[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6149416A - Coating method of carbon tray for manufacturing polycrystalline silicon wafer - Google Patents

Coating method of carbon tray for manufacturing polycrystalline silicon wafer

Info

Publication number
JPS6149416A
JPS6149416A JP17133284A JP17133284A JPS6149416A JP S6149416 A JPS6149416 A JP S6149416A JP 17133284 A JP17133284 A JP 17133284A JP 17133284 A JP17133284 A JP 17133284A JP S6149416 A JPS6149416 A JP S6149416A
Authority
JP
Japan
Prior art keywords
film
layer
polycrystalline silicon
carbon
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17133284A
Other languages
Japanese (ja)
Other versions
JPH038579B2 (en
Inventor
Ichiro Hide
一郎 秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hoxan Co Ltd
Original Assignee
Hoxan Corp
Hoxan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hoxan Co Ltd filed Critical Hoxan Corp
Priority to JP17133284A priority Critical patent/JPS6149416A/en
Publication of JPS6149416A publication Critical patent/JPS6149416A/en
Publication of JPH038579B2 publication Critical patent/JPH038579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a manufacturing tray having high strength against temperature and impact and a long durable period by forming a polysilicon film on the surface of a carbon tray by a known means, heating it in N2, and forming an SiC on te lower layer of the film and an SiN on the upper layer. CONSTITUTION:Approx. 2-3mum of a polysilicon film 2 is accumulated on the surface 1' of the carbon tray 1 by a CVD method or the like, and treated at 1,200-1,300 deg.C in N2 for approx 1hr. The C of the tray and the Si of the film are bonded to form an SiC film 3 on the lower layer of the film 2, N of the atmosphere and the Si of the film 2 are bonded to form an SiN4 film on the upper layer. Since they are chemical bonds, a coating being rigid and extremely hard to separate is completed. According to this method, the purpose can be performed by the film of 2-3mum thick to provide twice as high as the conventional one for durable period until a partial separation occurs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池その他の光電変換素子等に用いられ
ている多結晶シリコンウェハを製造するため用いるカー
ボン皿のコーティング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of coating a carbon plate used for producing polycrystalline silicon wafers used in solar cells and other photoelectric conversion elements.

〔従来の技術〕[Conventional technology]

従来、多結晶シリコンウェハは、各種の方法によって製
造されていたが、種々の問題点を抱えていた。
Conventionally, polycrystalline silicon wafers have been manufactured by various methods, but they have had various problems.

即ち、最も一般的なインゴット法はシリコン母材にイン
ゴットを鋳造した後、これをスライスすることによシウ
エハを得るようにしているが、スライス作業が煩雑であ
ると共に、スライス時の材料ロスが大きく、コスト高の
製品となシ、大量生産に向かないものでめった。
In other words, the most common ingot method involves casting an ingot on a silicon base material and then slicing it to obtain wafers. However, the slicing process is complicated and there is a large loss of material during slicing. Unfortunately, the product was expensive and not suitable for mass production.

・lた、このようなスライスによらない方法としてリボ
ン法とキャスティング法(@造法)がめるが、何れも大
型の太陽電池系材等が得られない難点があシ、更にキャ
スティング法では、シリコン結晶粒が非常に細かくなっ
て大きな結晶粒が得られない為、当該ウェハによって得
られる太陽電池の光電変換率も2〜3%と極度に悪くな
る欠陥を持っている。
・In addition, the ribbon method and casting method (@Synthesis method) are considered as methods that do not involve slicing, but both have the disadvantage that large solar cell materials cannot be obtained, and furthermore, the casting method has the disadvantage that silicon Since the crystal grains become very fine and large crystal grains cannot be obtained, the wafer has a defect that the photoelectric conversion rate of the solar cell obtained is extremely poor at 2 to 3%.

そこで、本出願人は、上記諸法の欠陥を大幅に改善する
ことができる多結晶シリコンウェハの製造方法として、
既に、シリコン母材を溶融し、この融液を、石英または
カーボンで形成され、かつ回転状態にある製造皿上に滴
下し、遠心力を有効利用することにより所望拡径状態の
融液薄層を形成し、同層の固化俊、これを製造器から剥
離する方法(スピン法)を提案した。
Therefore, the present applicant has developed a method for manufacturing polycrystalline silicon wafers that can significantly improve the defects of the above methods.
The silicon base material is already melted, and this melt is dropped onto a rotating production plate made of quartz or carbon, and by effectively utilizing centrifugal force, a thin layer of the melt with the desired diameter expansion is created. We proposed a method (spin method) in which the same layer is formed, solidified, and then peeled off from the manufacturing device.

このスピン法は、多くの優れた特徴を持っているが、上
記の溶融したシリコン母材溶液を製造器に直接滴下して
融液薄層を形成することから、同融液中に、製造器の成
分が拡散し易く、特に同国がカーボン製でめる場合には
、炭素が汚染不純物として融液中に混入し、製品たるウ
ェハの特性に悪影響を及ばすという問題を有している。
This spin method has many excellent features, but since the above-mentioned molten silicon base material solution is directly dropped into the manufacturing device to form a thin layer of melt, the manufacturing device These components tend to diffuse easily, and especially when carbon is used in this country, there is a problem in that carbon is mixed into the melt as a contaminating impurity and has an adverse effect on the characteristics of the product wafer.

そこで、この問題を解決するため、既にカーボン製の製
造器について、その表面に順次SiCとSiNとの二重
膜層を形成してやることが提案され、このようにするこ
とで、上記カーボン皿上に溶融したシリコン母材溶液を
滴下し、前記の如く多結晶シリコンウエノへを製造すれ
ば、カーボン皿のカニボン、が1.、当該jR品たるシ
リーコーXウエノ・K侵入するΩを、非常に有効に阻止
できることも確認されている。
Therefore, in order to solve this problem, it has already been proposed to sequentially form a double film layer of SiC and SiN on the surface of carbon manufacturing equipment. If the molten silicon base material solution is dropped and the polycrystalline silicon material is produced as described above, the carbon plate crab bon is produced as follows: 1. It has also been confirmed that it is possible to very effectively prevent Ω from entering the JR product Silico X Ueno K.

ところが、上記二重膜層によりカーボン皿をコーティン
グする従来法では、カーボン皿の表面に先ずCVD法、
スパッタリング法、真空蒸着法等の既知手段を採用して
SiC膜を形成した後、当該SiC膜表面に、これまた
上記CVD法等の手段によって、今度はSiNMk形成
するようにしている。
However, in the conventional method of coating a carbon plate with the above-mentioned double film layer, the surface of the carbon plate is first coated with a CVD method.
After forming a SiC film by employing a known method such as sputtering or vacuum evaporation, SiNMk is then formed on the surface of the SiC film by means such as the above-mentioned CVD method.

このため、かかる従来法によるときは、SiC膜を1μ
m5sxN膜はIOμm程度と可成りの厚さだけ重積し
なければならず、従ってそれだけ原材料を使用する必要
があると共に、前記CVD法等の採用に際してSiCか
らSiNに、その材料を入替えなければならないから、
コーティングにどうしても30時間程度を費さねばなら
ないのはもちろんのこと、上記のSiC膜はカーボン皿
のカーボンに対して%  S I N膜はSiC膜に夫
々物理的な付着状態にて積層されているだけであるから
、シリコンウェハ製造時における高温条件下の使用によ
り、どうしても剥離し易く、結局部分的な剥離状態とな
るまでに10回程度しか使用に耐え得ないといった欠陥
があった。
Therefore, when using this conventional method, the SiC film is
The m5sxN film must be stacked to a considerable thickness of about IO μm, so it is necessary to use that much raw material, and when adopting the CVD method etc., the material must be replaced from SiC to SiN. from,
Of course, it is necessary to spend about 30 hours on the coating, and the SiC film mentioned above is % of the carbon in the carbon plate. Because of this, when used under high temperature conditions during silicon wafer manufacturing, it tends to peel off easily, and it can withstand only about 10 uses before it eventually becomes partially peeled off.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような従来の実情に鑑みてなされたもの
で、シリコン母材の融液を、上面に離型剤層の形成され
た製造皿上に通下させ、所望の融液薄層を形成し、これ
全固化した後に製造器から剥離して多結晶シリコンウェ
ハを製造する場合、従来法による場合のようにSiCと
SiHの膜を単に接着状態にて重積するのではなく、同
SiCとSiNとの二重層を化学的な結合状態にて一体
に形成するようになし、これによってコーティングの所
要時間を節減すると共に、層厚も従来法のものよりも薄
く形成でき、かつ上記化学的結合に基づき、その耐用回
数を2倍以上に改善し、これにより高品質、高特性の多
結晶シリコンウエノ・を製造し得るようにするのが、そ
の目的である。
The present invention has been made in view of the above-mentioned conventional circumstances, and involves passing a melt of a silicon base material down onto a production plate on which a release agent layer is formed on the upper surface to form a thin layer of the melt. When manufacturing a polycrystalline silicon wafer by forming a polycrystalline silicon wafer by forming a polycrystalline silicon wafer and peeling it off from a manufacturing device after completely solidifying it, SiC and SiH films are not simply stacked in an adhesive state as in the conventional method, but are A double layer of SiC and SiN is formed integrally in a chemically bonded state, which reduces the time required for coating and allows the layer thickness to be formed thinner than that of conventional methods. The aim is to improve the service life by more than double based on the physical bonding, thereby making it possible to produce polycrystalline silicon wafers of high quality and properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するため、シリコン母材の融
液が供給されるカーボン皿の表面には、先ずCVD法、
スパッタリング法、真空蒸着法等の既知手段により多結
晶のシリコン膜を形成し、次にこれf:窒素雰囲気中に
て加熱することにより、当該シリコン膜の下層部に7フ
一ボン皿中のCとシリコン膜の81とによるSiC層を
、そして上層部に前記雰囲気のNとシリコン膜の81と
によるSiN層が形成さnるよプにしたことt特徴とす
る多結晶シリコンウエノ・製造用カーボン皿のコーティ
ング方法を提供したものである。
In order to achieve the above object, the present invention first applies a CVD method to the surface of a carbon plate to which a silicon base material melt is supplied.
A polycrystalline silicon film is formed by known means such as sputtering or vacuum evaporation, and then heated in a nitrogen atmosphere to coat the lower layer of the silicon film with C in a 7-fiber plate. A polycrystalline silicon urethane/carbon for manufacturing, characterized in that an SiC layer is formed by N in the atmosphere and 81 in the silicon film, and an SiN layer is formed in the upper layer by N in the atmosphere and 81 in the silicon film. The present invention provides a method for coating dishes.

〔作 用〕[For production]

本発明では刃口熱処理によって、カーボン皿とSiC層
との界面、SiC層とSiN層との界面が単なる接着状
態ではなく化学的結合状態となるから、温度や衝撃に対
しても強く、長期の繰シ返し使用に耐えることができる
In the present invention, the interface between the carbon plate and the SiC layer and the interface between the SiC layer and the SiN layer are not simply bonded, but are chemically bonded through the edge heat treatment, so they are resistant to temperature and impact and have a long-term lifespan. Can withstand repeated use.

〔実 施 例〕〔Example〕

本発明を図面によって詳細に説示すると、円板等の形状
としたカーボン皿1の表面1′に、先ず多結晶のシリコ
ン膜2を形成成長させるが、その手段は前記従来法につ
き説示した如く、既知のCVD法、スパッタリング法、
真空蒸着法等によればよく、その膜厚は2〜3μm程度
でよい。
To explain the present invention in detail with reference to the drawings, first, a polycrystalline silicon film 2 is formed and grown on the surface 1' of a carbon plate 1 shaped like a disk. Known CVD method, sputtering method,
A vacuum evaporation method or the like may be used, and the film thickness may be about 2 to 3 μm.

次に上記の如くシリコン膜2を形成したカーボン皿1を
、屋素雰囲気A中にて加熱することグ        
 になるが、当該加熱条件としては1200〜1300
℃程度の温度で、約1時間処理することが望ましい。
Next, the carbon plate 1 with the silicon film 2 formed thereon as described above is heated in an indoor atmosphere A.
However, the heating conditions are 1200 to 1300
It is desirable that the treatment be carried out at a temperature of about 0.degree. C. for about 1 hour.

上記の加熱処理により、カーボン皿1のCとシリコン膜
2のSiとが化学的に結合して、間膜2の下層部にはS
i0層3が、そし、て鼠素雰囲気AのNと同上シリコン
膜2のSiとの化学的結合によるSiN層4が、当該膜
2の上層部に夫々形成されるのでるる。
Through the above heat treatment, C of the carbon plate 1 and Si of the silicon film 2 are chemically bonded, and the lower layer of the interlayer 2 has S.
An i0 layer 3 and an SiN layer 4 formed by chemical bonding of N in the nitrogen atmosphere A and Si in the silicon film 2 are formed on the upper layer of the film 2, respectively.

従って上記のカーボン皿1とSi0層3との界面および
当該SiC層3とSiN層4との界面とが化学的に結合
されて、このため当該結合は強固となり非常に剥離し難
いコーティング全形成することができた。
Therefore, the interface between the carbon plate 1 and the Si0 layer 3 and the interface between the SiC layer 3 and the SiN layer 4 are chemically bonded, and therefore the bond is strong and a complete coating is formed that is extremely difficult to peel off. I was able to do that.

〔発明の効果〕〔Effect of the invention〕

本発明は前記の如き構成を具有し、上記実施例のように
具現できるものであるから、2〜3μmといった従来例
のl/3〜115 程度のコーティング厚にて目的を達
することができ、また従来法では30時間位かかつてい
たのに対し、24時間程度でコーティングができ生産性
を向上し得ることとなるだけでなく、部分的剥離を生ず
るようになるまでの耐囲徊叡跋ヅqル′ん0国と、従来
例によるものの2倍となり、また本発明により得たカー
ボン皿により製造した多結晶シリコンウェハについても
、従来例と同じく、ソノ品質バロメータであるライフタ
イムは2μBecとなって、良質のウエノ1製品が件ら
れることを確認した。
Since the present invention has the above-mentioned configuration and can be implemented as in the above embodiments, it is possible to achieve the objective with a coating thickness of 2 to 3 μm, which is about 1/3 to 115 of the conventional example, and The coating can be completed in about 24 hours, compared to about 30 hours with the conventional method, which not only improves productivity, but also reduces encirclement resistance until partial peeling occurs. The lifetime of the polycrystalline silicon wafer produced using the carbon plate obtained according to the present invention, which is a barometer of quality, is 2μBec, which is twice that of the conventional example. It was confirmed that high quality Ueno 1 products are available.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るカーボン皿のコーティング方法に
あって、その当初工程終了後のカーボン皿を示す部分縦
断正面説明図、第2図は四法児了時のカーボン皿を示す
部分縦断正面説明図である。 1−・・0力−ボン皿本体 1′・・・・カーボン皿不体の表面 2・−・・・シリコン膜 3争・−・eSiC層 4参・・・・SiN層 A・・・・・窒素雰囲気 代理人 弁理士  斎 藤 義 雄 第1図 第2図
Fig. 1 is a partially longitudinal front explanatory view showing the carbon plate after the initial process is completed in the method of coating a carbon plate according to the present invention, and Fig. 2 is a partially longitudinal front view showing the carbon plate after completing the four steps. It is an explanatory diagram. 1-...0 force-Bon plate body 1'...Surface of carbon plate intangible 2--Silicon film 3--eSiC layer 4--SiN layer A...・Nitrogen atmosphere agent Yoshio Saito, patent attorney Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン母材の融液が供給されるカーボン皿の表
面には、先ずCVD法、スパッタリング法、真空蒸着法
等の既知手段により多結晶のシリコン膜を形成し、次に
これを窒素雰囲気中にて加熱することにより、当該シリ
コン膜の下層部にカーボン皿中のCとシリコン膜のSi
とによるSiC層を、そして上層部に前記雰囲気のNと
シリコン膜のSiとによるSiN層が形成されるように
したことを特徴とする多結晶シリコンウェハ製造用カー
ボン皿のコーティング方法。
(1) First, a polycrystalline silicon film is formed on the surface of the carbon plate to which the silicon base material melt is supplied by known means such as CVD, sputtering, or vacuum evaporation, and then this is deposited in a nitrogen atmosphere. By heating inside the silicon film, the C in the carbon dish and the Si in the silicon film are combined with the lower layer of the silicon film.
1. A method of coating a carbon plate for manufacturing a polycrystalline silicon wafer, characterized in that an SiC layer is formed by the above-mentioned N in the atmosphere and a SiN layer is formed in the upper layer by the N in the atmosphere and the Si in the silicon film.
(2)加熱条件が1200〜1300℃、約1時間であ
る特許請求の範囲第1項記載の多結晶シリコンウェハ製
造用カーボン皿のコーティング方法。
(2) The method for coating a carbon dish for producing polycrystalline silicon wafers according to claim 1, wherein the heating conditions are 1200 to 1300°C for about 1 hour.
JP17133284A 1984-08-17 1984-08-17 Coating method of carbon tray for manufacturing polycrystalline silicon wafer Granted JPS6149416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17133284A JPS6149416A (en) 1984-08-17 1984-08-17 Coating method of carbon tray for manufacturing polycrystalline silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17133284A JPS6149416A (en) 1984-08-17 1984-08-17 Coating method of carbon tray for manufacturing polycrystalline silicon wafer

Publications (2)

Publication Number Publication Date
JPS6149416A true JPS6149416A (en) 1986-03-11
JPH038579B2 JPH038579B2 (en) 1991-02-06

Family

ID=15921265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17133284A Granted JPS6149416A (en) 1984-08-17 1984-08-17 Coating method of carbon tray for manufacturing polycrystalline silicon wafer

Country Status (1)

Country Link
JP (1) JPS6149416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200388B1 (en) * 1998-02-11 2001-03-13 Applied Materials, Inc. Substrate support for a thermal processing chamber
CN103978746A (en) * 2014-05-06 2014-08-13 上海天马有机发光显示技术有限公司 Film and preparation method thereof, display panel and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134235A (en) * 1981-02-10 1982-08-19 Agency Of Ind Science & Technol Production of polycrystalline silicon semiconductor
JPS5820712A (en) * 1981-07-28 1983-02-07 Agency Of Ind Science & Technol Preparation of polycrystalline silicon semiconductor
JPS5826019A (en) * 1981-08-06 1983-02-16 Agency Of Ind Science & Technol Casting method for polycrystalline silicon ingot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134235A (en) * 1981-02-10 1982-08-19 Agency Of Ind Science & Technol Production of polycrystalline silicon semiconductor
JPS5820712A (en) * 1981-07-28 1983-02-07 Agency Of Ind Science & Technol Preparation of polycrystalline silicon semiconductor
JPS5826019A (en) * 1981-08-06 1983-02-16 Agency Of Ind Science & Technol Casting method for polycrystalline silicon ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200388B1 (en) * 1998-02-11 2001-03-13 Applied Materials, Inc. Substrate support for a thermal processing chamber
CN103978746A (en) * 2014-05-06 2014-08-13 上海天马有机发光显示技术有限公司 Film and preparation method thereof, display panel and display device

Also Published As

Publication number Publication date
JPH038579B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
JP4224755B2 (en) Seed crystal fixation method
US4582559A (en) Method of making thin free standing single crystal films
JPS61112345A (en) Manufacture of semiconductor device
JPH09312245A (en) Thin-film-deposited substrate and manufacture thereof
JPS5993000A (en) Substrate for manufacturing single crystal thin film
JPS61272922A (en) Semiconductor device wafer substrate and manufacture thereof
JPS6149416A (en) Coating method of carbon tray for manufacturing polycrystalline silicon wafer
US4191788A (en) Method to reduce breakage of V-grooved <100> silicon substrate
JPS59126639A (en) Manufacture of substrate for semiconductor device
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPH01145400A (en) Jig for heating silicon wafer
JPS6294263A (en) Cutter blade and manufacture thereof
US4229474A (en) Breakage resistant V-grooved <100> silicon substrates
JPS59174514A (en) Manufacture of polycrystalline silicon wafer
KR101943896B1 (en) Container for silicon ingot fabrication and manufacturing method thereof, and method for manufacturing crystalline silicon ingot
KR100719204B1 (en) Method of Producing Large Silicon Substrate for Thin Film Transistor Device
JPS59182217A (en) Production of polycrystal silicon wafer
JPH0118575B2 (en)
JPH06100398A (en) Production of diamond film having mirror finished surface
JP2000026199A (en) Production of silicon carbide single crystal and silicon carbide single crystal produced therewith
JPH0154432B2 (en)
JP3319217B2 (en) Mold for optical lens and method of manufacturing the same
JP2556159B2 (en) Method for manufacturing semiconductor crystal
JPH08259377A (en) Quartz crucible for growing single crystal and production of the crucible
JPH0693452A (en) Susceptor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term