser breaks the vacuum and returns to atmospheric pressure, so if the pressure in the deaerator is below atmospheric pressure, air will leak from the condenser side and remain in the deaerator water storage tank. To prevent this from increasing oxygen concentration in the water, it is necessary to maintain the deaerator pressure slightly above atmospheric pressure.
第1図は従来の脱気器の圧力制御装置を備えた
複合発電プラントの系統を示し、1はガスタービ
ン、2はその排ガスによつて蒸気を発生させる排
熱回収ボイラで、過熱器3、脱硝装置4および節
炭器5を具えている。6は排熱回収ボイラ2の過
熱器3で発生する蒸気によつて駆動される蒸気タ
ービン、7は復水器、8は主蒸気管、9はタービ
ンバイパス蒸気管、10はタービン入口弁、11
はバイパス止弁、12は脱気器、13は脱気器貯
水タンク、14は復水器7の復水を復水ポンプ1
5で昇圧して脱気器12へ送る復水管路、16は
蒸気タービン6の中段の蒸気を熱源として脱気器
12へ送るタービン抽気管、17はその逆止弁、
18は脱気器貯水タンク13の水をボイラ給水ポ
ンプ19によつて昇圧して排熱回収ボイラ2の節
炭器5へ送る給水管路、20は脱気器貯水タンク
13とボイラ給水ポンプ19とを接続する脱気器
降水管、21は給水管18に具えられた流量計、
22は節炭器5で過熱された水を配管23を介し
て導入して蒸気を発生させるボイラドラム、24
はその発生蒸気を過熱器3に送る配管、25はボ
イラドラム22の蒸気の一部を熱源として脱気器
12へ送る加熱蒸気管、26はその配管25に具
えられた脱気器圧力調節弁、27は設定器28の
設定圧力と脱気器12の実圧力との比較結果に応
じて圧力調節弁26の弁開度を調節する脱気器圧
力調節計である。尚、29は脱気器12にて脱気
されたガスを復水器7へ戻すベント管、30は排
ガスの煙突を示す。 Figure 1 shows the system of a combined cycle power plant equipped with a conventional deaerator pressure control device, in which 1 is a gas turbine, 2 is an exhaust heat recovery boiler that generates steam from its exhaust gas, a superheater 3, It is equipped with a denitrification device 4 and a carbon saver 5. 6 is a steam turbine driven by the steam generated in the superheater 3 of the exhaust heat recovery boiler 2; 7 is a condenser; 8 is a main steam pipe; 9 is a turbine bypass steam pipe; 10 is a turbine inlet valve; 11
is a bypass stop valve, 12 is a deaerator, 13 is a deaerator water storage tank, and 14 is a condensate pump 1 that transfers the condensate from the condenser 7.
5 is a condensate pipe that increases the pressure and sends it to the deaerator 12; 16 is a turbine bleed pipe that uses steam from the middle stage of the steam turbine 6 as a heat source to send it to the deaerator 12; 17 is a check valve thereof;
18 is a water supply pipe that increases the pressure of water in the deaerator water storage tank 13 by a boiler water supply pump 19 and sends it to the economizer 5 of the exhaust heat recovery boiler 2; 20 is a water supply pipe between the deaerator water storage tank 13 and the boiler water supply pump 19; 21 is a flow meter provided in the water supply pipe 18,
22 is a boiler drum 24 that introduces water superheated by the economizer 5 via piping 23 to generate steam;
25 is a heating steam pipe that sends the generated steam to the superheater 3 as a heat source, and 26 is a deaerator pressure control valve provided in the pipe 25. , 27 is a deaerator pressure regulator that adjusts the opening degree of the pressure regulating valve 26 in accordance with the comparison result between the set pressure of the setting device 28 and the actual pressure of the deaerator 12. Note that 29 is a vent pipe for returning the gas degassed in the deaerator 12 to the condenser 7, and 30 is a chimney for exhaust gas.
前記構成の複合発電プラントは前述した如く早
朝起動、夜間停止する運転方法が多用されるの
で、夜間停止後の起動について説明すると、排熱
回収ボイラ2の保有熱によつてボイラドラム22
に発生した蒸気を加熱蒸気管25の脱気器圧力調
節弁26を通して脱気器12に送り、該脱気器1
2を大気圧以上に加圧する。この状態においてガ
スタービン1を起動すると、その排ガスは排熱回
収ボイラへ送られ、過熱器3、脱硝装置4、節炭
器5を流過して煙突30から大気中に放出され
る。ガスタービン1の運転によつてボイラドラム
22から発生した蒸気は過熱器3によつて過熱さ
れた後に主蒸気管8およびタービンバイパス蒸気
管9を通つて復水器7に排出され、ここで凝縮し
て水になる。蒸気タービン6へ通気が可能になる
とタービンバイパス止弁11は徐閉され、タービ
ン入口弁10を通つて蒸気タービン6に蒸気が送
られる。 As mentioned above, combined cycle power plants with the above configuration are often operated by starting early in the morning and stopping at night.
The steam generated is sent to the deaerator 12 through the deaerator pressure control valve 26 of the heating steam pipe 25,
2 is pressurized above atmospheric pressure. When the gas turbine 1 is started in this state, the exhaust gas is sent to the exhaust heat recovery boiler, passes through the superheater 3, the denitrification device 4, and the economizer 5, and is emitted into the atmosphere from the chimney 30. Steam generated from the boiler drum 22 during operation of the gas turbine 1 is superheated by the superheater 3 and then discharged to the condenser 7 through the main steam pipe 8 and the turbine bypass steam pipe 9, where it is condensed. and becomes water. When ventilation to the steam turbine 6 becomes possible, the turbine bypass stop valve 11 is gradually closed, and steam is sent to the steam turbine 6 through the turbine inlet valve 10.
一方、復水器7に溜められた復水は復水ポンプ
15で昇圧され、復水管14を通つて脱気器12
に送られる。該脱気器12に送られた復水は前記
ボイラドラム22の発生蒸気によつて過熱脱気さ
れた後、脱気器貯水タンク13に貯水される。貯
水された水は降水管20を通りボイラ給水ポンプ
19で昇圧され、給水管18を経て排熱回収ボイ
ラ2の節炭器5に送られて、ここで排ガスによつ
て加熱された後、ボイラドラム22に送られる。
そして蒸気タービン6の抽気圧力が上昇して脱気
器圧力調節計27の設定圧力以上になると、脱気
器圧力調節弁26は閉じて、脱気器12の熱源は
ボイラドラム22の蒸気から抽気蒸気に切替わ
る。 On the other hand, the condensate stored in the condenser 7 is pressurized by the condensate pump 15 and passes through the condensate pipe 14 to the deaerator 12.
sent to. The condensate sent to the deaerator 12 is superheated and deaerated by the steam generated in the boiler drum 22, and then stored in the deaerator water storage tank 13. The stored water passes through the downcomer pipe 20, is pressurized by the boiler water supply pump 19, and is sent to the energy saver 5 of the waste heat recovery boiler 2 via the water supply pipe 18, where it is heated by exhaust gas and then pumped to the boiler. It is sent to the drum 22.
Then, when the extraction pressure of the steam turbine 6 rises and exceeds the set pressure of the deaerator pressure regulator 27, the deaerator pressure control valve 26 closes and the heat source of the deaerator 12 is extracted from the steam in the boiler drum 22. Switch to steam.
第4図は前記複合発電プラントにおける従来の
脱気器の圧力特性の一例を示すグラフ図で、縦軸
に圧力を、横軸に蒸気タービン出力を示してい
る。蒸気タービンの起動時において、脱気器圧力
調節計はaで示される如く大気圧よりも僅かに高
い圧力(1.3Kg/cm2A)に設定されており、ボイ
ラドラムの発生蒸気を脱気器圧力調節弁26で加
減して脱気器の圧力を一定に制御するようになつ
ている。そして蒸気タービンの抽気圧力が前記脱
気器圧力調節計27の設定圧力以上になつて前記
ボイラドラムの発生蒸気と切替るのは、蒸気ター
ビンが高出力(77%出力)となつた時点である。
従つて蒸気タービンの出力が77%以下の場合に
は、脱気器は蒸気タービンの抽気よりも高圧のボ
イラドラムの発生蒸気によつて加熱される。即ち
排熱回収ボイラへの給水温度が高くなるため発電
プラントとしての熱効率を低下させことになる。 FIG. 4 is a graph showing an example of the pressure characteristics of a conventional deaerator in the combined power generation plant, in which the vertical axis shows pressure and the horizontal axis shows steam turbine output. When starting the steam turbine, the deaerator pressure controller is set to a pressure slightly higher than atmospheric pressure (1.3Kg/cm 2 A) as shown in a, and the steam generated in the boiler drum is transferred to the deaerator. The pressure in the deaerator is controlled to be constant by adjusting the pressure with a pressure regulating valve 26. It is at the point when the steam turbine reaches high output (77% output) that the extraction pressure of the steam turbine exceeds the set pressure of the deaerator pressure regulator 27 and switches to the steam generated in the boiler drum. .
Therefore, when the output of the steam turbine is 77% or less, the deaerator is heated by the steam generated in the boiler drum, which has a higher pressure than the steam turbine bleed air. That is, the temperature of the water supplied to the waste heat recovery boiler increases, which reduces the thermal efficiency of the power generation plant.
従来の圧力制御装置においては、低出力時に
も、脱気器圧力調節計の設定値をbで示す如く
0.45Kg/cm2Aに設定している。即ち蒸気タービン
が最低安定出力(25%出力)になつたら脱気器の
熱源を抽気圧力に切替えるようにしている。 In the conventional pressure control device, even at low output, the setting value of the deaerator pressure regulator is set as shown by b.
It is set at 0.45Kg/cm 2 A. That is, when the steam turbine reaches its minimum stable output (25% output), the heat source of the deaerator is switched to the extraction pressure.
しかし前述の圧力制御装置においては、前記設
定値を一度設定したら、その設定値は固定した状
態に保持されるので、蒸気タービンが起動してか
ら最低安定出力運転に倒達した時、脱気器圧力調
節計の設定値を鎖線矢印cで示す如く1.3Kg/cm2
Aから0.45Kg/cm2Aまで下がる場合、その降下が
急速に行なわれると脱気器貯水タンクには多量
(一般には蒸気タービンの25%出力時においては
給水量の20〜40分間程度の容量)の飽和水がある
ため、該脱気器貯水タンクまたは降水管にてフラ
ツシユが発生してボイラ給水ポンプがキヤビテー
シヨンを起こす恐れがある。従つて前記の設定値
切換操作をきわめてゆつくり行なう必要がある
が、一般にはその操作を手動によつて行なつてい
るので、かなりの熟練を要する。 However, in the above-mentioned pressure control device, once the set value is set, it is held in a fixed state, so when the steam turbine reaches the minimum stable output operation after starting, the deaerator The setting value of the pressure regulator is 1.3Kg/cm 2 as shown by the chain arrow c.
If the drop is from A to 0.45Kg/ cm2A , if the drop is rapid, there will be a large amount of water in the deaerator water storage tank (generally, at 25% output of the steam turbine, the capacity will be about 20 to 40 minutes of water supply). ), there is a risk that flash will occur in the deaerator water storage tank or downcomer pipe, causing cavitation of the boiler feed pump. Therefore, it is necessary to perform the setting value switching operation very slowly, but since this operation is generally performed manually, it requires considerable skill.
また脱気器圧力調節計の設定値を0.45Kg/cm2A
にした状態で、かつ脱気器の圧力が抽気圧によつ
てdで示されるように上昇して運転が行なわれて
いるとき、万一蒸気タービンがトリツプすると、
脱気器への抽気が停止して該脱気器の圧力はター
ビン抽気時の器内圧力から脱気器圧力調節計の設
定圧力まで急激に低下して脱気器貯水タンクおよ
び降水管でフラツシユが発生し、ボイラ給水ポン
プがキヤビテーシヨンを起してしまう。 Also, set the deaerator pressure controller to 0.45Kg/cm 2 A.
If the steam turbine were to trip when the deaerator was operated with the deaerator pressure increasing as shown by d due to the extraction pressure,
Air bleed to the deaerator stops, and the pressure in the deaerator drops rapidly from the pressure inside the chamber during turbine bleed to the set pressure of the deaerator pressure controller, causing a flash in the deaerator water storage tank and downcomer pipe. occurs, causing cavitation of the boiler feed pump.
更に、従来の圧力制御装置においては、発電プ
ラントを停止する時には前述の如く脱気器を大気
圧以上に保持するため、脱気器圧力調節計の設定
値を再度1.3Kg/cm2Aに挙げなければならなかつ
た。 Furthermore, in conventional pressure control devices, when shutting down the power plant, in order to maintain the deaerator above atmospheric pressure as described above, the setting value of the deaerator pressure regulator is raised to 1.3 Kg/cm 2 A again. I had to.
本発明は前記の点に鑑みて、脱気器の運転圧力
を、蒸気タービンのトリツプ時を含め毎日起動・
停止を行なつても常に最適状態に自動制御し、発
電プラントの運転操作を容易にできる脱気器の圧
力制御装置を提供しようとするものである。 In view of the above points, the present invention has been developed to control the operating pressure of the deaerator every day, including when the steam turbine is tripped.
It is an object of the present invention to provide a pressure control device for a deaerator that can automatically control the power plant to be in an optimal state even when the power plant is shut down, and that can facilitate the operation of a power plant.
上記の目的を達成するため、本発明の圧力制御
装置は、排熱回収ボイラから脱気器へ蒸気を送り
込む配管に設けた脱気器圧力調節弁と、該脱気器
圧力調節弁の開度を脱気器の実圧力と設定圧力と
の比較結果に応じて調節する脱気器圧力調節計
と、該脱気器圧力調節弁に与える設定圧力を排熱
回収ボイラ給水流量が所定の量以下の範囲では流
量増大に伴つて漸減させ、かつ所定の量以上の範
囲では蒸気タービンからの抽気圧力よりも常に低
いころで漸増させる圧力設定装置とから構成す
る。ただし、上記の給水流量の所定の量とは、蒸
気タービンの最低安定出力に相当する給水流量で
ある。 In order to achieve the above object, the pressure control device of the present invention includes a deaerator pressure control valve provided in a pipe that sends steam from an exhaust heat recovery boiler to a deaerator, and an opening degree of the deaerator pressure control valve. A deaerator pressure regulator that adjusts the deaerator pressure according to the comparison result between the actual deaerator pressure and the set pressure, and a deaerator pressure regulator that adjusts the set pressure given to the deaerator pressure control valve so that the exhaust heat recovery boiler feed water flow rate is below a predetermined amount. In the range above, the pressure is gradually decreased as the flow rate increases, and in the range above a predetermined amount, the pressure is gradually increased at a point that is always lower than the extraction pressure from the steam turbine. However, the above-mentioned predetermined amount of water supply flow rate is a water supply flow rate corresponding to the minimum stable output of the steam turbine.
以下、本発明脱気器の圧力制御装置の一実施例
を第2図および第3図に基づいて説明する。第2
図は本発明圧力制御装置を備えた複合発電プラン
トの系統を示し、第1図と符付号のものは同じも
のを示している。加熱蒸気管25には脱気器圧力
調節弁260が具えられており、該脱気器圧力調
節弁260の開度は、脱気器圧力調節計270に
よつて調節される。即ち脱気器12の実圧力と設
定圧力との比較結果に応じて調節される。前記脱
気器圧力調節計270に設定圧力を与える圧力設
定装置31は、給水管18に具えている流量計2
1の給水流量信号Sを入力する第1演算器32お
よび第2演算器33と、該第1演算器32、第2
演算器33の出力信号のうち大きい方の出力信号
を選択する信号選択器34とから成つている。前
記第1演算器32は入力信号の増大に伴つてその
出力信力を減少させるよう構成され、また第2演
算器33は入力信号の増大に伴つて出力信号を増
大させるよう構成されている。前記の構成から成
る圧力設定装置31は脱気器圧力調節計270に
与える設定圧力を排熱回収ボイラ給水流量、即ち
給水管18を流過する給水流量を所定の量以下の
範囲では流量増大に伴つて漸減させ、かつ所定の
量以上の範囲では蒸気タービンからの抽気圧力よ
りも常に抵いところ漸減させるものである。そし
て該圧力設定装置31の出力信号が「減少」から
「増加」に移行する点は、前記給水流量が蒸気タ
ービンの最低安定出力に相当する流量点となつて
いる。 EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the pressure control device for a deaerator of the present invention will be described based on FIGS. 2 and 3. Second
The figure shows a system of a combined power generation plant equipped with the pressure control device of the present invention, and the same reference numerals as in FIG. 1 indicate the same ones. The heating steam pipe 25 is equipped with a deaerator pressure regulating valve 260, and the opening degree of the deaerator pressure regulating valve 260 is adjusted by a deaerator pressure regulator 270. That is, it is adjusted according to the comparison result between the actual pressure of the deaerator 12 and the set pressure. The pressure setting device 31 that provides a set pressure to the deaerator pressure regulator 270 is a flow meter 2 provided in the water supply pipe 18.
A first computing unit 32 and a second computing unit 33 to which the water supply flow rate signal S of 1 is input;
The signal selector 34 selects the larger output signal from among the output signals of the arithmetic unit 33. The first arithmetic unit 32 is configured to decrease its output reliability as the input signal increases, and the second arithmetic unit 33 is configured to increase the output signal as the input signal increases. The pressure setting device 31 configured as described above changes the set pressure given to the deaerator pressure regulator 270 to increase the exhaust heat recovery boiler feed water flow rate, that is, the feed water flow rate flowing through the water supply pipe 18 in a range below a predetermined amount. In addition, in a range exceeding a predetermined amount, the pressure is always gradually reduced compared to the extraction pressure from the steam turbine. The point at which the output signal of the pressure setting device 31 changes from "decrease" to "increase" is the flow point at which the feed water flow rate corresponds to the lowest stable output of the steam turbine.
前述の圧力設定を第3図について具体的に説明
する。本第3図は本発明における脱気器の圧力特
性の一例を示すグラフ図で、縦軸に圧力を、横軸
に排熱回収ボイラ給水流量を示している。eは第
1の演算器32の設定圧力特性を、fは第2演算
器33の設定圧力特性を、dはタービン抽気時の
脱気器内圧力特性を示している。即ち、第1演算
器32は、給水流量信号Sが0%のとき大気圧よ
りも僅かに高い圧力(1.3Kg/cm2A)の設定信号
を出力し、また給水流量信号Sが蒸気タービンの
最低安定出力に相当する流量のとき抽気圧力より
も僅かに低い圧力(0.35Kg/cm2A)の設定信号を
出力する。また第2演算器33は、給水流量信号
Sが100%(蒸気タービンの100%出力に相当す
る)のとき抽気圧力(1.7Kg/cm2A)よりも僅か
に低い圧力(1.6Kg/cm2A)の設定信号を出力す
る。また給水流量信号が25%のとき抽気圧力より
も僅かに低い圧力(0.35Kg/cm2A)の設定信号を
出力する。 The above-mentioned pressure setting will be specifically explained with reference to FIG. FIG. 3 is a graph showing an example of the pressure characteristics of the deaerator in the present invention, in which the vertical axis shows the pressure and the horizontal axis shows the exhaust heat recovery boiler feed water flow rate. e indicates the set pressure characteristic of the first computing unit 32, f indicates the set pressure characteristic of the second computing unit 33, and d indicates the pressure characteristic in the deaerator during turbine extraction. That is, the first computing unit 32 outputs a setting signal of a pressure slightly higher than atmospheric pressure (1.3 Kg/cm 2 A) when the feed water flow rate signal S is 0%, and when the feed water flow rate signal S is When the flow rate corresponds to the lowest stable output, a setting signal of a pressure (0.35 Kg/cm 2 A) slightly lower than the extraction pressure is output. In addition, the second computing unit 33 calculates a pressure ( 1.6 Kg/cm 2 A) setting signal is output. Also, when the water supply flow rate signal is 25%, a setting signal of a pressure (0.35 Kg/cm 2 A) slightly lower than the extraction pressure is output.
次に本発明の脱気器の圧力制御其の作用につい
て説明する。複合発電プラントは前述した通り早
朝起動、夜間停止する運転方法が多いので、夜間
停止後の起動を例にとて説明する。排熱回収ボイ
ラ2の保有熱によつてボイラドラム22に発生し
た蒸気を、加熱蒸気管25に設けた脱気器圧力調
節弁260を通して脱気器12に送り、該脱気器
12を大気圧以上(1.3Kg/cm2A)に加圧する。
この状態においてガスタービン1を起動すると、
その排ガスは排熱回収ボイラ2へ送られ、過熱器
3、脱硝装置4、節炭器5を流過して煙突30か
ら大気中に放出される。ガスタービン1の運転に
よつてボイラドラム22で発生した蒸気は過熱器
3によつて過熱された後、主蒸気管8およびター
ビンバイパス蒸気管9を通つて復水器7に排出さ
れ、ここで凝縮して復水になる。蒸気タービン6
への通気が可能になるとタービンバイパス止弁1
1は徐閉され、タービン入口弁10を通つて蒸気
タービン6に蒸気が送られる。一方、復水器7に
溜められた復水は復水ポンプ15で昇圧され、復
水管14を通つて脱気器12に送られる。該脱気
器12に送られた復水は前記ボイラドラム22の
発生蒸気によつて加熱脱気された後、脱気器貯水
タンク13に貯水される。貯水された水は降水管
20を通りボイラ給水ポンプ19で昇圧され、給
水管18の流量計21を通り排熱回収ボイラ2の
節炭器5に送られて、ここで排ガスによつて加熱
された後、ボイラドラム22に送られる。以上ま
では従来技術で述べたと全く同様である。しかし
て本発明においては、ガスタービン1の出力が増
加するとボイラ発生蒸気量も増加(給水量も増加
する)し、給水流量信号Sが25%になると脱気器
圧力調節計270の設定圧力は0.35Kg/cm2Aとな
る。ガスタービン1の出力に合わせて蒸気タービ
ン6の出力を増加させる場合には、脱気器圧力調
節計270の設定圧力よりも蒸気タービン抽気圧
力が高くなる時点(第3図の例では給水流量信号
Sが23%のとき)以後は脱気器12の加熱蒸気源
がボイラドラム22の発生蒸気から蒸気タービン
6の抽気に切替わる。その抽気は抽気管16を通
つて脱気器12に送られる。ところで実際の複合
発電プラントの起動では、その起動特性上ガスタ
ービン1の出力上昇に対して蒸気タービン6の出
力上昇は10〜20分程度遅れる場合が多いが、この
場合にはボイラ発生蒸気はタービンバイパス蒸気
管9を通して復水器に排出される。またガスター
ビン1と蒸気タービン6とを高出力で運転中に蒸
気タービン6の出力を減少させるとき、または蒸
気タービン6がトリツプしたときでもガスタービ
ン1をそのまま運転継続する場合には、排熱回収
ボイラ2の運転が継続され、該ボイラ2から発生
する蒸気はタービンバイパス蒸気管9を通つて復
水器7へ排出される。蒸気タービン6の出力を減
少させ、または蒸気タービン6がトリツプする
と、抽気圧力が低下する。この場合、脱気器圧力
調節計270の設定圧力は常に通常運転時の脱気
器運転圧力よりも僅かに低い圧力(第3図の例で
は0.1Kg/cm2)となつているので、前記設定圧力
まで低下すると直ちに脱気器圧力調節計270の
出力信号により脱気器圧力調節弁260が開弁し
てボイラドラム22の発生蒸気を脱気器12に送
り込む。即ち抽気圧をバツクアツプして脱気器1
2の急激な圧力降下を阻止するから、脱気器貯水
タンク13および降水管20でのフラツシユ発生
はなくなる。従つてボイラ給水ポンプ19を安全
に運転継続できる。 Next, the function of pressure control of the deaerator of the present invention will be explained. As mentioned above, combined cycle power plants are often operated in such a way that they start up early in the morning and shut down at night, so we will explain starting up after shutting down at night as an example. Steam generated in the boiler drum 22 by the heat retained in the exhaust heat recovery boiler 2 is sent to the deaerator 12 through the deaerator pressure control valve 260 provided in the heating steam pipe 25, and the deaerator 12 is brought to atmospheric pressure. Pressurize above (1.3Kg/cm 2 A).
When the gas turbine 1 is started in this state,
The exhaust gas is sent to the exhaust heat recovery boiler 2, passes through the superheater 3, the denitrification device 4, and the economizer 5, and is released into the atmosphere from the chimney 30. Steam generated in the boiler drum 22 by the operation of the gas turbine 1 is superheated by the superheater 3 and then discharged to the condenser 7 through the main steam pipe 8 and the turbine bypass steam pipe 9, where it is It condenses and becomes condensate. steam turbine 6
Turbine bypass stop valve 1
1 is gradually closed, and steam is sent to the steam turbine 6 through the turbine inlet valve 10. On the other hand, the condensate stored in the condenser 7 is pressurized by the condensate pump 15 and sent to the deaerator 12 through the condensate pipe 14. The condensate sent to the deaerator 12 is heated and deaerated by the steam generated in the boiler drum 22, and then stored in the deaerator water storage tank 13. The stored water passes through the downpipe 20, is pressurized by the boiler feed pump 19, passes through the flow meter 21 of the water supply pipe 18, and is sent to the energy saver 5 of the waste heat recovery boiler 2, where it is heated by exhaust gas. After that, it is sent to the boiler drum 22. The above is exactly the same as described in the prior art. However, in the present invention, when the output of the gas turbine 1 increases, the amount of steam generated by the boiler also increases (the amount of water supply also increases), and when the water supply flow rate signal S reaches 25%, the set pressure of the deaerator pressure controller 270 changes. It becomes 0.35Kg/cm 2 A. When increasing the output of the steam turbine 6 in accordance with the output of the gas turbine 1, the point in time when the steam turbine extraction pressure becomes higher than the set pressure of the deaerator pressure controller 270 (in the example of FIG. 3, the feed water flow rate signal After that (when S is 23%), the heating steam source for the deaerator 12 is switched from the steam generated by the boiler drum 22 to the extracted steam from the steam turbine 6. The bleed air is sent to the deaerator 12 through the bleed pipe 16. By the way, when starting up an actual combined cycle power plant, due to its startup characteristics, the rise in the output of the steam turbine 6 is often delayed by about 10 to 20 minutes with respect to the rise in the output of the gas turbine 1. In this case, the steam generated by the boiler is It is discharged through a bypass steam pipe 9 to a condenser. Furthermore, when reducing the output of the steam turbine 6 while the gas turbine 1 and the steam turbine 6 are operating at high output, or when continuing to operate the gas turbine 1 even when the steam turbine 6 trips, exhaust heat recovery is required. The operation of the boiler 2 continues, and the steam generated from the boiler 2 is discharged to the condenser 7 through the turbine bypass steam pipe 9. When the output of the steam turbine 6 is reduced or the steam turbine 6 trips, the extraction pressure decreases. In this case, the set pressure of the deaerator pressure regulator 270 is always slightly lower than the deaerator operating pressure during normal operation (0.1 Kg/cm 2 in the example shown in FIG. 3). Immediately after the pressure drops to the set pressure, the deaerator pressure control valve 260 opens in response to an output signal from the deaerator pressure regulator 270, and the steam generated in the boiler drum 22 is sent to the deaerator 12. That is, the extraction pressure is backed up and the deaerator 1
2, the occurrence of flash in the deaerator water storage tank 13 and the downcomer pipe 20 is eliminated. Therefore, the boiler feed pump 19 can continue to operate safely.
尚、前記の実施例では、脱気器圧力調節計27
0の設定値を変化させる信号として排熱回収ボイ
ラ2の給水流量信号を与えたが、この給水流量信
号と等価な信号、即ち排熱回収ボイラ発生蒸気
量、脱気器給水量、ガスタービン出力等前記給水
流量に比例もしくは略比例する状態値の信号であ
つてもよい。 In the above embodiment, the deaerator pressure regulator 27
The feed water flow rate signal of the waste heat recovery boiler 2 was given as a signal to change the set value of 0, but signals equivalent to this feed water flow rate signal, that is, the amount of steam generated by the waste heat recovery boiler, the amount of water fed to the deaerator, and the gas turbine output The signal may have a state value that is proportional or approximately proportional to the water supply flow rate.
以上の如く本発明によれば、複合発電プラント
の熱損失を増大させることなく、毎日の起動、停
止時は勿論のこと蒸気タービントリツプ時にも常
に脱気器の運転圧力を最適状態に保つよう自動制
御できるので、プラントの運転操作が容易とな
る。 As described above, according to the present invention, the operating pressure of the deaerator can be maintained at the optimum state at all times, not only during daily startup and shutdown, but also during steam turbine trips, without increasing the heat loss of the combined cycle power plant. Since automatic control is possible, plant operation becomes easier.
第1図は従来の脱気器圧力制御装置を備えた複
合発電プラントの系統図、第2図は本発明の脱気
器圧力制御装置の一実施例を備えた複合発電プラ
ントの系統図、第3図は本発明における脱気器の
運転特性を示すグラフ図、第4図は従来における
脱気器の運転特性を示すグラフ図である。
1……ガスタービン、2……排熱回収ボイラ、
6……蒸気タービン、7……復水器、12……脱
気器、18……給水管、21……流量計、22…
…ボイラドラム、25……加熱蒸気管、260…
…脱気器圧力調節弁、270……脱気器圧力調節
計、31……圧力設定装置、32……第1演算
器、33……第2演算器、34……信号選択器、
S……給水流量信号。
FIG. 1 is a system diagram of a combined cycle power plant equipped with a conventional deaerator pressure control device, and FIG. 2 is a system diagram of a combined cycle power plant equipped with an embodiment of the deaerator pressure control device of the present invention. FIG. 3 is a graph showing the operating characteristics of the deaerator according to the present invention, and FIG. 4 is a graph showing the operating characteristics of the conventional deaerator. 1...Gas turbine, 2...Exhaust heat recovery boiler,
6... Steam turbine, 7... Condenser, 12... Deaerator, 18... Water supply pipe, 21... Flow meter, 22...
... Boiler drum, 25 ... Heating steam pipe, 260 ...
... Deaerator pressure control valve, 270 ... Deaerator pressure regulator, 31 ... Pressure setting device, 32 ... First calculation unit, 33 ... Second calculation unit, 34 ... Signal selector,
S...Water supply flow rate signal.
Claims (1)
発生させる排熱回収ボイラと、その発生蒸気によ
つて駆動される蒸気タービンと、復水器と、該復
水器からの復水を前記蒸気タービンからの抽気お
よび前記排熱回収ボイラからの蒸気を熱源として
脱気する脱気器と、該脱気器によつて脱気された
水を排熱回収ボイラに送り込む給水系統とを備え
る複合発電プラントにおいて、 a 前記排熱回収ボイラから脱気器へ蒸気を送り
込む配管に設けた脱気器圧力調節弁と、 b 上記脱気器圧力調節弁の開度を脱気器の実圧
力を設定圧力との比較結果に応じて調節する脱
気器圧力調節計と、 c 上記脱気器圧力調節計に設定圧力を与える圧
力設定装置とを設けるとともに、 前記圧力設定装置は、排熱回収ボイラの給水流
量信号またはその等価信号を入力する第1、第2
の演算器と、該第1、第2の演算器の出力信号の
うち大きい方の出力信号を選択する信号選択器と
から成り、かつ第1の演算器はその入力信号の増
大に伴つて出力信号が減少し、第2の演算器はそ
の入力信号の増大に伴つて出力信号が増大するよ
うに構成し、かつ、該圧力設定装置は、 (イ) 排熱回収ボイラの給水流量が蒸気タービンの
最低安定出力に相当する流量未満の状態では、
給水流量の増大に伴つて設定圧力を漸減させ、 (ロ) 排熱回収ボイラの給水流量が蒸気タービンの
最低安定出力に相当する流量を越える状態で
は、設定圧力を、蒸気タービン抽気圧力以下の
範囲内において漸増せしめるように構成したも
のであることを特徴とする複合発電プラントに
おける脱気器の圧力制御装置。[Scope of Claims] 1. A gas turbine, an exhaust heat recovery boiler that generates steam using its exhaust gas, a steam turbine that is driven by the generated steam, a condenser, and a steam turbine that generates steam from the condenser. a deaerator that deaerates condensate using extraction air from the steam turbine and steam from the exhaust heat recovery boiler as a heat source; and a water supply system that sends water deaerated by the deaerator to the exhaust heat recovery boiler. A combined power generation plant comprising: a) a deaerator pressure control valve provided in a pipe that sends steam from the waste heat recovery boiler to the deaerator; b; c) a deaerator pressure regulator that adjusts the actual pressure according to a comparison result with a set pressure, and c a pressure setting device that provides a set pressure to the deaerator pressure regulator; 1st and 2nd for inputting the feed water flow rate signal of the heat recovery boiler or its equivalent signal;
and a signal selector that selects the larger output signal of the output signals of the first and second arithmetic units, and the first arithmetic unit increases the output as its input signal increases. The second computing unit is configured such that the output signal increases as the input signal increases, and the pressure setting device is configured such that: Under conditions where the flow rate is less than the minimum stable output of
The set pressure is gradually decreased as the feed water flow rate increases, and (b) when the feed water flow rate of the exhaust heat recovery boiler exceeds the flow rate corresponding to the minimum stable output of the steam turbine, the set pressure is reduced to a range below the steam turbine extraction pressure. 1. A pressure control device for a deaerator in a combined power generation plant, characterized in that it is configured to gradually increase the pressure within the deaerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4978178A JPS54142443A (en) | 1978-04-28 | 1978-04-28 | Pressure controller of air separator in compound power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4978178A JPS54142443A (en) | 1978-04-28 | 1978-04-28 | Pressure controller of air separator in compound power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54142443A JPS54142443A (en) | 1979-11-06 |
JPS6152361B2 true JPS6152361B2 (en) | 1986-11-13 |
Family
ID=12840698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4978178A Granted JPS54142443A (en) | 1978-04-28 | 1978-04-28 | Pressure controller of air separator in compound power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54142443A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61205307A (en) * | 1984-10-05 | 1986-09-11 | Hitachi Ltd | Water level controller of deaerator |
US4555906A (en) * | 1984-10-25 | 1985-12-03 | Westinghouse Electric Corp. | Deaerator pressure control system for a combined cycle steam generator power plant |
JP5778475B2 (en) * | 2011-05-13 | 2015-09-16 | アズビル株式会社 | Room pressure control system |
CN111810262B (en) * | 2020-06-30 | 2023-01-03 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Water supply pressure-stabilizing deoxidizing device and marine steam power system |
-
1978
- 1978-04-28 JP JP4978178A patent/JPS54142443A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54142443A (en) | 1979-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880002362B1 (en) | Deaerator level control apparatus | |
JPS6211164B2 (en) | ||
JPS6152361B2 (en) | ||
JPS62325B2 (en) | ||
JPH11343814A (en) | Steam control method in boiler turbine generating set | |
JP2008075996A (en) | Exhaust heat recovery boiler and its steam pressure control method | |
JP2839195B2 (en) | Waste heat recovery boiler water supply control device | |
JPH0419285Y2 (en) | ||
JPS5870007A (en) | Apparatus for controlling combined cycle power plant | |
KR102173808B1 (en) | Method for preventing reactor trip during vacuum loss of condenser | |
JP2519282B2 (en) | Deaerator water level control system | |
JP2716442B2 (en) | Waste heat recovery boiler device | |
JPS5922041B2 (en) | Boiler feed water pump drive turbine control device | |
JPS6154121B2 (en) | ||
JPH052801B2 (en) | ||
JPS63220005A (en) | Steam-temperature control method of thermal plant | |
JPH0554002B2 (en) | ||
CN117524524A (en) | Shutdown non-shutdown system for high-temperature gas cooled reactor | |
JPS59110810A (en) | Water level control device for steam turbine degasifier | |
JPH04278101A (en) | Exhaust heat recovery boiler | |
JPH0765728B2 (en) | Method and apparatus for controlling stop of combined cycle power plant | |
JPH0250004A (en) | Control system of pressure inside deaerator | |
JPH03267605A (en) | Drain tank water level control device | |
JPH0297801A (en) | Method for bleeding auxiliary steam from exhaust heat recovery boiler | |
JPS613992A (en) | Method and device for regulating condensed water temperature |