JP2839195B2 - Waste heat recovery boiler water supply control device - Google Patents
Waste heat recovery boiler water supply control deviceInfo
- Publication number
- JP2839195B2 JP2839195B2 JP22285689A JP22285689A JP2839195B2 JP 2839195 B2 JP2839195 B2 JP 2839195B2 JP 22285689 A JP22285689 A JP 22285689A JP 22285689 A JP22285689 A JP 22285689A JP 2839195 B2 JP2839195 B2 JP 2839195B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- temperature
- water supply
- control valve
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、排熱回収ボイラの給水制御装置に係り、特
にドラムへの給水を良好に行なうのに好適な給水制御装
置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply control device for an exhaust heat recovery boiler, and more particularly, to a water supply control device suitable for performing good water supply to a drum.
[従来の技術] 高効率発電の一環として、近年、複合発電プラントの
建設が進められている。この複合発電プラントは、ガス
タービンによつて発電するとともに、ガスタービンから
排出された排ガスの保有熱を排熱回収ボイラで回収し、
その排熱回収ボイラで発生した蒸気により蒸気タービン
を駆動して発電させるシステムになつている。[Prior Art] In recent years, as part of high-efficiency power generation, construction of a combined power generation plant has been promoted. This combined cycle power plant generates power using a gas turbine and collects the heat possessed by the exhaust gas discharged from the gas turbine with an exhaust heat recovery boiler.
The steam generated by the exhaust heat recovery boiler drives a steam turbine to generate power.
この複合発電プラントは前述のような高効率発電に加
え、ガスタービンの特徴である急速起動の容易性、高い
負荷応答性などの特徴もあり、近年の電力需要形態に即
した中間負荷運用に好適な発電プラントである。このよ
うな排熱回収ボイラを図により説明する。This combined cycle power plant has the features of gas turbines, such as easy start-up and high load responsiveness, in addition to the high-efficiency power generation as described above, and is suitable for intermediate load operation according to the recent power demand pattern. Power plant. Such an exhaust heat recovery boiler will be described with reference to the drawings.
第11図は、従来の複合発電プラントの概略系統図であ
る。第11図で、1はガスタービン、2はガスタービン1
により駆動される発電機、3はガスタービン1の排ガス
Gを導入してその排熱を回収する排熱回収ボイラであ
る。FIG. 11 is a schematic system diagram of a conventional combined cycle power plant. In FIG. 11, 1 is a gas turbine and 2 is a gas turbine 1.
Is a waste heat recovery boiler for introducing exhaust gas G of the gas turbine 1 and recovering waste heat thereof.
排熱回収ボイラ3は、過熱器4,高圧蒸発器5,高圧節炭
器6,低圧蒸発器7,低圧節炭器8,低圧ドラム9,高圧ドラム
10等で構成されている。12は過熱器4からの蒸気により
駆動される蒸気タービンであり、発電機2に連結されて
いる。13は蒸気タービン12から排出される蒸気を復水す
る復水器、14は復水器13の水Wを低圧節炭器8に給水す
る復水ポンプである。15は低圧節炭器8の出口の加熱さ
れた給水を高圧節炭器6に導くとともに低圧節炭器8へ
の給水に混合する高圧給水ポンプ、16は温度調節弁、17
は給水調節弁、18は温度検出器、19は温度・流量制御器
である。The exhaust heat recovery boiler 3 includes a superheater 4, a high-pressure evaporator 5, a high-pressure economizer 6, a low-pressure evaporator 7, a low-pressure economizer 8, a low-pressure drum 9, and a high-pressure drum.
It is composed of 10 mag. Reference numeral 12 denotes a steam turbine driven by steam from the superheater 4, and is connected to the generator 2. 13 is a condenser for condensing steam discharged from the steam turbine 12, and 14 is a condensate pump for supplying water W of the condenser 13 to the low-pressure economizer 8. Reference numeral 15 denotes a high-pressure feed pump that guides heated feedwater at the outlet of the low-pressure economizer 8 to the high-pressure economizer 6 and mixes the feedwater with the feed to the low-pressure economizer 8.
Is a water supply control valve, 18 is a temperature detector, and 19 is a temperature / flow rate controller.
[発明が解決しようとする課題] 上記複合発電プラントは良く知られているのでその動
作の説明は省略し、低圧節炭器8の出口の給水WRを高圧
給水ポンプ15を用いて低圧節炭器8の入口の給水Wに混
合する理由について説明する。[Problems to be Solved by the Invention] Since the above-mentioned combined cycle power plant is well known, the description of its operation is omitted, and the feedwater WR at the outlet of the low-pressure economizer 8 is reduced by using the high-pressure water pump 15. The reason for mixing with the feed water W at the inlet 8 will be described.
最近の複合発電プラントにおいては、設備費の低減、
系統の簡素化等の理由から脱気器を省き、復水器13に脱
気機能をもたせた復水器脱気方式が採用されている。こ
の復水器脱気方式の場合、排熱回収ボイラ3の低圧節炭
器8の入口の給水温度TS1は約30℃と低温であるので、
そのままの給水温度(約30℃)の給水を低圧節炭器8へ
給水すると低圧節炭器8で低温腐食が生じる。In recent combined cycle power plants, equipment costs have been reduced,
The deaerator is omitted for reasons such as simplification of the system, and a condenser deaeration system in which the condenser 13 has a deaeration function is adopted. In the case of this condenser degassing method, the feedwater temperature T S1 at the inlet of the low-pressure economizer 8 of the exhaust heat recovery boiler 3 is as low as about 30 ° C.
When the feedwater at the same feedwater temperature (about 30 ° C.) is fed to the low-pressure economizer 8, low-temperature corrosion occurs in the low-pressure economizer 8.
この対策として、図示のように低圧節炭器8の出口の
加熱された給水WRが高圧給水ポンプ15を介してボイラ給
水W(低圧節炭器8の入口の給水)と混合して低温腐食
が生じない温度まで昇温させる手段が採用されている。
そして、その給水温度は定格運転時に低温腐食が生じな
い温度である約60℃に設定され、この給水温度は温度検
出器18で検出された検出温度に基づいて温度・流量制御
器19で温度調節弁16を制御することにより一定に保持さ
れている。As a countermeasure, the heated feedwater WR at the outlet of the low-pressure economizer 8 is mixed with the boiler feedwater W (the feedwater at the inlet of the low-pressure economizer 8) via the high-pressure feed pump 15 as shown in the figure to prevent low-temperature corrosion. Means for raising the temperature to a temperature that does not occur is employed.
Then, the feedwater temperature is set to about 60 ° C., which is a temperature at which low-temperature corrosion does not occur during rated operation, and the feedwater temperature is adjusted by the temperature / flow controller 19 based on the temperature detected by the temperature detector 18. It is kept constant by controlling the valve 16.
ところで、従来、上記給水温度は全負荷にわたつて一
定値(約60℃)に設定されていたので、冬場復水器13で
の海水温度の低下に伴い、ボイラ給水Wの温度が低い場
合には、低圧節炭器8入口の給水温度TS1を設定温度
(約60℃)まで昇温させるため、過大な流量を再循環
(以下、再循環流量WRと略す)させる必要がある。By the way, conventionally, the feedwater temperature is set to a constant value (approximately 60 ° C.) over the entire load. Therefore, when the temperature of the seawater in the winter condenser 13 decreases, the temperature of the boiler feedwater W is low. In order to raise the feedwater temperature T S1 at the inlet of the low-pressure economizer 8 to the set temperature (about 60 ° C.), it is necessary to recirculate an excessive flow rate (hereinafter abbreviated as a recirculation flow rate WR).
従つて、高圧給水ポンプ15の容量としては、冬場の再
循環流量WRと、そのときの高圧蒸発量(即ち、高圧節炭
器6への給水流量)を合わせた高圧給水ポンプ流量Q
に、負荷変動,ガスタービン排ガス変動等を考慮して通
常10〜20%の余裕をとり、容量を決定するため、大容量
の高圧給水ポンプ15を使用しなければならず、補機動力
の増加をまねき、プラント効率が低下するという欠点が
生じていた。Accordingly, the capacity of the high-pressure water supply pump 15 is a high-pressure water supply pump flow rate Q that is the sum of the recirculation flow rate WR in winter and the high-pressure evaporation amount (that is, the water supply flow rate to the high-pressure economizer 6) at that time.
In addition, a large capacity high-pressure water supply pump 15 must be used in order to determine the capacity with a margin of 10 to 20% in consideration of load fluctuations, gas turbine exhaust gas fluctuations, and the like. And the disadvantage that the plant efficiency is reduced occurs.
本発明の目的は、上記従来技術の欠点を除き、小容量
の高圧給水ポンプで、冬場の負荷変動,ガスタービン排
ガス変動等においても、高圧ドラムへの給水を良好に行
なうことができる排熱回収ボイラの給水制御装置を提供
するにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a small-capacity high-pressure feed pump which can supply water to a high-pressure drum satisfactorily even in winter due to load fluctuations and gas turbine exhaust gas fluctuations. An object of the present invention is to provide a water supply control device for a boiler.
[課題を解決するための手段] 前記目的を達成するため、本発明は、低圧節炭器8
と、高圧節炭器と、前記低圧節炭器と高圧節炭器の間に
設けられて低圧節炭器から高圧節炭器へ給水する高圧給
水ポンプと、その高圧給水ポンプの出口側を一部分岐し
て低圧節炭器入口側へ接続する再循環系統と、その再循
環系統の途中に設けられて、低圧節炭器の入口給水温度
が低温腐食を生じない温度になるように開度調整される
温度調節弁と、前記低圧節炭器の入口給水温度を検出す
る温度検出器と、その温度検出器の温度検出信号に基づ
いて前記温度調節弁の開度を制御する制御器とを備え、
例えば冬場の負荷変動,ガスタービン排ガス変動時等に
おいて、前記温度検出器の温度検出信号に優先して、前
記高圧節炭器以降の高圧系統への給水流量制御に支障を
与えない程度に、前記温度調節弁により流量を絞り込む
ように構成されていることを特徴とするものである。Means for Solving the Problems In order to achieve the above object, the present invention provides a low pressure economizer 8
A high-pressure economizer, a high-pressure water supply pump provided between the low-pressure economizer and the high-pressure economizer and supplying water from the low-pressure economizer to the high-pressure economizer, and a part of an outlet side of the high-pressure economizer. A recirculation system that branches off and connects to the low-pressure economizer inlet side, and the opening is adjusted so that the inlet water supply temperature of the low-pressure economizer is set to a temperature that does not cause low-temperature corrosion. Temperature control valve, a temperature detector for detecting the inlet feedwater temperature of the low-pressure economizer, and a controller for controlling the opening of the temperature control valve based on a temperature detection signal of the temperature detector. ,
For example, when the load changes in winter or when the gas turbine exhaust gas fluctuates, the above-mentioned temperature detector is prioritized over the temperature detection signal, and the flow rate of the water supply to the high-pressure system after the high-pressure economizer is not hindered. The flow rate is reduced by a temperature control valve.
[実施例] 以下、本発明を図示の実施例に基づいて説明する。[Example] Hereinafter, the present invention will be described based on an illustrated example.
第1図は、本発明の第1の実施例に係る複合発電プラ
ントの概略系統図である。第1図において、第11図に示
す部分と同一部分には同一符号を付して説明は省略す
る。20は給水調節弁17の差圧検出器であり、その差圧検
出信号26で温度検出器18の温度検出信号27に優先して温
度調節弁16を制御するものである。FIG. 1 is a schematic system diagram of a combined cycle power plant according to a first embodiment of the present invention. In FIG. 1, the same portions as those shown in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted. Reference numeral 20 denotes a differential pressure detector of the water supply control valve 17, which controls the temperature control valve 16 with a differential pressure detection signal 26 prior to the temperature detection signal 27 of the temperature detector 18.
ここで、低圧節炭器8の低温腐食について考える。低
温腐食は排ガス中の水分(H2O)が結露することによつ
て生じる。そして、その結露の露点温度は排ガス中のH2
O分圧に依存する。第2図にH2O分圧と露点温度の関係を
示すが、第2図からも明らかなように、H2O分圧が小さ
くなると露点温度も低くなる。Here, low-temperature corrosion of the low-pressure economizer 8 will be considered. Low-temperature corrosion is caused by condensation of moisture (H 2 O) in exhaust gas. And the dew point temperature of the condensation is H 2 in the exhaust gas.
ODepends on partial pressure. FIG. 2 shows the relationship between the H 2 O partial pressure and the dew point temperature. As is clear from FIG. 2 , as the H 2 O partial pressure decreases, the dew point temperature also decreases.
ところで、大気温度と排ガス中のH2O分圧の関係は第
3図に示すような関係にある。第3図より、大気温度と
露店温度の関係は第4図のようになる。従つて、大気温
度が低いと、露店温度も低い。一方、低圧節炭器8入口
の給水温度は、制御の簡素化を図つて、大気温度の高い
時の露点温度に余裕をとつて、給水温度を設定(例えば
60℃)し、大気温度に係わらず一定としている。Incidentally, the relationship between the atmospheric temperature and the partial pressure of H 2 O in the exhaust gas is as shown in FIG. From FIG. 3, the relationship between the atmospheric temperature and the stall temperature is as shown in FIG. Therefore, when the atmospheric temperature is low, the stall temperature is also low. On the other hand, the feedwater temperature at the inlet of the low-pressure economizer 8 is set with a margin for the dew point temperature when the atmospheric temperature is high to simplify the control (for example,
60 ° C) and is constant regardless of the atmospheric temperature.
第5図(a)に大気温度とボイラ給水Wの温度の関係
を示すが、大気温度の低い時が給水温度も低いため、低
圧節炭器8入口の給水温度を設定値(60℃)まで昇温す
るための再循環流量は最も多くなる。さらに、第5図
(b)に示すように高圧ドラム10への給水流量も大気温
度が低い時が最も多くなる。従つて、第6図に示すよう
に、高圧給水ポンプ15の高圧給水ポンプ流量Qは大気温
度が低いときが最大となる。従来は高圧給水ポンプ15の
容量は大気温度が低いときの流量に、負荷変動,ガスタ
ービン排ガス変動等を考慮して、10〜20%の余裕をとつ
て決定するが、本発明では余裕ゼロとして、ポンプ容量
を小さく決定するものである。この場合、負荷変動,ガ
スタービン排ガス変動等によつて、高圧ドラム10への給
水流量が増加して、高圧給水ポンプ15容量をオーバー
し、高圧給水ポンプ15の吐出圧力低下により、給水調節
弁17の差圧が低下し、高圧ドラム10への給水制限に支障
をきたす恐れがある。FIG. 5 (a) shows the relationship between the ambient temperature and the temperature of the boiler feedwater W. When the ambient temperature is low, the feedwater temperature is also low, so that the feedwater temperature at the low-pressure economizer 8 inlet reaches the set value (60 ° C.). The recirculation flow rate for raising the temperature is highest. Further, as shown in FIG. 5 (b), the flow rate of water supplied to the high-pressure drum 10 is largest when the atmospheric temperature is low. Accordingly, as shown in FIG. 6, the high-pressure water supply pump flow rate Q of the high-pressure water supply pump 15 becomes maximum when the atmospheric temperature is low. Conventionally, the capacity of the high-pressure feed pump 15 is determined by giving a margin of 10 to 20% to the flow rate when the atmospheric temperature is low, taking into account load fluctuations, gas turbine exhaust gas fluctuations, and the like. , The pump capacity is determined to be small. In this case, the flow rate of the water supply to the high-pressure drum 10 increases due to load fluctuations, fluctuations in the exhaust gas of the gas turbine, and the like, exceeding the capacity of the high-pressure water supply pump 15 and decreasing the discharge pressure of the high-pressure water supply pump 15, causing the water supply control valve 17 to decrease. , There is a risk that the restriction of water supply to the high-pressure drum 10 may be hindered.
それに対して本発明では、差圧検出器20により給水調
節弁17の差圧を検出し、設定差圧より小さくなつた場合
に、温度調節弁16により再循環流量を絞り、高圧給水ポ
ンプ15の流量を低減し、吐出圧力を高くして、給水調節
弁17の差圧を確保し、良好な給水制御を行なうものであ
る。この場合、再循環流量WRの絞る割合としては、20〜
40%であるが、これによつて、低圧節炭器8入口の給水
温度は第4図に示すように60℃から55〜50℃に低下する
程度であり、露点温度(40℃)に対し十分余裕あり問題
は無い。On the other hand, in the present invention, the differential pressure of the water supply control valve 17 is detected by the differential pressure detector 20, and when the pressure becomes lower than the set differential pressure, the recirculation flow rate is reduced by the temperature control valve 16, and the high pressure water pump 15 The flow rate is reduced, the discharge pressure is increased, the differential pressure of the water supply control valve 17 is secured, and good water supply control is performed. In this case, the reduction rate of the recirculation flow rate WR is 20 to
As a result, the feedwater temperature at the inlet of the low-pressure economizer 8 drops from 60 ° C to 55 to 50 ° C, as shown in Fig. 4, and is lower than the dew point temperature (40 ° C). There is no problem.
ここで、温度調節弁16の具体的制御方法を説明する
と、第12図のようになる。第12図中、制御信号Aとし
て、給水調節弁17の差圧を用いるものである。Here, a specific control method of the temperature control valve 16 will be described with reference to FIG. In FIG. 12, the differential pressure of the water supply control valve 17 is used as the control signal A.
即ち、給水調節弁17の差圧が設定値より大きい場合に
は、低圧節炭器入口給水温度発信器33からの信号はbと
なる。このときbとしては、例えば、高圧給水ポンプ15
の仕様点を超えない再循環量として60T/H程度にしてお
く。そして、給水調節弁17の差圧が設定値より小さくな
つたら低圧節炭器入口給水温度発信器33からの信号はa
となる。aとしては約40T/H程度としておき、再循環量
を60T/Hから40T/Hまで絞り込み、給水調節弁17の差圧を
確保するものである。That is, when the differential pressure of the feed water control valve 17 is larger than the set value, the signal from the low pressure economizer inlet feed water temperature transmitter 33 becomes b. At this time, as b, for example, the high-pressure water supply pump 15
The recirculation amount should not exceed the specification point of about 60 T / H. When the pressure difference of the feed water control valve 17 becomes smaller than the set value, the signal from the low pressure economizer inlet feed water temperature transmitter 33 is a
Becomes a is set to about 40 T / H, the recirculation amount is reduced from 60 T / H to 40 T / H, and the differential pressure of the water supply control valve 17 is secured.
なお、図中において28は比例積分回路、29は高信号制
限器、30は減算器、31は切替リレー、32は信号発生器、
33は発信器、34は制御信号、35は温度設定器である。In the figure, 28 is a proportional integration circuit, 29 is a high signal limiter, 30 is a subtractor, 31 is a switching relay, 32 is a signal generator,
33 is a transmitter, 34 is a control signal, and 35 is a temperature setting device.
第7図は、本発明の第2の実施例に係る温度調節弁16
の制御装置に関するものである。第7図は、前記実施例
の給水調節弁17の差圧検出器20の代わりに、給水調節弁
17の開度を検出する開度検出器21を設置したものであ
る。そして、第12図の制御信号34として給水調節弁17の
開度としたものである。即ち、高圧ドラム10への給水流
量が増加し、給水調節弁17の開度が設定開度より大きく
なつた場合に、温度検出器18の信号に優先して温度調節
弁16を制御して、再循環流量WRを絞るようにしたもので
ある。FIG. 7 shows a temperature control valve 16 according to a second embodiment of the present invention.
Related to the control device. FIG. 7 shows a water supply control valve instead of the differential pressure detector 20 of the water supply control valve 17 of the embodiment.
An opening detector 21 for detecting the opening of 17 is provided. The control signal 34 shown in FIG. 12 is the opening of the water supply control valve 17. That is, when the flow rate of the water supply to the high-pressure drum 10 increases and the opening of the water supply control valve 17 becomes larger than the set opening, the temperature control valve 16 is controlled in preference to the signal of the temperature detector 18, The recirculation flow rate WR is reduced.
第8図は、本発明の第3の実施例に係る温度調節弁16
の制御装置に関するものである。第8図は、ガスタービ
ン1の運転状態、即ち負荷,燃料量、排ガス温度,排ガ
ス量のいずれか、もしくはその組合せの信号を検知する
ガスタービン運転状態検出器22によつて、温度調節弁16
を制御して、再循環流量WRを絞るようにしたものであ
り、第12図の制御信号34として、ガスタービン運転状態
検出器22の信号としたものである。FIG. 8 shows a temperature control valve 16 according to a third embodiment of the present invention.
Related to the control device. FIG. 8 shows the operation of the gas turbine 1, that is, a gas turbine operating state detector 22 for detecting a signal of any one of a load, a fuel amount, an exhaust gas temperature, and an exhaust gas amount, or a combination thereof.
Is controlled to reduce the recirculation flow rate WR, and the control signal 34 in FIG. 12 is a signal of the gas turbine operation state detector 22.
第9図は、本発明の第4の実施例に係る温度調節弁16
の制御装置に関するものである。第9図は、蒸気タービ
ン12の運転状態、即ち負荷,加減弁開度,タービンバイ
パス弁開度のいずれかもしくは、その組合せの信号を検
知する蒸気タービン運転状態検出器23によつて、温度検
出器18の信号に優先して温度調節弁16を制御して、再循
環流量WRを絞るようにしたものであり、第12図の制御信
号34として、蒸気タービン運転状態検出器23の信号とし
たものである。FIG. 9 shows a temperature control valve 16 according to a fourth embodiment of the present invention.
Related to the control device. FIG. 9 shows a temperature detection by the steam turbine operating state detector 23 which detects the operating state of the steam turbine 12, that is, any one of the load, the control valve opening, the turbine bypass valve opening, or a combination thereof. The temperature control valve 16 is controlled in preference to the signal of the device 18 to reduce the recirculation flow rate WR, and as the control signal 34 in FIG. 12, the signal of the steam turbine operating state detector 23 is used. Things.
第10図は、本発明の第5の実施例に係る温度調節弁16
の制御装置に関するものである。第10図は、高圧給水ポ
ンプ15の流量を検知する流量検出器24によつて、流量が
設定流量を超える場合に、流量制御器25の信号が温度検
出器18の信号に優先して温度調節弁16を制御して、再循
環流量WRを絞るようにしたものであり、第12図の制御信
号34として、高圧給水ポンプ15の流量検出器24の信号と
したものである。FIG. 10 shows a temperature control valve 16 according to a fifth embodiment of the present invention.
Related to the control device. FIG. 10 shows a flow rate detector 24 that detects the flow rate of the high-pressure water supply pump 15, and when the flow rate exceeds the set flow rate, the signal of the flow rate controller 25 takes priority over the signal of the temperature detector 18 to adjust the temperature. The valve 16 is controlled to reduce the recirculation flow rate WR, and the control signal 34 in FIG. 12 is a signal from the flow rate detector 24 of the high-pressure feed pump 15.
[発明の効果] 以上述べたように、本発明によれば、冬場の最大給水
流量時の負荷変動,ガスタービン排ガス変動等において
も、小容量の高圧給水ポンプで、良好な高圧ドラム給水
制御が可能となり、ひいては補機動力の増加を抑制し、
プラント効率の低下を防止することができる。[Effects of the Invention] As described above, according to the present invention, good pressure control of high-pressure drum water supply can be achieved with a small-capacity high-pressure water supply pump even in a load fluctuation at the time of the maximum water supply flow rate in winter and a gas turbine exhaust gas fluctuation. Becomes possible, and consequently suppresses the increase in auxiliary power,
A decrease in plant efficiency can be prevented.
補機動力の年間の低減効果を試算すると下記の通りと
なる。The annual reduction effect of auxiliary equipment power is estimated as follows.
従来の高圧給水ポンプ動力:540KW 本発明の場合の高圧給水ポンプ動力:470KW 利用率60%,発電単価10円/KWHとすると、(540−47
0)KW×24hr×365日×0.6×10円/KWH=367.9万円/年の
節約となる。Conventional high-pressure feedwater pump power: 540KW High-pressure feedwater pump power in the case of the present invention: 470KW Assuming a utilization rate of 60% and a power generation unit price of 10 yen / KWH, (540-47
0) KW x 24hr x 365 days x 0.6 x 10 yen / KWH = 3.679 million yen / year.
第1図は、本発明の第1の実施例に係る複合発電プラン
トの系統図、第2図は、H2O分圧と露点温度の関係を示
す特性図、第3図は、大気温度とガスタービン排ガス中
のH2O分圧の関係を示す特性図、第4図は、大気温度と
露点温度の関係を示す特性図、第5図(a)は、大気温
度とボイラ給水Wの温度の関係を示す特性図、同図
(b)は大気温度と高圧ドラムへの給水量の関係を示す
特性図、第6図は、大気温度と高圧給水ポンプ流量の関
係を示す特性図、第7図は、本発明の第2の実施例に係
る複合発電プラントの系統図、第8図は、本発明の第3
の実施例に係る複合発電プラントの系統図、第9図は、
本発明の第4の実施例に係る複合発電プラントの系統
図、第10図は、本発明の第5の実施例に係る複合発電プ
ラントの系統図、第11図は、従来の複合発電プラントの
系統図、第12図(a),(b)は、本発明の温度調節弁
の制御系統図を示したものである。 1……ガスタービン、2……排熱回収ボイラ、6……高
圧節炭器、8……低圧節炭器、10……高圧ドラム、12…
…蒸気タービン、15……高圧給水ポンプ、16……温度調
節弁、18……温度検出器、19……温度,流量制御器、20
……差圧検出器、21……開度検出器、22……ガスタービ
ン運転状態検出器、23……蒸気タービン運転状態検出
器、24……流量検出器、WR……再循環流量。FIG. 1 is a system diagram of a combined cycle power plant according to a first embodiment of the present invention, FIG. 2 is a characteristic diagram showing a relationship between H 2 O partial pressure and dew point temperature, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the H 2 O partial pressure in the gas turbine exhaust gas, FIG. 4 is a characteristic diagram showing the relationship between the atmospheric temperature and the dew point temperature, and FIG. 5 (a) is the atmospheric temperature and the temperature of the boiler feed water W FIG. 6B is a characteristic diagram showing the relationship between the atmospheric temperature and the amount of water supplied to the high-pressure drum, FIG. 6 is a characteristic diagram showing the relationship between the atmospheric temperature and the flow rate of the high-pressure water supply pump, and FIG. FIG. 8 is a system diagram of a combined cycle power plant according to a second embodiment of the present invention, and FIG.
FIG. 9 is a system diagram of the combined cycle power plant according to the embodiment of FIG.
FIG. 10 is a system diagram of a combined cycle power plant according to a fourth embodiment of the present invention, FIG. 10 is a block diagram of a combined cycle power plant according to a fifth embodiment of the present invention, and FIG. 12 (a) and 12 (b) show a control system diagram of the temperature control valve of the present invention. 1 gas turbine 2 waste heat recovery boiler 6 high pressure economizer 8 low pressure economizer 10 high pressure drum 12
... Steam turbine, 15 ... High pressure feed pump, 16 ... Temperature control valve, 18 ... Temperature detector, 19 ... Temperature and flow controller, 20
…… Differential pressure detector, 21 …… Opening degree detector, 22 …… Gas turbine operating state detector, 23 …… Steam turbine operating state detector, 24 …… Flow detector, WR …… Recirculation flow rate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三村 哲雄 広島県呉市宝町6番9号 バブコツク日 立株式会社呉工場内 (56)参考文献 特開 昭63−118502(JP,A) (58)調査した分野(Int.Cl.6,DB名) F22D 1/12──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tetsuo Mimura 6-9 Takara-cho, Kure City, Hiroshima Pref. Inside the Kure Plant, Babkotsuk Hitachi Ltd. (56) References JP-A-63-118502 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) F22D 1/12
Claims (6)
炭器と高圧節炭器の間に設けられて低圧節炭器から高圧
節炭器へ給水する高圧給水ポンプと、その高圧給水ポン
プの出口側を一部分岐して低圧節炭器入口側へ接続する
再循環系統と、その再循環系統の途中に設けられて、低
圧節炭器の入口給水温度が低温腐食を生じない温度にな
るように開度調整される温度調節弁と、前記低圧節炭器
の入口給水温度を検出する温度検出器と、その温度検出
器の温度検出信号に基づいて前記温度調節弁の開度を制
御する制御器とを備え、 前記温度検出器の温度検出信号に優先して、前記高圧節
炭器以降の高圧系統への給水流量制御に支障を与えない
程度に、前記温度調節弁により流量を絞り込むように構
成されていることを特徴とする排熱回収ボイラの給水制
御装置。1. A low-pressure economizer, a high-pressure economizer, a high-pressure water supply pump provided between the low-pressure economizer and the high-pressure economizer and supplying water from the low-pressure economizer to the high-pressure economizer. A recirculation system that partially branches the outlet side of the high-pressure feedwater pump and connects to the low-pressure economizer inlet side, and is installed in the middle of the recirculation system, and the low-pressure economizer inlet feedwater temperature causes low-temperature corrosion. A temperature control valve whose opening degree is adjusted so as not to have a temperature, a temperature detector that detects an inlet feedwater temperature of the low-pressure economizer, and an opening of the temperature control valve based on a temperature detection signal of the temperature detector. A controller for controlling the temperature, the temperature control valve, so as not to interfere with the control of the flow rate of water supply to the high-pressure system after the high-pressure economizer, in preference to the temperature detection signal of the temperature detector. The exhaust heat recovery boiler is characterized by being configured to reduce the flow rate Water supply control device.
器と高圧ドラムとの間に給水調節弁が設けられ、その給
水調節弁の差圧を検出する差圧検出器が設けられ、その
差圧検出器によつて検出された実測差圧が予め設定され
ている設定差圧より小さくなると、前記温度調節弁によ
り再循環流量を絞り込むように構成されていることを特
徴とする排熱回収ボイラの給水制御装置。2. A water supply control valve is provided between the high pressure economizer and the high pressure drum, and a differential pressure detector for detecting a differential pressure of the water supply control valve is provided, When the actually measured differential pressure detected by the differential pressure detector becomes smaller than a preset differential pressure, the recirculation flow rate is reduced by the temperature control valve. Water supply control device for recovery boiler.
器と高圧ドラムとの間に給水調節弁が設けられ、その給
水調節弁の開度を検出する開度検出器が設けられ、その
開度検出器によつて検出された給水調節弁の実測開度が
予め設定されている設定開度より大きくなると、前記温
度調節弁により再循環流量を絞り込むように構成されて
いることを特徴とする排熱回収ボイラの給水制御装置。3. A water supply control valve is provided between the high-pressure economizer and the high-pressure drum, and an opening detector for detecting an opening of the water supply control valve is provided. When the measured opening of the water supply control valve detected by the opening detector is larger than a preset opening, the recirculation flow rate is narrowed by the temperature control valve. Water supply control device for waste heat recovery boiler.
器より高圧系統側にガスタービンと、そのガスタービン
の運転状態を検出するガスタービン運転状態検出器が設
けられ、この検出器からの検出信号に基づいて前記温度
調節弁により再循環流量を絞り込むように構成されてい
ることを特徴とする排熱回収ボイラの給水制御装置。4. A gas turbine according to claim 1, further comprising a gas turbine and a gas turbine operation state detector for detecting an operation state of the gas turbine on a high pressure system side with respect to the high pressure economizer. Wherein the recirculation flow rate is reduced by the temperature control valve based on the detection signal of (1).
器より高圧系統側に蒸気タービンと、その蒸気タービン
の運転状態を検出する蒸気タービン運転状態検出器が設
けられ、この検出器からの検出信号に基づいて前記温度
調節弁により再循環流量を絞り込むように構成されてい
ることを特徴とする排熱回収ボイラの給水制御装置。5. A steam turbine according to claim 1, further comprising a steam turbine and a steam turbine operating state detector for detecting an operating state of the steam turbine, provided on a high pressure system side of the high pressure economizer. Wherein the recirculation flow rate is reduced by the temperature control valve based on the detection signal of (1).
ポンプに流量検出器を設け、その流量検出器によつて検
出された高圧給水ポンプの実測流量が予め設定されてい
る設定流量を超えると、前記温度調節弁により再循環流
量を絞り込むように構成されていることを特徴とする排
熱回収ボイラの給水制御装置。6. A high-pressure water supply pump according to claim 1, wherein a flow rate detector is provided in said high-pressure water supply pump, and an actual measured flow rate of said high-pressure water supply pump detected by said flow rate detector exceeds a preset flow rate. And a temperature control valve for narrowing a recirculation flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22285689A JP2839195B2 (en) | 1989-08-31 | 1989-08-31 | Waste heat recovery boiler water supply control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22285689A JP2839195B2 (en) | 1989-08-31 | 1989-08-31 | Waste heat recovery boiler water supply control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0387502A JPH0387502A (en) | 1991-04-12 |
JP2839195B2 true JP2839195B2 (en) | 1998-12-16 |
Family
ID=16788969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22285689A Expired - Fee Related JP2839195B2 (en) | 1989-08-31 | 1989-08-31 | Waste heat recovery boiler water supply control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2839195B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5292014B2 (en) * | 2008-08-07 | 2013-09-18 | バブコック日立株式会社 | Cross-flow type exhaust heat recovery boiler and control method thereof |
MX2016014151A (en) * | 2014-04-28 | 2017-02-15 | General Electric Technology Gmbh | System and method for fluid medium preheating. |
-
1989
- 1989-08-31 JP JP22285689A patent/JP2839195B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0387502A (en) | 1991-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10306708A (en) | Combined cycle generating plant | |
JP2839195B2 (en) | Waste heat recovery boiler water supply control device | |
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JP3222035B2 (en) | Double pressure type waste heat recovery boiler feeder | |
JPH11148603A (en) | Controller for coal/residual oil gassifying combined power generation plant | |
JPS61213401A (en) | Waste-heat recovery boiler | |
JPS6152361B2 (en) | ||
JP3602167B2 (en) | Operation control device for power plant | |
JP2523511B2 (en) | Steam generator output controller | |
JPH07217802A (en) | Exhaust heat recovery boiler | |
JP2971629B2 (en) | Waste heat recovery boiler | |
JP2949287B2 (en) | Auxiliary steam extraction method for waste heat recovery boiler | |
JP2585406B2 (en) | Condenser deaerator | |
JP4095837B2 (en) | Power plant | |
JP2519282B2 (en) | Deaerator water level control system | |
JPH1182913A (en) | Method and device for controlling feed water temperature of exhaust heat recovery boiler | |
JP2604117B2 (en) | Double pressure type waste heat boiler water supply system | |
JPS6211283Y2 (en) | ||
JPS6239661B2 (en) | ||
JPS6326801B2 (en) | ||
JP3276247B2 (en) | Boiler / turbine condensate and water supply equipment | |
JP2716442B2 (en) | Waste heat recovery boiler device | |
JPS61118508A (en) | Control device for recirculating flow of feed pump | |
JPS629102A (en) | Controller for temperature of feedwater for exhaust-heat recovery boiler | |
JP2951294B2 (en) | How to stop the waste heat recovery boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |