JPH038579B2 - - Google Patents
Info
- Publication number
- JPH038579B2 JPH038579B2 JP59171332A JP17133284A JPH038579B2 JP H038579 B2 JPH038579 B2 JP H038579B2 JP 59171332 A JP59171332 A JP 59171332A JP 17133284 A JP17133284 A JP 17133284A JP H038579 B2 JPH038579 B2 JP H038579B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- carbon plate
- carbon
- layer
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 43
- 229910052799 carbon Inorganic materials 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 23
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 16
- 235000012431 wafers Nutrition 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 2
- 238000007796 conventional method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 229940095676 wafer product Drugs 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Photovoltaic Devices (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、太陽電池その他の光電変換素子等に
用いられている多結晶シリコンウエハを製造する
ため用いるカーボン皿のコーテイング方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of coating carbon plates used for manufacturing polycrystalline silicon wafers used in solar cells and other photoelectric conversion elements.
従来、多結晶シリコンウエハは、各種の方法に
よつて製造されていたが、種々の問題点を抱えて
いた。
Conventionally, polycrystalline silicon wafers have been manufactured by various methods, but they have had various problems.
即ち、最も一般的なインゴツト法はシリコン母
材にインゴツトを鋳造した後、これをスライスす
ることによりウエハを得るようにしているが、ス
ライス作業が煩雑であると共に、スライス時の材
料ロスが大きく、コスト高の製品となり、大量生
産に向かないものであつた。 That is, the most common ingot method involves casting an ingot in a silicon base material and then slicing it to obtain wafers, but the slicing process is complicated and there is a large loss of material during slicing. This resulted in a high cost product and was not suitable for mass production.
また、このようなスライスによらない方法とし
てリボン法とキヤステイング法(鋳造法)がある
が、何れも大型の太陽電池素材等が得られない難
点があり、更にキヤステイング法では、シリコン
結晶粒が非常に細かくなつて大きな結晶粒が得ら
れない為、当該ウエハによつて得られる太陽電池
の光電変換率も2〜3%と極度に悪くなる欠陥を
持つている。 In addition, there are methods that do not involve slicing, such as the ribbon method and the casting method (casting method), but both have the disadvantage that large solar cell materials cannot be obtained. Since the wafer becomes very fine and large crystal grains cannot be obtained, the photoelectric conversion rate of the solar cell obtained with the wafer is extremely poor at 2 to 3%.
そこで、本出願人は、上記諸法の欠陥を大幅に
改善することができる多結晶シリコンウエハの製
造方法として、既に、シリコン母材を溶融し、こ
の融液を、石英またはカーボンで形成され、かつ
回転状態にある製造皿上に滴下し、遠心力を有効
利用することにより所望拡径状態の融液薄層を形
成し、同層の固化後、これを製造皿から剥離する
方法(スピン法)を提案した。 Therefore, the present applicant has already developed a method for manufacturing polycrystalline silicon wafers that can significantly improve the defects of the above methods, by melting a silicon base material and using this melt to create polycrystalline silicon wafers made of quartz or carbon. A thin layer of molten liquid with a desired expanded diameter is formed by dripping onto a rotating production plate, effectively utilizing centrifugal force, and after the layer solidifies, this is peeled off from the production plate (spin method). ) was proposed.
このスピン法は、多くの優れた特徴を持つてい
るが、上記の溶融したシリコン母材溶液を製造皿
に直接滴下して融液薄層を形成することから、同
融液中に、製造皿の成分が拡散し易く、特に同皿
がカーボン製である場合には、炭素が汚染不純物
として融液中に混入し、製品たるウエハの特性に
悪影響を及ぼすという問題を有している。 This spin method has many excellent features, but since the above-mentioned molten silicon base material solution is directly dropped onto the production plate to form a thin layer of melt, it is possible to In particular, when the plate is made of carbon, carbon is mixed into the melt as a contaminating impurity and has a negative effect on the characteristics of the wafer product.
そこで、この問題を解決するため、既にカーボ
ン製の製造皿について、その表面に順次SiCと
SiNとの二重膜層を形成してやることが提案さ
れ、このようにすることで、上記カーボン皿上に
溶融したシリコン母材溶液を滴下し、前記の如く
多結晶シリコンウエハを製造すれば、カーボン皿
のカーボンが、当該製品たるシリコンウエハに侵
入するのを、非常に有効に阻止できることも確認
されている。 Therefore, in order to solve this problem, we have already started applying SiC to the surface of carbon production plates.
It has been proposed to form a double film layer with SiN, and in this way, if a molten silicon base material solution is dropped onto the carbon plate and a polycrystalline silicon wafer is manufactured as described above, carbon It has also been confirmed that carbon from the pan can be very effectively prevented from entering the silicon wafer product.
ところが、上記二重膜層によりカーボン皿をコ
ーテイングする従来法では、カーボン皿の表面に
先ずCVD法、スパツタリング法、真空蒸着法等
の既知手段を採用してSiC膜を形成した後、当該
SiC膜表面に、これまた上記CVD法等の手段によ
つて、今度はSiN膜を形成するようにしている。 However, in the conventional method of coating a carbon plate with the above-mentioned double film layer, a SiC film is first formed on the surface of the carbon plate by a known method such as CVD, sputtering, or vacuum evaporation.
A SiN film is then formed on the surface of the SiC film by means such as the above-mentioned CVD method.
このため、かかる従来法によるときは、SiC膜
を1μm、SiN膜は10μm程度と可成りの厚さだけ
重積しなければならず、従つてそれだけ原材料を
使用する必要があると共に、前記CVD法等の採
用に際してSiCからSiNに、その材料を入替えな
ければならないから、コーテイングにどうしても
30時間程度を費さねばならないのはもちろんのこ
と、上記のSiC膜はカーボン皿のカーボンに対し
て、SiN膜はSiC膜に夫々物理的な付着状態にて
積層されているだけであるから、シリコンウエハ
製造時における高温条件下の使用により、どうし
ても剥離し易く、結局部分的な剥離状態となるま
でに10回程度しか使用に耐え得ないといつた欠陥
があつた。 Therefore, when using such conventional methods, the SiC film must be stacked to a considerable thickness of 1 μm and the SiN film must be stacked to a considerable thickness of about 10 μm. etc., it is necessary to change the material from SiC to SiN, so it is necessary to change the coating material.
Not only does it take about 30 hours, but the above-mentioned SiC film is only physically attached to the carbon of the carbon plate, and the SiN film is only physically attached to the SiC film. Due to use under high temperature conditions during silicon wafer manufacturing, there was a defect that the product was prone to peeling and could only withstand about 10 uses before it eventually became partially peeled.
本発明は、このような従来の実情に鑑みてなさ
れたもので、シリコン母材の融液を、上面に離型
剤層の形成された製造皿上に適下させ、所望の融
液薄層を形成し、これを固化した後に製造皿から
剥離して多結晶シリコンウエハを製造する場合、
従来法による場合のようにSiCとSiNの膜を単に
接着状態にて重積するのではなく、同SiCとSiN
の二重層を化学的な結合状態にて一体に形成する
ようになし、これによつてコーテイングの所要時
間を節減すると共に、層厚も従来法のものよりも
薄く形成でき、かつ上記化学的結合に基づき、そ
の耐用回数を2倍以上に改善し、これにより高品
質、高特性の多結晶シリコンウエハを製造し得る
ようにするのが、その目的である。
The present invention has been made in view of such conventional circumstances, and involves dropping a melt of a silicon base material onto a production plate on which a release agent layer is formed on the upper surface, and forming a thin layer of the melt as desired. When producing a polycrystalline silicon wafer by forming a polycrystalline silicon wafer, solidifying it, and then peeling it from the production plate,
Rather than simply stacking SiC and SiN films in an adhesive state as in the conventional method, the SiC and SiN films are
The double layer is formed integrally in a chemically bonded state, thereby reducing the time required for coating, and the layer thickness can be formed thinner than that of the conventional method. The purpose is to improve the service life by more than double based on the above, thereby making it possible to manufacture polycrystalline silicon wafers with high quality and high characteristics.
本発明に係る多結晶シリコンウエハ製造用カー
ボン皿のコーテイング方法は、所期の目的を達成
するため、シリコン母材の融液が供給されるカー
ボン皿の表面に、成膜手段を介して多結晶のシリ
コン膜を形成した後、該多結晶シリコン膜を有す
るカーボン皿を窒素雰囲気中において加熱処理す
ることにより、当該カーボン皿の上に、そのカー
ボン皿中のCと前記シリコン膜のSiとによるSiC
層と、前記雰囲気中のNと前記シリコン膜のSiと
によるSiN層とを同時に形成して、これらカーボ
ン皿、SiC層、SiN層が化学的に一体結合したコ
ーテイングカーボン皿を得ることを特徴とする。
In order to achieve the intended purpose, the method for coating a carbon plate for manufacturing polycrystalline silicon wafers according to the present invention is to coat the surface of the carbon plate to which a silicon base material melt is supplied with polycrystalline silicon via a film forming means. After forming a silicon film, the carbon plate having the polycrystalline silicon film is heat-treated in a nitrogen atmosphere, so that SiC formed by C in the carbon plate and Si in the silicon film is formed on the carbon plate.
and a SiN layer made of N in the atmosphere and Si of the silicon film are simultaneously formed to obtain a coated carbon plate in which the carbon plate, the SiC layer, and the SiN layer are chemically bonded together. do.
本発明では加熱処理によつて、カーボン皿と
SiC層との界面、SiC層とSiN層との界面が単な
る接着状態ではなく化学的結合状態となるから、
温度や衝撃に対しても強く、長期の繰り返し使用
に耐えることができる。
In the present invention, carbon plates and
Because the interface with the SiC layer and the interface between the SiC layer and the SiN layer are not simply in an adhesive state but in a chemically bonded state,
It is resistant to temperature and shock, and can withstand repeated use over a long period of time.
本発明を図面によつて詳細に説示すると、円板
等の形状としたカーボン皿1の表面1′に、先ず
多結晶のシリコン膜2を形成成長させるが、その
手段は前記従来法につき説示した如く、既知の
CVD法、スパツタリング法、真空蒸着法等によ
ればよく、その膜厚は2〜3μm程度でよい。
To explain the present invention in detail with reference to the drawings, first, a polycrystalline silicon film 2 is formed and grown on the surface 1' of a carbon plate 1 shaped like a disk. like, known
CVD method, sputtering method, vacuum evaporation method, etc. may be used, and the film thickness may be about 2 to 3 μm.
次に上記の如くシリコン膜2を形成したカーボ
ン皿1を、窒素雰囲気A中にて加熱することにな
るが、当該加熱条件としては1200〜1300℃程度の
温度で、約1時間処理することが望ましい。 Next, the carbon plate 1 on which the silicon film 2 has been formed as described above is heated in a nitrogen atmosphere A, and the heating conditions are approximately 1200 to 1300°C for about 1 hour. desirable.
上記の加熱処理により、カーボン皿1のCとシ
リコン膜2のSiとが化学的に結合して、同膜2の
下層部にはSiC層3が、そして窒素雰囲気AのN
と同上シリコン膜2のSiとの化学的結合による
Si3N4すなわちSiN層4が、当該膜2の上層部に
夫々形成されるのである。 Through the above heat treatment, C in the carbon plate 1 and Si in the silicon film 2 are chemically bonded, and a SiC layer 3 is formed in the lower layer of the film 2, and N in the nitrogen atmosphere A.
Due to chemical bonding with Si of silicon film 2 as above
A Si 3 N 4 or SiN layer 4 is formed on the upper layer of each film 2 .
従つて上記のカーボン皿1とSiC層3との界面
および当該SiC層3とSiN層4との界面とが化学
的に結合されて、このため当該結合は強固となり
非常に剥離し難いコーテイングを形成することが
できた。 Therefore, the interface between the carbon plate 1 and the SiC layer 3 and the interface between the SiC layer 3 and the SiN layer 4 are chemically bonded, and thus the bond is strong and forms a coating that is extremely difficult to peel off. We were able to.
ちなみに、カーボン皿とSiC層とSiN層とが化
学的に結合したもの(本発明)と、これらが物理
的に付着しただけのもの(従来例)とを比較した
場合、以下のようなる。 By the way, the following is a comparison between a carbon plate, a SiC layer, and a SiN layer that are chemically bonded together (the present invention), and a structure in which these are merely physically attached (the conventional example).
本発明の場合、コーテイング膜厚は2〜3μm
でよく、これは従来例のコーテイング膜厚の1/5
〜1/3程度で足りたことになる。 In the case of the present invention, the coating film thickness is 2 to 3 μm
This is 1/5 of the conventional coating thickness.
~1/3 would be enough.
本発明の場合、コーテイング時間は24時間程度
でよく、従来例の約30時間よりも短縮することが
できた。 In the case of the present invention, the coating time only needed to be about 24 hours, which was shorter than about 30 hours in the conventional example.
本発明の場合、部分的剥離を生じるまでの耐用
態様回数が少なくとも20回であり、従来例に対し
2倍の耐久性が得られた。 In the case of the present invention, the durability is at least 20 times before partial peeling occurs, which is twice the durability of the conventional example.
本発明の場合、その方法から得られたカーボン
皿を用いて製造した多結晶シリコンウエハは、ラ
イフタイムが2μsecであり、当該コーテイングカ
ーボン皿を用いたことにより、良質のウエハ製品
が得られた。 In the case of the present invention, the polycrystalline silicon wafer manufactured using the carbon plate obtained by the method had a lifetime of 2 μsec, and by using the coated carbon plate, a high-quality wafer product was obtained.
以上説明した通り、本発明に係る多結晶シリコ
ンウエハ製造用カーボン皿のコーテイング方法に
よるときは、コーテイング膜の薄膜化、コーテイ
ング時間の短縮による生産性の向上、コーテング
膜の耐久性など、これらの効果を確保することが
できる。
As explained above, when using the method of coating a carbon plate for manufacturing polycrystalline silicon wafers according to the present invention, these effects such as thinning of the coating film, improvement of productivity by shortening the coating time, and durability of the coating film are achieved. can be ensured.
特に、本発明方法によるとき、カーボン皿、
SiC層、SiN層が化学的に一体結合するので、コ
ーテング膜の耐久性が格段に向上し、極薄のコー
テイング膜であつても、これの耐用回数を倍増さ
せることができる。 In particular, when using the method of the present invention, a carbon plate,
Since the SiC layer and SiN layer are chemically bonded together, the durability of the coating film is greatly improved, and even an extremely thin coating film can double its service life.
しかも、本発明方法は、粉末材を用いるのでな
く、カーボン皿表面の多結晶シリコン膜を窒素雰
囲気中で加熱処理して上記各層を形成するので、
当該方法から得られたコーテイングカーボン皿を
用いて多結晶シリコンを製造する際、その多結晶
シリコンが粉末材で汚染されることもない。 Moreover, the method of the present invention does not use powder materials, but rather forms the above-mentioned layers by heat-treating the polycrystalline silicon film on the surface of the carbon dish in a nitrogen atmosphere.
When producing polycrystalline silicon using the coated carbon plate obtained from the method, the polycrystalline silicon is not contaminated with powder material.
したがつて、本発明方法をして有用なコーテイ
ングカーボン皿が得られる。 Therefore, the method of the present invention provides a useful coated carbon dish.
第1図は本発明に係るカーボン皿のコーテイン
グ方法にあつて、その当初工程終了後のカーボン
皿を示す部分縦断正面説明図、第2図は同法完了
時のカーボン皿を示す部分縦断正面説明図であ
る。
1……カーボン皿本体、1′……カーボン皿本
体の表面、2……シリコン膜、3……SiC層、4
……SiN層、A……窒素雰囲気。
Fig. 1 is a partially longitudinal front explanatory view showing the carbon plate after the initial process is completed in the carbon plate coating method according to the present invention, and Fig. 2 is a partially longitudinal front explanatory view showing the carbon plate after the process is completed. It is a diagram. 1...Carbon plate body, 1'...Surface of carbon plate body, 2...Silicon film, 3...SiC layer, 4
...SiN layer, A...nitrogen atmosphere.
Claims (1)
の表面に、成膜手段を介して多結晶のシリコン膜
を形成した後、該多結晶シリコン膜を有するカー
ボン皿を窒素雰囲気中において加熱処理すること
により、カーボン皿の上に、そのカーボン皿のC
と前記シリコン膜のSiとによるSiC層と、前記雰
囲気中のNと前記シリコン膜のSiとによるSiN層
とを同時に形成して、これらカーボン皿、SiC
層、SiN層が化学的に一体結合したコーテイング
カーボン皿を得ることを特徴とする多結晶シリコ
ンウエハ製造用カーボン皿のコーテイング方法。1. After forming a polycrystalline silicon film using a film forming means on the surface of the carbon dish to which the silicon base material melt is supplied, the carbon dish having the polycrystalline silicon film is heat-treated in a nitrogen atmosphere. By this, the C of the carbon plate is placed on the carbon plate.
and Si of the silicon film, and an SiN layer of N in the atmosphere and Si of the silicon film are simultaneously formed.
1. A method for coating a carbon plate for manufacturing polycrystalline silicon wafers, characterized by obtaining a coated carbon plate in which a SiN layer and a SiN layer are chemically bonded together.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17133284A JPS6149416A (en) | 1984-08-17 | 1984-08-17 | Coating method of carbon tray for manufacturing polycrystalline silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17133284A JPS6149416A (en) | 1984-08-17 | 1984-08-17 | Coating method of carbon tray for manufacturing polycrystalline silicon wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6149416A JPS6149416A (en) | 1986-03-11 |
JPH038579B2 true JPH038579B2 (en) | 1991-02-06 |
Family
ID=15921265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17133284A Granted JPS6149416A (en) | 1984-08-17 | 1984-08-17 | Coating method of carbon tray for manufacturing polycrystalline silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6149416A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200388B1 (en) * | 1998-02-11 | 2001-03-13 | Applied Materials, Inc. | Substrate support for a thermal processing chamber |
CN103978746B (en) * | 2014-05-06 | 2016-06-08 | 上海天马有机发光显示技术有限公司 | A kind of film and preparation method thereof, display floater and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134235A (en) * | 1981-02-10 | 1982-08-19 | Agency Of Ind Science & Technol | Production of polycrystalline silicon semiconductor |
JPS5820712A (en) * | 1981-07-28 | 1983-02-07 | Agency Of Ind Science & Technol | Preparation of polycrystalline silicon semiconductor |
JPS5826019A (en) * | 1981-08-06 | 1983-02-16 | Agency Of Ind Science & Technol | Casting method for polycrystalline silicon ingot |
-
1984
- 1984-08-17 JP JP17133284A patent/JPS6149416A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134235A (en) * | 1981-02-10 | 1982-08-19 | Agency Of Ind Science & Technol | Production of polycrystalline silicon semiconductor |
JPS5820712A (en) * | 1981-07-28 | 1983-02-07 | Agency Of Ind Science & Technol | Preparation of polycrystalline silicon semiconductor |
JPS5826019A (en) * | 1981-08-06 | 1983-02-16 | Agency Of Ind Science & Technol | Casting method for polycrystalline silicon ingot |
Also Published As
Publication number | Publication date |
---|---|
JPS6149416A (en) | 1986-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4187126A (en) | Growth-orientation of crystals by raster scanning electron beam | |
US4112135A (en) | Method for dip-coating ceramic with molten silicon | |
US4370288A (en) | Process for forming self-supporting semiconductor film | |
US4758399A (en) | Substrate for manufacturing single crystal thin films | |
JPH0364476B2 (en) | ||
JPH038579B2 (en) | ||
US4191788A (en) | Method to reduce breakage of V-grooved <100> silicon substrate | |
JP3446368B2 (en) | Quartz crystal resonator and manufacturing method thereof | |
JPS59126639A (en) | Manufacture of substrate for semiconductor device | |
JPS6046539B2 (en) | Method for manufacturing silicon crystal film | |
TWI651283B (en) | Crucible structure and manufacturing method thereof and silicon crystal structure and manufacturing method thereof | |
JPS59182217A (en) | Production of polycrystal silicon wafer | |
JP2002029882A (en) | Crystal product having crystal growth free surface and method of producing the same | |
JPH0314765B2 (en) | ||
JPH09263498A (en) | Production of silicon carbide single crystal | |
US4229474A (en) | Breakage resistant V-grooved <100> silicon substrates | |
JPH01145400A (en) | Jig for heating silicon wafer | |
JPH0118575B2 (en) | ||
JP2720324B2 (en) | Quartz crucible for growing single crystal and method for producing the same | |
JPH0784357B2 (en) | Boron nitride coated crucible | |
JPS59182218A (en) | Production of polycrystal silicon wafer | |
JPH0352250A (en) | Manufacture of dielectric isolating substrate | |
JP4243002B2 (en) | Semiconductor thin film and method of forming the same, amorphous Si solar cell using semiconductor thin film | |
JPS60195097A (en) | Production of ferrite single crystal | |
Sharma et al. | The preparation of InSb films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |