JPS6149130A - 4-cycle internal-combustion engine - Google Patents
4-cycle internal-combustion engineInfo
- Publication number
- JPS6149130A JPS6149130A JP17085384A JP17085384A JPS6149130A JP S6149130 A JPS6149130 A JP S6149130A JP 17085384 A JP17085384 A JP 17085384A JP 17085384 A JP17085384 A JP 17085384A JP S6149130 A JPS6149130 A JP S6149130A
- Authority
- JP
- Japan
- Prior art keywords
- mixture
- crank chamber
- chamber
- stroke
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/02—Engines with reciprocating-piston pumps; Engines with crankcase pumps
- F02B33/26—Four-stroke engines characterised by having crankcase pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/44—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は4サイクル内燃機関の構造に関し、特にクラン
ク室内の圧力変化を利用してブースト圧を高めることに
より、全体として出力を高めるようにした4サイクル内
燃機関に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the structure of a four-stroke internal combustion engine, and in particular, the engine output is increased as a whole by increasing boost pressure by utilizing pressure changes in the crank chamber. It relates to a four-stroke internal combustion engine.
第6図は従来の4サイクルガソリン内燃機関の構成を示
したものである。図において、1は吸気弁、2は排気弁
、3は点火プラグ、4はシリンダ、5はピストン、6a
はピストン5とクランク軸6bとを連結するコンロッド
、7はクランク室、8はブローバイガス還元装置である
。FIG. 6 shows the configuration of a conventional four-stroke gasoline internal combustion engine. In the figure, 1 is an intake valve, 2 is an exhaust valve, 3 is a spark plug, 4 is a cylinder, 5 is a piston, 6a
7 is a connecting rod connecting the piston 5 and the crankshaft 6b, 7 is a crank chamber, and 8 is a blow-by gas reduction device.
第7図の吸気行程に於てピストン5が上死点ニジ下死点
の方向へ動くと、シリンダ4内に負圧を生じ、吸気弁が
開き、図示しない気化器からシリンダ4内へ混合気を吸
気する。ピストン5が下死点に達した直後も吸気弁1は
完全には閉じず、混合気の流れによる慣性で僅かながら
吸気を行い、時間遅れをもって吸気弁1は閉じられ吸気
は終了する・
次に第8図の圧縮行程に移ると、吸気弁1及び排気弁2
は共に閉じられてシリンダ内の混合気はピストン5が下
死点側から上死点の方向に動くにつれて圧縮される。こ
の時、気化器からの混合気の流れは完全に吸気弁1によ
!ll遮断されている。When the piston 5 moves from top dead center to bottom dead center during the intake stroke in FIG. inhale. Immediately after the piston 5 reaches the bottom dead center, the intake valve 1 does not close completely, and a small amount of air is taken in due to the inertia of the air-fuel mixture flow, and after a time delay, the intake valve 1 closes and the intake ends. Moving to the compression stroke in Fig. 8, the intake valve 1 and the exhaust valve 2
are closed together, and the air-fuel mixture in the cylinder is compressed as the piston 5 moves from the bottom dead center side to the top dead center side. At this time, the air-fuel mixture from the carburetor flows completely through intake valve 1! ll is blocked.
ピストン5が上死点に達する直前に点火プラグ3を用い
て圧縮された混合気に着火することにより、第9図に示
す膨張行程に移る。By igniting the compressed air-fuel mixture using the ignition plug 3 just before the piston 5 reaches the top dead center, the engine moves to the expansion stroke shown in FIG. 9.
第9図に示す膨張行程に於て吸気弁1及び排気弁2は共
に閉じられており、着火された混合気の・爆発による圧
力でピストン5を上死点より下死点の方へ動かす。この
とき、吸気弁lは閉じられている為、気化器からの混合
気の流れは遮断されている。又、この時ピストン5とシ
リンダ4のすき間から、未燃焼のブローバイガスがクラ
ンク室7へ入ってしまう。In the expansion stroke shown in FIG. 9, both the intake valve 1 and the exhaust valve 2 are closed, and the pressure caused by the explosion of the ignited air-fuel mixture moves the piston 5 from the top dead center toward the bottom dead center. At this time, since the intake valve 1 is closed, the flow of the air-fuel mixture from the carburetor is blocked. Further, at this time, unburned blow-by gas enters the crank chamber 7 through the gap between the piston 5 and the cylinder 4.
更に進んで第10図に示す排気工程に移ると、吸気弁1
は閉じられたままで排気弁2が開き、ピストン5が下死
点より上死点へと動くことにより排気が行なわれる。吸
気弁1は閉じられている為、気化器からの混合気の流れ
は遮断されている。Proceeding further to the exhaust process shown in FIG. 10, the intake valve 1
remains closed, the exhaust valve 2 opens, and the piston 5 moves from the bottom dead center to the top dead center, thereby performing exhaustion. Since the intake valve 1 is closed, the flow of air-fuel mixture from the carburetor is blocked.
〔発明が解決しようとする問題点3
以上め動作から明らかな様に、自然吸排気方式による4
サイクルガソリン内燃機関は、負圧を利用した吸気の為
ブースト圧は負となっていた。又。[Problem 3 to be solved by the invention As is clear from the above operation, 4
Cycle gasoline internal combustion engines use negative pressure for intake, so the boost pressure is negative. or.
大気汚染の原因の1つであるブローバイガスを燃焼させ
る為に、ブローバイガス還元装置8を必要としていた。A blowby gas reduction device 8 was required to burn blowby gas, which is one of the causes of air pollution.
又、4サイクルの内、気化器からの混合気の吸気は吸気
行程のみで行なわれるため、気化器の使用効率は悪かっ
た。Furthermore, since the air-fuel mixture is taken in from the carburetor only during the intake stroke of the four cycles, the efficiency of using the carburetor was poor.
本発明はクランク室にて混合気の一次圧、8を行うこと
によシブ−スト圧を高めて出力を向上させ、かつブロー
バイガスも処理するようにした4サイクル内燃機関を提
供するものである。The present invention provides a four-stroke internal combustion engine that improves output by increasing the boost pressure by increasing the primary pressure of the air-fuel mixture in the crank chamber, and also processes blow-by gas. .
本発明はシリンダ20に吸排気弁17 、18を備え、
クランク軸16bの2回転で前記シリンダ20内にて混
合気を1回爆発させる4サイクル内燃機関において、燃
料、潤滑油とを混合気化する気化器13をクランク室2
2に開閉弁15を介して接続するとともに、クランク室
22で一次圧縮された混合気等を一旦溜める混合気溜室
25の入口側を前記クランク室22に開閉弁24を介し
て接続し、さらに該混合気溜室25の出口側を前記シリ
ンダ20に吸気弁17を介して接続したことを特徴とす
る4サイクル内燃機関である。The present invention includes intake and exhaust valves 17 and 18 in the cylinder 20,
In a 4-cycle internal combustion engine in which the air-fuel mixture is exploded once in the cylinder 20 by two revolutions of the crankshaft 16b, the carburetor 13 that mixes fuel and lubricating oil is connected to the crank chamber 2.
2 via an on-off valve 15, and the inlet side of a mixture reservoir chamber 25, which temporarily stores the air-fuel mixture etc. that has been primarily compressed in the crank chamber 22, is connected to the crank chamber 22 via an on-off valve 24, and further This is a four-stroke internal combustion engine characterized in that the outlet side of the mixture reservoir chamber 25 is connected to the cylinder 20 via an intake valve 17.
本発明は2サイクルガソリン内燃機関に用いられている
混合気のクランク室での一次圧縮の原理に基づき、それ
を4行程ガソリン内燃機関に応用することによって、ブ
ースト圧を高める。The present invention is based on the principle of primary compression of the air-fuel mixture in the crank chamber used in two-stroke gasoline internal combustion engines, and increases boost pressure by applying it to four-stroke gasoline internal combustion engines.
以下に、本発明の一実施例を図により説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明を適用したリードパルプ方式による4サ
イクル内燃機関を示すものである。FIG. 1 shows a four-stroke internal combustion engine using a reed pulp system to which the present invention is applied.
図において、本発明に係る4サイクル内燃機関はシリン
ダ20に吸排気弁17.18’を備え、クランク軸16
bの2回転で前記シリンダ20内にて混合気を1回爆発
させる4サイクル内燃機関において、燃料、潤滑油とを
混合気化する気化器13をクランク室22にリードパル
プ(開、閉弁)15を介して接続するとともに、クラン
ク室22で一次圧縮された混合気等を一旦溜める混合気
溜室25の入口側を前記クランク室22にリードパルプ
(開閉弁)24を介して接続し、さらに該混合気溜室2
5の出口側を前記シリンダ20に吸気弁17を介して接
続したものである。In the figure, the four-stroke internal combustion engine according to the present invention includes intake and exhaust valves 17 and 18' in the cylinder 20, and a crankshaft 16.
In a four-cycle internal combustion engine in which the air-fuel mixture is exploded once in the cylinder 20 with two rotations of b, a carburetor 13 that vaporizes fuel and lubricating oil is connected to a crank chamber 22 with a lead pulp (open, close valve) 15. At the same time, the inlet side of a mixture reservoir chamber 25, which temporarily stores the air-fuel mixture etc. that has been primarily compressed in the crank chamber 22, is connected to the crank chamber 22 through a reed pulp (on-off valve) 24, and further Mixture reservoir chamber 2
5 is connected to the cylinder 20 via an intake valve 17.
尚、開閉弁としてリードパルプ15 、24以外のもの
を用いても良い。また図において、11は潤滑油パイプ
、12は燃料パイプであシ、気化器13は燃料パイプ1
2よりの燃料、潤滑油パイプは11よりの潤滑油と空気
の混合気をつくる・14は気化器13より混合気をクラ
ンク室22へ導く管、16aはピストン21とクランク
軸16bとを連結するコンロッド、19.は点火プラグ
である。23はクランク室22内で一次圧縮された混合
気を混合気溜室25へ導く管、26は混合気溜室25よ
り混合気をシリンダへ導く管、27は排気管である・
次に本発明に係る4サイクル内燃機関の動作について説
明する。Note that materials other than the reed pulps 15 and 24 may be used as the on-off valves. In the figure, 11 is a lubricating oil pipe, 12 is a fuel pipe, and a carburetor 13 is a fuel pipe 1.
Fuel and lubricating oil pipes from 2 create a mixture of lubricating oil and air from 11. 14 is a pipe that leads the mixture from the carburetor 13 to the crank chamber 22. 16a connects the piston 21 and the crankshaft 16b. Conrod, 19. is a spark plug. 23 is a pipe that guides the air-fuel mixture that is primarily compressed in the crank chamber 22 to the air-fuel mixture reservoir chamber 25, 26 is a pipe that leads the air-fuel mixture from the air-fuel mixture reservoir chamber 25 to the cylinder, and 27 is an exhaust pipe.Next, the present invention The operation of the four-stroke internal combustion engine will be explained.
(圧縮行程)
第2図に示すように、シリンダ20内の混合気の圧縮は
従来の4サイクル内燃機関と全く同じであるが、本発明
では圧縮行程にて気化?313よりの混合気を吸気する
。すなわち、ピストン21が上昇してクランク室22が
負圧になると、リードパルプ15が開いてその負圧によ
り気化器13よりの混合気をクランク室22内に吸気す
る。一方、リードパルプ24はクランク室22が負圧で
あるため、閉じている。(Compression Stroke) As shown in FIG. 2, the compression of the air-fuel mixture in the cylinder 20 is exactly the same as in the conventional four-stroke internal combustion engine, but in the present invention, the mixture is vaporized during the compression stroke. The air-fuel mixture from 313 is taken in. That is, when the piston 21 rises and the crank chamber 22 becomes negative pressure, the reed pulp 15 opens and the air-fuel mixture from the carburetor 13 is sucked into the crank chamber 22 by the negative pressure. On the other hand, the lead pulp 24 is closed because the crank chamber 22 is under negative pressure.
(膨張行程)
第3図に示すように、シリンダ20内での混合気の着火
及び爆発は従来の4サイクル内燃機関と全く同じである
が、本発明は膨張行程にて、吸気した混合気の一次圧縮
を行なう。つまり、シリンダ20内で点火プラグ19に
よって着火された混合気の爆発による圧力でピストン2
1が上死点より下死点の方へ動いてクランク室22内の
圧力が上昇する。(Expansion Stroke) As shown in FIG. 3, the ignition and explosion of the air-fuel mixture in the cylinder 20 are exactly the same as in the conventional four-stroke internal combustion engine, but in the present invention, during the expansion stroke, the air-fuel mixture is ignited and exploded. Perform primary compression. In other words, the pressure caused by the explosion of the air-fuel mixture ignited by the spark plug 19 in the cylinder 20 causes the piston to
1 moves from the top dead center toward the bottom dead center, and the pressure inside the crank chamber 22 increases.
この圧力上昇によってリードパルプ15が閉じ、混合気
がクランク室22内に密閉され、ピストン21の下降に
伴い一次圧縮される。そしてクランク室22内の圧力が
混合気溜室25内の圧力よりも高くなると、リードパル
プ24が開いて混合気溜室25に混合気を導きその圧力
を上げる・
(排気行程)
第4図に示すように、シリンダ20内の燃焼済みガスの
排気は従来の4サイクル内燃機関と同じであるが、本発
明ではクランク室22内の圧力カヨピストン21が上昇
して負正になるのに伴ないIJ −ト” /4ルプ24
が閉じて混合気溜室25にはクランク室22で一次圧縮
された混合気が密閉される。その際、ピストン21とシ
リンダ20とのすき間からクランク室22に侵入した未
燃焼のプローノくイガスはクランク室本内に吸気された
混合気とともに一次圧縮されて混合気溜室25内に押し
出されてそこに密閉される。This pressure increase closes the reed pulp 15, seals the air-fuel mixture in the crank chamber 22, and as the piston 21 descends, it is primarily compressed. When the pressure in the crank chamber 22 becomes higher than the pressure in the mixture reservoir chamber 25, the reed pulp 24 opens to introduce the mixture into the mixture reservoir chamber 25 and increase its pressure. (Exhaust stroke) As shown, the exhaust of the burned gas in the cylinder 20 is the same as in the conventional four-stroke internal combustion engine, but in the present invention, as the pressure in the crank chamber 22 increases and the piston 21 becomes negative and positive, IJ -t”/4rup24
is closed, and the mixture primarily compressed in the crank chamber 22 is sealed in the mixture reservoir chamber 25. At this time, the unburned fuel gas that entered the crank chamber 22 through the gap between the piston 21 and the cylinder 20 is primarily compressed together with the air-fuel mixture taken into the crank chamber, and is pushed out into the mixture reservoir chamber 25. It will be sealed there.
ピストン21が上昇してクランク室22内がさらに負圧
になると、リードノくバルブ15が開き混合気をクラン
ク室22へ導く。When the piston 21 rises and the pressure inside the crank chamber 22 becomes further negative, the reed valve 15 opens to guide the air-fuel mixture to the crank chamber 22.
(吸気行程)
第5図に示すように、シリンダ20内には吸気ノくルプ
17が開くのに伴って混合気溜室25より一次圧縮され
た混合気が流れ込み、混合気溜室25の圧力が減少を始
める。(Intake Stroke) As shown in FIG. 5, as the intake nozzle 17 opens, the primary compressed mixture flows into the cylinder 20 from the mixture reservoir chamber 25, and the pressure in the mixture reservoir chamber 25 increases. starts to decrease.
一方クランク室22に於てはピストン21が下降して圧
力が上昇を始めリードノくルブ15が閉じる。On the other hand, in the crank chamber 22, the piston 21 descends and the pressure begins to rise, causing the reed knob 15 to close.
更にクランク室内の圧力が上昇し、混合気マ留室25の
圧力を上回るようになると、リードノくルプ24が開き
、クランク室22内で一次圧縮された混合気が混合気溜
室25に流入し、さらに吸気ノクバルブ17が開いてい
る間にシリンダ20内へ移動する。この後、第2図に示
した圧縮行程へ移行して一連の動作が繰り返される。When the pressure in the crank chamber further increases and exceeds the pressure in the air-fuel mixture reservoir chamber 25, the reed nozzle 24 opens and the air-fuel mixture that has been primarily compressed in the crank chamber 22 flows into the air-fuel mixture reservoir chamber 25. , further moves into the cylinder 20 while the intake knock valve 17 is open. Thereafter, the process moves to the compression stroke shown in FIG. 2, and the series of operations is repeated.
以上の一連の動作に於て、気化器13からの混合気は圧
縮行程及び排気行程でそれぞれクランク室22内に吸気
され一次圧縮されてシリンダ20内に吸気されるから、
そのブースト圧は従来の自然吸排気の4サイクルガソリ
ン内燃機関のそれよりも高い値となる。したがって、本
発明によれば、4サイクルガソリン内燃機関の単位排気
量当りの出力を向上させ得る。またピストン21とシリ
ンダ20のすき間からもれてクランク室22に溜るプロ
ーノ(イガスは吸気された混合気に混じって再燃焼され
る。In the above series of operations, the air-fuel mixture from the carburetor 13 is taken into the crank chamber 22 during the compression stroke and the exhaust stroke, and is then primarily compressed and taken into the cylinder 20.
The boost pressure is higher than that of a conventional naturally aspirated four-stroke gasoline internal combustion engine. Therefore, according to the present invention, the output per unit displacement of a four-stroke gasoline internal combustion engine can be improved. Further, the prono gas that leaks from the gap between the piston 21 and the cylinder 20 and accumulates in the crank chamber 22 is mixed with the intake air-fuel mixture and re-burned.
また、気化器13からの混合気は圧縮行程及び排気行程
でそれぞれ吸気されるため、気化器13の使用効率が良
くなる。Furthermore, since the air-fuel mixture from the carburetor 13 is taken in each of the compression stroke and the exhaust stroke, the usage efficiency of the carburetor 13 is improved.
本発明は以上説明したように、混合気のクラン・(゛
り室、−次圧縮を行わせる構成をとることにより、ブー
スト圧を上げて原動機の出力を向上させることができる
とともに、プローノ(イガス還元装置を用いずにブロー
バイガスを除去でき、しかも気化器の使用効率を良くす
ることができる効果を有するものである。As explained above, the present invention has a configuration in which the air-fuel mixture is compressed in the crank chamber, thereby increasing the boost pressure and improving the output of the prime mover. This has the effect of being able to remove blow-by gas without using a reducing device and improving the usage efficiency of the vaporizer.
第1図は本発明の一実施例を示した構成図、第2図は第
1図に示された機関の圧縮行程を示した図、第3図は第
1図に示された機関の膨張行程を示した図、第4図は第
1図に示された機関の排気行程を示した図、第5図は第
1図に示された機関の吸気行程を示した図、第6図は従
来の4サイクルガソリン内燃機関の構成図、第7図は第
6図に示された機関の吸気行程を示した図、第8図は第
6図に示された機関の圧縮行程を示した図、第9図は第
6図に示された機関の膨張行程を示した図、第10図は
第6図に示された機関の排気行程を示した図である。
13・・・気化器、15・・・リードパルプ(開閉弁)
、17・・・吸気弁、18・・・排気弁、20・・・シ
リンダ、22・・・クランク室、24・・・リードパル
プ(開閉弁)、25・・・混合気溜室
特許出願人 日本電気株式会社
馬1図
第3図7
第4図
??
第5図
??
第6図
第8図
第9図
第10図Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the compression stroke of the engine shown in Fig. 1, and Fig. 3 is an expansion diagram of the engine shown in Fig. 1. Figure 4 is a diagram showing the exhaust stroke of the engine shown in Figure 1, Figure 5 is a diagram showing the intake stroke of the engine shown in Figure 1, and Figure 6 is a diagram showing the engine stroke. A configuration diagram of a conventional four-stroke gasoline internal combustion engine, FIG. 7 is a diagram showing the intake stroke of the engine shown in FIG. 6, and FIG. 8 is a diagram showing the compression stroke of the engine shown in FIG. 6. , FIG. 9 is a diagram showing the expansion stroke of the engine shown in FIG. 6, and FIG. 10 is a diagram showing the exhaust stroke of the engine shown in FIG. 6. 13... Vaporizer, 15... Reed pulp (on/off valve)
, 17...Intake valve, 18...Exhaust valve, 20...Cylinder, 22...Crank chamber, 24...Reed pulp (on/off valve), 25...Mixture reservoir chamber Patent applicant NEC Corporation Ma Figure 1 Figure 3 Figure 7 Figure 4? ? Figure 5? ? Figure 6 Figure 8 Figure 9 Figure 10
Claims (1)
で前記シリンダ内にて混合気を1回爆発させる4サイク
ル内燃機関において、燃料、潤滑油とを混合気化する気
化器をクランク室に開閉弁を介して接続するとともに、
クランク室で一次圧縮された混合気等を一旦溜める混合
気溜室の入口側を前記クランク室に開閉弁を介して接続
し、さらに該混合気溜室の出口側を前記シリンダに吸気
弁を介して接続したことを特徴とする4サイクル内燃機
関。(1) In a 4-stroke internal combustion engine, in which the cylinder is equipped with intake and exhaust valves and the air-fuel mixture explodes once in the cylinder with two rotations of the crankshaft, a carburetor that turns fuel and lubricating oil into a mixture is installed in the crank chamber. In addition to connecting via an on-off valve,
The inlet side of a mixture reservoir chamber, which temporarily stores the air-fuel mixture etc. that has been primarily compressed in the crank chamber, is connected to the crank chamber via an on-off valve, and the outlet side of the mixture reservoir chamber is connected to the cylinder via an intake valve. A four-stroke internal combustion engine characterized by being connected to the
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17085384A JPS6149130A (en) | 1984-08-16 | 1984-08-16 | 4-cycle internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17085384A JPS6149130A (en) | 1984-08-16 | 1984-08-16 | 4-cycle internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6149130A true JPS6149130A (en) | 1986-03-11 |
Family
ID=15912531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17085384A Pending JPS6149130A (en) | 1984-08-16 | 1984-08-16 | 4-cycle internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6149130A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01267320A (en) * | 1988-04-18 | 1989-10-25 | Masayuki Yoshizawa | Four-cycle internal combustion engine |
EP0631040A1 (en) * | 1993-06-25 | 1994-12-28 | McCULLOCH CORPORATION | Four-stroke internal combustion engine |
US5579735A (en) * | 1993-06-25 | 1996-12-03 | Mcculloch Corporation | Four-stroke internal combustion engine |
US6655335B2 (en) | 2001-07-06 | 2003-12-02 | Shindaiwa Kogyo Co., Ltd | Small engine for power tools |
US6766784B2 (en) | 2001-08-10 | 2004-07-27 | Shindaiwa Kogyo Co., Ltd. | Four-cycle engine |
-
1984
- 1984-08-16 JP JP17085384A patent/JPS6149130A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01267320A (en) * | 1988-04-18 | 1989-10-25 | Masayuki Yoshizawa | Four-cycle internal combustion engine |
EP0631040A1 (en) * | 1993-06-25 | 1994-12-28 | McCULLOCH CORPORATION | Four-stroke internal combustion engine |
US5579735A (en) * | 1993-06-25 | 1996-12-03 | Mcculloch Corporation | Four-stroke internal combustion engine |
US6655335B2 (en) | 2001-07-06 | 2003-12-02 | Shindaiwa Kogyo Co., Ltd | Small engine for power tools |
US6766784B2 (en) | 2001-08-10 | 2004-07-27 | Shindaiwa Kogyo Co., Ltd. | Four-cycle engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023228570A1 (en) | Hydrogen engine | |
US4242993A (en) | 2-Cycle engine of an active thermoatmosphere combustion | |
KR960705133A (en) | An internal combustion engine | |
US5027757A (en) | Two-stroke cycle engine cylinder construction | |
JP2000240457A (en) | Two-cycle internal combustion engine | |
US4383503A (en) | Combustion chamber scavenging system | |
WO2000070211B1 (en) | Low emissions two-cycle internal combustion engine | |
JPH0337007B2 (en) | ||
JPH10246115A (en) | Four-cycle internal combustion engine | |
JPS6149130A (en) | 4-cycle internal-combustion engine | |
US3186392A (en) | Apparatus and method for improving combustion in an internal combustion engine | |
KR960706603A (en) | Controlled 2-stroke internal combustion engine (GESTEUERTE ZWEITAKT-BRENNKRAFTMASCHINE) | |
FR2404109A1 (en) | SIX STROKE EXPLOSION ENGINE | |
US7198011B2 (en) | Internal combustion engine | |
US5000135A (en) | Gasoline engine with single overhead camshaft having duel exhaust cams per cylinder wherein each exhaust cam has duel lobes | |
JPH03222817A (en) | Two-cycle engine with intake air-scavenging air separating and supply device | |
JPH039288B2 (en) | ||
JPS59158328A (en) | Internal-combustion engine | |
JPS5791317A (en) | Two-cycle internal combustion engine | |
JP3685907B2 (en) | Mixture supply passage structure for a two-cycle internal combustion engine | |
JPS59226227A (en) | Two-cycle internal-combustion engine | |
JP2001355450A (en) | Stratified scavenging two-stroke internal combustion engine | |
KR820000126B1 (en) | 2cycle internal combustion engine | |
JPS60101229A (en) | Double piston engine | |
JPS5851373Y2 (en) | 2-stroke internal combustion engine |