[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6141597A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPS6141597A
JPS6141597A JP59164446A JP16444684A JPS6141597A JP S6141597 A JPS6141597 A JP S6141597A JP 59164446 A JP59164446 A JP 59164446A JP 16444684 A JP16444684 A JP 16444684A JP S6141597 A JPS6141597 A JP S6141597A
Authority
JP
Japan
Prior art keywords
medium
substrate
recording medium
dye
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59164446A
Other languages
Japanese (ja)
Inventor
Sotaro Edokoro
繪所 壯太郎
Masaki Ito
雅樹 伊藤
Masaru Matsuoka
賢 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59164446A priority Critical patent/JPS6141597A/en
Publication of JPS6141597A publication Critical patent/JPS6141597A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a highly sensitive and chemically stable optical information recording medium, by forming a thin org. film based on a specific naphthoquinnone dye to the single side or both sides of a substrate. CONSTITUTION:A recording medium is formed by adhering a naphthoquinone dye represented by formula to the single surface or both surfaces of a substrate by a vapor deposition or solvent coating method. As the material of the substrate, glass, A and a synthetic resin are desirable. When laser beam is converged by a lens to be allowed to irradiate a naphthoquinone dye film, the dye film at the irradiated part is removed to form a hole. The recording of information is performed by rotating disc shaped medii at an equal speed and forming holes in matching relation to binary information while the reading of recorded information (hole) is performed by detecting the change in the quantity of reflected light from the medium or transmitted light. Thus formed optical information recording medium is highly sensitive and chemically stable and, in addition thereto, the medium is easy to form.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザ光によって情報を記録再生することので
きる光学記録媒体に関し、さらに詳しくは光エネルギー
により物質状態の変化を利用して記録を行う光学的情報
記録媒体に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an optical recording medium that can record and reproduce information using laser light, and more specifically, relates to an optical recording medium that uses a change in the state of matter caused by light energy to perform recording. Related to optical information recording media.

(従来技術とその問題点) 従来、この種の光学記録媒体としてTe合金。(Prior art and its problems) Conventionally, Te alloy has been used as this type of optical recording medium.

Te酸化物、バブル形成媒体及び有機色素等が用いられ
ていた。
Te oxide, bubble-forming media, organic dyes, etc. were used.

Te合金は、Teと半導体1例えばAs 、 86等の
固溶合金として用いられている。この媒体は、比較的書
き込み感度が高く、又記録再生の光学系を小型にし得る
半導体レーザにも適合するが、化学的に不安定であり、
空気中放置で容易に劣化することと、構成材料(TB 
e A3 e 86等)が毒性を示すという問題点があ
る。
A Te alloy is used as a solid solution alloy of Te and a semiconductor 1 such as As, 86, etc. This medium has relatively high writing sensitivity and is compatible with semiconductor lasers, which can make the optical system for recording and reproduction compact, but it is chemically unstable.
It deteriorates easily when left in the air, and the constituent materials (TB
e A3 e 86, etc.) are toxic.

l1le酸化物は、Te合金より安定であるが、その光
学特性1例えば吸収率1反射率が酸化状態に敏感に依存
する。そのため、この媒体は媒体形成時に酸化状態を厳
しく制御しなければならないという欠点を有する。
Although the l1le oxide is more stable than the Te alloy, its optical properties 1 such as absorption 1 reflectance depend sensitively on the oxidation state. Therefore, this medium has the disadvantage that the oxidation state must be tightly controlled during the formation of the medium.

バブル形成媒体は1反射層、透過層、吸収層から成る層
構造であり、繰り返し反射干渉により光の吸収率を高め
高感度化を図っている。したがって、この媒体は現在最
も高感度な媒体の一つであるが、多層構造のため成膜回
数が多いことと、繰り返し反射干渉が各層の厚さに大き
く依存するため、成膜時の膜厚制御を厳しく行なわなけ
ればならないという欠点がある。
The bubble-forming medium has a layered structure consisting of a reflective layer, a transmitting layer, and an absorbing layer, and repeats reflection interference to increase the light absorption rate and achieve high sensitivity. Therefore, this medium is currently one of the most highly sensitive media, but because of its multilayer structure, it requires a large number of film formations, and because the repeated reflection interference largely depends on the thickness of each layer, the film thickness at the time of film formation is The disadvantage is that strict control is required.

一方、有機色素媒体は種々の形態で開発されている。そ
れらを大別すると色素単体型と色素を高分子樹脂中に溶
剤で溶解させた相溶型に分けられる。相溶型の媒体はた
とえば特開昭55−161690号に開示されているよ
うに、高分子樹脂であるポリビニールアセテートに色素
としてポリエステルイエローを溶剤で相溶し1回転塗布
法で基板上に形成される。しかしながら一般に相溶型の
媒体は、媒体形成法が溶媒塗布に限られ、基板に樹脂を
使用する場合は、樹脂を溶解しない溶剤を選択しなけれ
ばならないという制約がある。一方1色素単体型の媒体
としては、たとえばスクアIJ IJウム色素を蒸着法
で形成する媒体が特開昭56−46221号に開示され
ている。この色素は半導体レーザの発振波長である近赤
外波長領域に比較的大きな吸収があるが、記録感度はT
e合金よりも悪い。
On the other hand, organic dye media have been developed in various forms. They can be roughly divided into single dye types and compatible types in which the dye is dissolved in a polymer resin using a solvent. A compatible medium is, for example, as disclosed in JP-A No. 55-161690, in which polyvinyl acetate, which is a polymeric resin, is mixed with polyester yellow as a dye using a solvent, and formed on a substrate by a single rotation coating method. be done. However, in general, the method for forming a compatible medium is limited to solvent coating, and when a resin is used for the substrate, there is a restriction that a solvent that does not dissolve the resin must be selected. On the other hand, as a single dye type medium, for example, a medium in which a SQUARE IJIJum dye is formed by a vapor deposition method is disclosed in JP-A-56-46221. This dye has relatively large absorption in the near-infrared wavelength region, which is the oscillation wavelength of semiconductor lasers, but the recording sensitivity is T
Worse than e-alloy.

(発明の目的) 本発明の目的は、前述の従来技術の欠点を改良し、高感
度で化学的に安定な光学的情報記録媒体を提供すること
である。
(Objective of the Invention) An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a highly sensitive and chemically stable optical information recording medium.

(発明の構成) すなわち本発明は、基板の片側または両側に記録層を設
け、情報をレーザ光線によって記録し、かつ読み取る光
学的情報記録媒体において、前記記録層として化学構造
式 で表わされるナフトキノン系色素を主成分とする有機薄
膜を形成したことを特徴とする。
(Structure of the Invention) That is, the present invention provides an optical information recording medium in which a recording layer is provided on one or both sides of a substrate, and information is recorded and read by a laser beam. It is characterized by the formation of an organic thin film whose main component is dye.

(構成の詳細な説明) 上記化学構造式で表わされるナフトキノン系色素は近赤
外線領域に大きな吸収を示し、半導体レーザ光による記
録再生に好適である。この色素の合成例を次に示す。
(Detailed Description of Structure) The naphthoquinone dye represented by the above chemical structural formula exhibits large absorption in the near-infrared region, and is suitable for recording and reproduction using semiconductor laser light. An example of synthesis of this dye is shown below.

2.3−ジクロロナフタザリンをBr、と氷酢酸中で、
触媒量の沃素存在下で反応させると、2,3.6゜7−
チトラブロムナフタザリン0〕と2−クロロ−3,6,
7−ドリブロムナフタザリン叩がほぼ等しい比率で得ら
れる、 〔Dと叩の混合物1001n9をピリジン10m/に溶
解する。一方、2−アミノチオフェール507129と
KOH23rn9をピリジン2ゴに溶解させ、この溶液
を先の〔Dと叩のピリジン溶液に0℃で滴下し、0℃で
2時間反応させる0反応後、水に加え塩酸でPH4とし
、クロロホルムで抽出後溶媒を減圧下に留去し、結晶を
クロロホルムから再結晶することにより、目的物が収率
20チで得られる。
2.3-Dichloronaphthazarin in Br and glacial acetic acid,
When reacted in the presence of a catalytic amount of iodine, 2,3.6°7-
titrabromnaphthazarine 0] and 2-chloro-3,6,
7-Doribromnaphthazarine esters are obtained in approximately equal proportions. [A mixture of D and esters 1001n9 is dissolved in 10 m/p of pyridine. On the other hand, 2-aminothiophel 507129 and KOH23rn9 were dissolved in pyridine 2, this solution was added dropwise to the pyridine solution prepared above [D] at 0°C, and the mixture was reacted at 0°C for 2 hours. In addition, the pH was adjusted to 4 with hydrochloric acid, the solvent was distilled off under reduced pressure after extraction with chloroform, and the crystals were recrystallized from chloroform to obtain the desired product in a yield of 20 cm.

このようにして得られる色素(以下ナフトキノン色素と
略称)は以下に示す3種の化合物〔A〕。
The dyes thus obtained (hereinafter abbreviated as naphthoquinone dyes) are the following three compounds [A].

印〕、〔qの混合物である。It is a mixture of [mark] and [q.

この色素の吸収スペクトルをクロロホルム中で測定する
と630,685,750 nmに吸収ピークが観測さ
れ、λ直は75Q nmであるとか分った。前記ナフト
キノン色素は、比較的高温、高湿の環境条件でも安定で
あり、  Te合金のような空気中酸化による劣化は示
さない。このことは、保護膜無しで長規間の使用に耐え
ることを意味する。又この化合物は、一般の有機色素と
同様に低い熱伝導率を有しており、その値は金属の■〜
函である。したがって、レーザ光記録時の媒体中での熱
の拡散が少なくなり、光照射部の媒体温度を効率良く高
めることができる。
When the absorption spectrum of this dye was measured in chloroform, absorption peaks were observed at 630, 685, and 750 nm, and the λ axis was found to be 75Q nm. The naphthoquinone dye is stable even under relatively high temperature and high humidity environmental conditions, and does not show deterioration due to air oxidation unlike Te alloys. This means that it can withstand long-term use without a protective film. In addition, this compound has a low thermal conductivity similar to that of general organic dyes, and its value is lower than that of metals.
It's a box. Therefore, the diffusion of heat in the medium during laser beam recording is reduced, and the temperature of the medium at the light irradiation section can be efficiently raised.

記録媒体は、上記ナフトキノン色素を蒸着又は溶剤塗布
法により基板の片面又は両面に付着して形成される。基
板材料としては種々のものが使用できるが、一般にはガ
ラス、kl、合成樹脂が望ましい0合成樹脂としてはポ
リメチルメタクリル(PMMA)、ポリビニールクロラ
イド(PvC)。
The recording medium is formed by attaching the above naphthoquinone dye to one or both sides of a substrate by vapor deposition or solvent coating. Various materials can be used as the substrate material, but glass, KL, and synthetic resin are generally preferred. Examples of the synthetic resin include polymethyl methacrylate (PMMA) and polyvinyl chloride (PvC).

ポリサルホン、ポリカーボネート等がある。基板形状は
円板形状、テープ形状、シート形状が適用できる。基板
上に形成されたナフトキノン色素膜にレーザ光をレンズ
で収光して照射すると、照射部の色素膜が除去されて孔
が形成される。この孔形成の機構は明確ではないが、蒸
発(昇華)をともなう融解凝集に因ると考えられる。形
成される孔の大きさは、レーザ光の収光径、レーザパワ
ー。
Examples include polysulfone and polycarbonate. The substrate shape can be a disk shape, a tape shape, or a sheet shape. When the naphthoquinone dye film formed on the substrate is irradiated with laser light focused by a lens, the dye film in the irradiated area is removed and holes are formed. Although the mechanism of this pore formation is not clear, it is thought to be due to melting and aggregation accompanied by evaporation (sublimation). The size of the hole formed depends on the focused diameter of the laser beam and the laser power.

照射時間に依存するが、大体0.2〜3μmであること
が望ましい。このような孔形成に必要なレーザエネルギ
ーは小さなものであり、したがって、短時間で孔形成が
可能である。情報の記録は、2進情報を孔の有無に対応
させてることによりなされる。通常円板状媒体を等速回
転させて、記録情報に合わせて孔を形成して情報を記録
する。なお。
Although it depends on the irradiation time, it is preferably about 0.2 to 3 μm. The laser energy required to form such a hole is small, and therefore the hole can be formed in a short time. Information is recorded by associating binary information with the presence or absence of holes. Information is usually recorded by rotating a disk-shaped medium at a constant speed and forming holes in accordance with the recorded information. In addition.

以上の場合において色素膜の膜厚は0.01〜0.5μ
mで、好適には0.02〜0.2μmである。
In the above cases, the thickness of the pigment film is 0.01 to 0.5μ
m, preferably 0.02 to 0.2 μm.

このように記録された情報(孔)の読み出しは。To read out the information (holes) recorded in this way.

媒体からの反射光又は透過光の光量変化を検出すること
によりなされる。一般に反射光を検出する方法が採用さ
れる。これは1反射光検出の方が光学系が簡単になるた
めである。即ち、一つの光学系で投光と集光が可能であ
るためである。読み出しはレーザ光を連続させて照射す
る。その時の光量は媒体に何らかの形状変化が起らない
弱いエネルギーに設定され1通常記録時の光量の去〜1
である。
This is done by detecting changes in the amount of light reflected or transmitted from the medium. Generally, a method of detecting reflected light is adopted. This is because the optical system is simpler when detecting one reflected light. That is, this is because one optical system can project and collect light. For reading, laser light is continuously irradiated. The amount of light at that time is set to a weak energy that does not cause any shape change to the medium.
It is.

記録、再生時の光の入射方向として、媒体面側と基板面
側の2通りがある。本例の如き単層媒体では両方向の配
置とも使用可能である。基板面側入射では、媒体面上に
付着した塵埃に影響されることなく記録、再生が可能で
あり、より望ましい形態である。なお、媒体が形成され
ている面の反対側の基板面上に付着した塵埃及びその面
のキズ等の欠陥は、基板厚さが1絽以上であれば、その
面でのビーム径が充分大きいので記録、再生に悪影響を
与えない。
There are two directions of incidence of light during recording and reproduction: toward the medium surface and toward the substrate surface. Both orientations can be used with single layer media such as the present example. When the light is incident on the substrate surface side, recording and reproduction are possible without being affected by dust attached to the medium surface, which is a more desirable form. Note that defects such as dust and scratches on the substrate surface opposite to the surface on which the medium is formed will cause the beam diameter on that surface to be sufficiently large if the substrate thickness is 1 kat or more. Therefore, it does not adversely affect recording and playback.

情報は孔列として記録される。孔列は一般に同心円状又
はスパイラル状の多数のトラックを形成する。再生する
場合、光ビームは特定トラックの孔列上を精度良く追跡
する必要がある。これを実現する一つの手段として回転
機構の精度を空気軸受などを使用して高めるという方法
がある。しかし、この場合は5回転系が複雑となり、又
高価となるので実用的ではない、より望ましいのは、基
板上に光の案内溝を設ける方法である。ビーム径程度の
溝に光が入射すると、光が回折される、ビーム中心が溝
からずれるにつれて回折光強度の空間分布が異なり、こ
れを検出して、ビームを溝の中心に入射させるようにサ
ーボ系を構成することができる。通常溝の幅は、0.6
〜1.2μm、その深さは使用する記録再生波長のi−
7の範囲に設定される。したがって記録層は溝付基板面
上に形成される。
Information is recorded as a series of holes. The rows of holes generally form a number of concentric or spiral tracks. When reproducing, the light beam needs to accurately track the hole array of a specific track. One way to achieve this is to increase the precision of the rotating mechanism by using air bearings or the like. However, in this case, the 5-rotation system becomes complicated and expensive, so it is not practical. A more desirable method is to provide a light guide groove on the substrate. When light enters a groove with the same diameter as the beam, the light is diffracted.As the beam center shifts from the groove, the spatial distribution of the intensity of the diffracted light changes.This is detected and the servo is set to direct the beam to the center of the groove. system can be constructed. Normal groove width is 0.6
~1.2 μm, its depth is i- of the recording/reproducing wavelength used.
The range is set to 7. The recording layer is therefore formed on the grooved substrate surface.

以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

(実施例) 1.2rnvt厚の円板状のアクリル基板上に、ナフト
キノン色素を抵抗加熱法で蒸着し、膜厚800Aの膜を
得た。抵抗加熱ボート材はMoであり、蒸着時の真空度
は9 X 1O−6Torr  以下とした。基板は室
温自然放置とし、蒸着による基板温度の上昇はほとんど
認められなかった。ボート温度を徐々に上げて行くと2
55℃で昇華が始まり、この温度に固定して蒸着した。
(Example) A naphthoquinone dye was deposited on a disk-shaped acrylic substrate with a thickness of 1.2rnvt by a resistance heating method to obtain a film with a thickness of 800A. The resistance heating boat material was Mo, and the degree of vacuum at the time of vapor deposition was 9×10−6 Torr or less. The substrate was left to stand at room temperature, and almost no rise in substrate temperature due to vapor deposition was observed. Gradually increasing the boat temperature 2
Sublimation started at 55°C, and the vapor deposition was carried out by fixing this temperature.

蒸着速度はIA/scである。The deposition rate is IA/sc.

なお、本色素の分解温度は300℃以上であり、蒸着温
度より十分高い、この膜の吸収率を波長780nmで基
板側より測定すると35チ、膜面側より測定すると29
チであった。
The decomposition temperature of this dye is 300°C or higher, which is sufficiently higher than the vapor deposition temperature.The absorption rate of this film is 35 cm when measured from the substrate side at a wavelength of 780 nm, and 29 cm when measured from the film surface side.
It was Chi.

添付図は、このようにして形成された媒体を示している
。アクリル基板10上は色素膜20が形成されている。
The accompanying figures show the media thus formed. A dye film 20 is formed on the acrylic substrate 10.

この媒体に矢印30の方向から波長780nmの半導体
レーザ光を光学系(図示せず)で集光して照射した。こ
の場合、レーザ光は媒体面上ノハワーテ10mW、照射
時間500nseC1線速3m/式である。この記録に
より1色素膜20中に約1μm前後の径の孔(ビット)
40が形成された。なお。
This medium was irradiated with semiconductor laser light with a wavelength of 780 nm in the direction of arrow 30, condensed by an optical system (not shown). In this case, the laser beam power was 10 mW on the medium surface, the irradiation time was 500 nsec, and the linear velocity was 3 m/type. According to this record, holes (bits) with a diameter of approximately 1 μm are formed in one pigment film 20.
40 were formed. In addition.

レーザ光の媒体面上でのビーム径は約1.5μmgであ
る。レーザ光をQ、7mWの連続光として、記録ビット
を再生すると良好な再生信号が得られた。
The beam diameter of the laser beam on the medium surface is approximately 1.5 μmg. When the recorded bits were reproduced using a continuous laser beam of Q and 7 mW, a good reproduced signal was obtained.

矢印50の方向からレーザ光を入射しても、同様な記録
再生特性が得られた。
Even when laser light was incident from the direction of arrow 50, similar recording and reproducing characteristics were obtained.

本実施例では色素単層を記録層として用いる例を示した
が、記録層の上又は記録層と基板の間に。
In this example, an example was shown in which a single layer of dye was used as the recording layer, but it could be used on the recording layer or between the recording layer and the substrate.

金属、酸化物、有機物などを保護17反反射幅などの目
的に応じて付加することができる。な右本発明の媒体を
高温、高湿で寿命試験を行なった結果数年以上の寿命が
予想できた。
Metals, oxides, organic substances, etc. can be added depending on the purpose such as the protection 17 anti-reflection width. As a result of life tests conducted on the media of the present invention at high temperatures and high humidity, it was predicted that the media would have a lifespan of several years or more.

(発明の効果) 上記実施例から明ら力1なように1本発明により得られ
る光学的情報記録媒体は、高感度であり。
(Effects of the Invention) As is clear from the above examples, the optical information recording medium obtained by the present invention has high sensitivity.

かつ化学的に安定であり、加えて媒体形成が容易である
という優れた工業的利点を有していることが判る。
It can be seen that it has excellent industrial advantages in that it is chemically stable and, in addition, it is easy to form a medium.

【図面の簡単な説明】[Brief explanation of the drawing]

図は1本発明による光学的情報媒体の断面図であり1図
中10は基板、20は色素膜、30.50は光の入射方
向、40は孔を示す。
The figure is a cross-sectional view of an optical information medium according to the present invention. In the figure, 10 indicates a substrate, 20 indicates a dye film, 30.50 indicates a light incident direction, and 40 indicates a hole.

Claims (1)

【特許請求の範囲】 基板の片側または両側に記録層を設け、情報をレーザ光
線によって記録し、かつ読み取る光学的情報記録媒体に
おいて、前記記録層として化学構造式 ▲数式、化学式、表等があります▼ 及び ▲数式、化学式、表等があります▼ で表わされるナフトキノン系色素を主成分とする有機薄
膜を形成したことを特徴とする光学的情報記録媒体。
[Claims] In an optical information recording medium in which a recording layer is provided on one or both sides of a substrate and information is recorded and read by a laser beam, the recording layer includes a chemical structural formula, a mathematical formula, a chemical formula, a table, etc. An optical information recording medium characterized by forming an organic thin film mainly composed of naphthoquinone dyes represented by ▼ and ▲numeric formulas, chemical formulas, tables, etc.▼.
JP59164446A 1984-08-06 1984-08-06 Optical information recording medium Pending JPS6141597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164446A JPS6141597A (en) 1984-08-06 1984-08-06 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164446A JPS6141597A (en) 1984-08-06 1984-08-06 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPS6141597A true JPS6141597A (en) 1986-02-27

Family

ID=15793321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164446A Pending JPS6141597A (en) 1984-08-06 1984-08-06 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS6141597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204273A (en) * 1985-03-08 1986-09-10 Mitsubishi Chem Ind Ltd Phenothiazinequinone derivative
US6218072B1 (en) * 1997-11-20 2001-04-17 Taiyo Yuden Co., Ltd. Optical information recording medium
JP2012520445A (en) * 2009-03-13 2012-09-06 エフ.ホフマン−ラ ロシュ アーゲー Method for manufacturing analytical consumables

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204273A (en) * 1985-03-08 1986-09-10 Mitsubishi Chem Ind Ltd Phenothiazinequinone derivative
US6218072B1 (en) * 1997-11-20 2001-04-17 Taiyo Yuden Co., Ltd. Optical information recording medium
JP2012520445A (en) * 2009-03-13 2012-09-06 エフ.ホフマン−ラ ロシュ アーゲー Method for manufacturing analytical consumables

Similar Documents

Publication Publication Date Title
JPH0415115B2 (en)
JPS6052940A (en) Optical recording medium
JPH0415112B2 (en)
JPS6063744A (en) Optical information recording medium
JPS6141597A (en) Optical information recording medium
JP4090127B2 (en) Optical recording material
JPH0568016B2 (en)
JP4127925B2 (en) Optical recording material
JPH0567438B2 (en)
JPS6089842A (en) Optical recording medium
JPS61246092A (en) Optical information-recording medium
JPS61244588A (en) Optical information-recording medium
JPS61273987A (en) Optical information recording medium
JPS59131493A (en) Manufacture of optical recording medium
JPS639578A (en) Optical recording medium
JPS60150243A (en) Optical information recording medium
JPH0251391B2 (en)
JPS639577A (en) Optical information recording medium
JPS60197954A (en) Optical information recording medium
JPS62125552A (en) Optical recording medium
JPH0250874B2 (en)
JPS61104345A (en) Optical information recording medium
JPH0251393B2 (en)
JPS60150241A (en) Optical recording medium and its manufacture
JPS60190388A (en) Optical recording medium