[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61290753A - Complementary type mis semiconductor integrated circuit device - Google Patents

Complementary type mis semiconductor integrated circuit device

Info

Publication number
JPS61290753A
JPS61290753A JP60131920A JP13192085A JPS61290753A JP S61290753 A JPS61290753 A JP S61290753A JP 60131920 A JP60131920 A JP 60131920A JP 13192085 A JP13192085 A JP 13192085A JP S61290753 A JPS61290753 A JP S61290753A
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor element
element formation
electrode
formation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131920A
Other languages
Japanese (ja)
Other versions
JPH0770686B2 (en
Inventor
Toshiaki Tsuchiya
敏章 土屋
Ban Nakajima
中島 蕃
Susumu Muramoto
村本 進
Eisuke Arai
荒井 英輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60131920A priority Critical patent/JPH0770686B2/en
Publication of JPS61290753A publication Critical patent/JPS61290753A/en
Publication of JPH0770686B2 publication Critical patent/JPH0770686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • H01L27/092

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve radiation resistance by forming a shielding plate electrode and a groove electrode in an element isolation region in a complementary type MISIC. CONSTITUTION:n<+> diffusion layers 12 are shaped in an element forming region 1 in p-type silicon while a gate electrode 6 is formed through a gate oxide film 3 as the surface. p<+> diffusion layers 13 are shaped in an element forming region 2 in n-type silicon while a gate electrode 7 is formed through the gate oxide film 3 as the surface. Shielding plate electrodes 4, 5 are shaped in the element isolation regions, and predetermined voltage V2, V1 is each applied. Groove electrodes 9 are formed to the lower sections of the electrodes 5, and connected to the electrodes 5. Accordingly, total-dose resistance by radiation exposure can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、放射線耐性の高い相補形MIS(Metal
 −In5ulator −Sem1conducto
r)半導体集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention provides a highly radiation-resistant complementary MIS (Metal
-In5ulator -Sem1conducto
r) It relates to semiconductor integrated circuits.

〔従来技術及びその問題点〕[Prior art and its problems]

従来、この種の半導体集積回路においては、厚いフィー
ルド酸化膜を用い、て素子間分離を行なっていた。
Conventionally, in this type of semiconductor integrated circuit, a thick field oxide film has been used to isolate elements.

ところが、このような装置に電子線などの放射線が照射
された場合には、放射線照射によって発生する酸化膜中
の電荷や酸化膜−半導体基板の界面準位によってフラッ
トバンド電圧が顕著に変動し、素子間分離の機能が著し
く損なわれ、そのためいわゆるトータル・ドーズ耐量が
低くなるという欠点があった。
However, when such a device is irradiated with radiation such as an electron beam, the flat band voltage fluctuates significantly due to the charges in the oxide film generated by the radiation irradiation and the interface state between the oxide film and the semiconductor substrate. This has the disadvantage that the element isolation function is significantly impaired, resulting in a lower so-called total dose tolerance.

さらに、宇宙環境下においては、高エネルギーの重粒子
が存在し、その重粒子が半導体集積回路に入射した際に
半導体領域内に多量の電子−正孔対を発生させるが、相
補形MIS半導体集積回路においては、この発生電荷が
トリガとなってラッチアップが生じ、そのため回路機能
が失われたり。
Furthermore, in the space environment, high-energy heavy particles exist, and when these heavy particles enter a semiconductor integrated circuit, they generate a large number of electron-hole pairs within the semiconductor region. In circuits, this generated charge acts as a trigger and causes latch-up, resulting in loss of circuit function.

素子が破損したりするという問題がある。There is a problem that the element may be damaged.

上記のラッチアップを防止するには、拡散層とウェル間
隔を充分離す必要があり、そのため、ラッチアップ耐性
を高くすると集積密度を大きくすることが困難になり、
従ってラッチアップ耐性が高く、しかも高集積密度の半
導体集積回路を実現することは困難であった。
In order to prevent the above latch-up, it is necessary to provide sufficient distance between the diffusion layer and the well. Therefore, increasing the latch-up resistance makes it difficult to increase the integration density.
Therefore, it has been difficult to realize a semiconductor integrated circuit with high latch-up resistance and high integration density.

また、この解決策として低抵抗基板とその上に成長させ
たエピタキシャル層とを利用し、寄生抵抗を低くするこ
とによってラッチアップ耐性を向上させる方法も考えら
れるが、その効果は充分ではなく、またこの方法を用い
たとしても厚いフィールド酸化膜を用いている従来の素
子間分離技術では、トータル・ドーズ耐量は依然として
低いという問題があった。
Another possible solution to this problem is to improve latch-up resistance by lowering the parasitic resistance by using a low-resistance substrate and an epitaxial layer grown on it, but the effect is not sufficient, and Even if this method is used, the conventional device isolation technology using a thick field oxide film still has a problem in that the total dose tolerance is still low.

本発明は、上記のごとき従来技術の問題点を解決するた
めになされたものであり、トータル・ドーズ耐量とラッ
チアップ耐性との両者を向上させた相補形MIS半導体
集積回路を提供することを目的とするものである。
The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a complementary MIS semiconductor integrated circuit with improved total dose tolerance and latch-up tolerance. That is.

〔問題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため本発明においては、相補形M
IS半導体集積回路において、第1の導電形の半導体素
子形成領域上に形成されたMIS構造の第2の導電形の
ゲート電極と、上記第1の導電形の半導体素子形成領域
上の素子分離領域に形成され、かつ第1の所定電圧が印
加されたMIS構造の第2の導電形のシールド・プレー
ト電極と、第2の導電形の半導体素子形成領域上に形成
されたMIS構造の第2の導電形のゲート電極と、上記
第2の導電形の半導体素子形成領域上の素子分離領域に
形成され、かつ第2の所定電圧が印加されたMIS構造
の第2の導電形のシールド・プレート電極と、上記半導
体素子形成領域内の素子分離領域の所定部分に形成され
た溝と、上記溝の内壁面に設けられた絶縁膜と、上記絶
縁膜の内部に配設され、かつ上記第2の導電形のシール
ド・プレート電極と電気的に接続されたMIS構造の第
2の導電形の溝電極と、上記s1の導電形及び第2の導
電形の半導体素子形成領域の少なくとも一方の領域内で
かつ上記溝の開口部周辺の所定領域に形成された第2の
導電形の拡散層とを備え、かつ第1の導電形及び第2の
導電形の半導体素子形成領域の少なくとも一方の領域内
に形成した上記拡散層のいずれか一方もしくは両方と上
記第2の導電形のシールド・プレート電極とを電気的に
接続した構造を有する。
In order to achieve the above object, in the present invention, the complementary form M
In an IS semiconductor integrated circuit, a gate electrode of a second conductivity type of an MIS structure formed on a semiconductor element formation region of the first conductivity type, and an element isolation region on the semiconductor element formation region of the first conductivity type. a second conductivity type shield plate electrode of the MIS structure formed on the semiconductor element formation region of the second conductivity type and to which the first predetermined voltage is applied; a gate electrode of a conductivity type; and a shield plate electrode of a second conductivity type of the MIS structure formed in an element isolation region on the semiconductor element formation region of the second conductivity type and to which a second predetermined voltage is applied. a trench formed in a predetermined portion of the element isolation region in the semiconductor element forming region; an insulating film provided on the inner wall surface of the trench; and a second trench disposed inside the insulating film. A second conductivity type groove electrode of the MIS structure electrically connected to the conductivity type shield plate electrode, and within at least one of the conductivity type s1 and the second conductivity type semiconductor element formation region. and a second conductivity type diffusion layer formed in a predetermined region around the opening of the groove, and in at least one of the first conductivity type and the second conductivity type semiconductor element formation region. It has a structure in which either one or both of the formed diffusion layers and the shield plate electrode of the second conductivity type are electrically connected.

〔作用〕[Effect]

上記のように構成することにより、上記半導体素子形成
領域上の素子分離領域に形成されたMIS構造のシール
ド・プレート電極によってトータル・ドーズ耐量が向上
すると共に、各素子と素子間に形成される寄生トランジ
スタとの間が上記の溝で遮られ、寄生トランジスタ間の
正帰還作用が妨げられるため、ラッチアップ耐性を向上
させることができる。
With the above configuration, the shield plate electrode of the MIS structure formed in the element isolation region on the semiconductor element formation region improves the total dose tolerance, and also reduces the parasitic effects formed between each element. Since the trench is blocked from the transistor and positive feedback between the parasitic transistors is prevented, latch-up resistance can be improved.

また、上記の溝電極と拡散層とが同電位になるため、絶
縁膜の絶縁耐性に起因する問題が防止され、さらに、電
子線等の放射線照射によって絶縁膜内に正電荷が発生し
、この電荷によって溝周囲に反転層が形成された場合に
、この反転層と上記の拡散層とが同電位になるため9反
転層と溝電極とに挟まれた絶縁膜に電位差が生じること
がなく。
In addition, since the above-mentioned groove electrode and the diffusion layer have the same potential, problems caused by the insulation resistance of the insulating film are prevented, and furthermore, positive charges are generated in the insulating film by irradiation with radiation such as electron beams. When an inversion layer is formed around the groove due to charges, this inversion layer and the above-mentioned diffusion layer have the same potential, so that no potential difference occurs in the insulating film sandwiched between the inversion layer and the groove electrode.

この部分の絶縁膜の絶縁耐性に起因する問題も防止され
るという効果が得られる。
This has the effect that problems caused by the insulation resistance of the insulating film in this portion can also be prevented.

以下に、図面を用いて詳細に説明する。A detailed explanation will be given below using the drawings.

〔実施例〕〔Example〕

第1図は、本発明の第1の実施例の断面図であるや 第1図において、1はp形シリコンの半導体素子形成領
域、2はn形シリコンの半導体素子形成領域、3はゲー
ト酸化膜、4と5はn形ポリシリコンのシールド・プレ
ート電極、6と7はn形ポリシリコンのゲート電極、8
はシリコン酸化膜、9はn形ポリシリコンの導電極、 
10.11及び12はn+拡散層、13はp+拡散層で
あり、vl、■2及びV2′は各々所定の電圧である。
FIG. 1 is a sectional view of the first embodiment of the present invention. In FIG. 1, 1 is a p-type silicon semiconductor element formation region, 2 is an n-type silicon semiconductor element formation region, and 3 is a gate oxidation region. 4 and 5 are n-type polysilicon shield plate electrodes, 6 and 7 are n-type polysilicon gate electrodes, 8
9 is a silicon oxide film, 9 is an n-type polysilicon conductive electrode,
10. 11 and 12 are n+ diffusion layers, 13 is a p+ diffusion layer, and vl, 2 and V2' are respective predetermined voltages.

第1@に示すように、素子分離領域がn形ポリシリコン
で形成されたシールド・プレート電極4及び5を含むM
IS構造によって構成されており、該電極4には所定電
圧v2が印加され、該電極5には所定電圧V□が印加さ
れている。該MIS構造によりp形の半導体領域及びn
形の半導体領域が反転層6を形成するのを防止できるの
で、酸化膜3は数100Å以下にまで薄くすることが可
能であるため、放射線に対するトータル・ドーズ耐量を
向上させることができる。
As shown in the first @, the device isolation region includes shield plate electrodes 4 and 5 made of n-type polysilicon.
It has an IS structure, and a predetermined voltage v2 is applied to the electrode 4, and a predetermined voltage V□ is applied to the electrode 5. The MIS structure allows a p-type semiconductor region and an n
Since it is possible to prevent the shaped semiconductor region from forming the inversion layer 6, the oxide film 3 can be made as thin as several hundred angstroms or less, so that the total dose resistance against radiation can be improved.

また、第1図の構成においては、n形シリコンの半導体
素子形成領域2とp形シリコンの半導体素子形成領域1
の境界を含むように溝が形成され、該溝の内壁面に絶縁
膜としてシリコン酸化膜8が形成され、さらに、該シリ
コン酸化膜8の内部がn形ポリシリコン9で埋め込まれ
、n形ポリシリコンのシールド・プレート電極5と電気
的に接続され、所定電圧V□が印加されている。この場
合、高エネルギー重粒子照射によるラッチ・アップ問題
については、n+拡散層12、p形シリコンの半導体素
子形成領域1、n形シリコンの半導体素子形成領域2で
形成される寄生の横型npnトランジスタと、p+拡散
層13、n形シリコンの半導体素子形成領域2+ p形
シリコンの半導体素子形成領域1で形成される寄生の縦
型pnpトランジスタとの間が、上記溝で遮られるため
、両トランジスタの正帰還作用が妨げられ、ラッチ・ア
ップ耐性を向上させることができる。
In addition, in the configuration shown in FIG. 1, a semiconductor element formation region 2 of n-type silicon and a semiconductor element formation region 1 of p-type silicon are used.
A trench is formed to include the boundary of the trench, a silicon oxide film 8 is formed as an insulating film on the inner wall surface of the trench, and the inside of the silicon oxide film 8 is filled with n-type polysilicon 9 to form an n-type polysilicon. It is electrically connected to a silicon shield plate electrode 5, and a predetermined voltage V□ is applied thereto. In this case, the latch-up problem caused by high-energy heavy particle irradiation can be solved by a parasitic lateral npn transistor formed by the n+ diffusion layer 12, the p-type silicon semiconductor element formation region 1, and the n-type silicon semiconductor element formation region 2. , the p+ diffusion layer 13, the n-type silicon semiconductor element formation region 2+, and the parasitic vertical pnp transistor formed in the p-type silicon semiconductor element formation region 1 are blocked by the groove, so that the positive Feedback action is prevented and latch-up resistance can be improved.

さらに、第1図の構成では、n形シリコンの半導体素子
形成領域2内で溝の開口部周辺に形成されたn形の拡散
層11と、p形シリコンの半導体素子形成領域1内で溝
の開口部周辺に形成されたn形の拡散層10が、溝内面
のMIS構造の導電極9及びn形シリコンの半導体素子
形成領域2上の素子分離領域を構成しているMISp造
のn形ポリシリコンのシールド・プレート電極5と電気
的に接続され、所定電圧v1が印加されている。本実施
例では、n+拡散層10及び11はイオン注入など特別
なプロセスを追加することなく、n形ポリシリコンで構
成される。すなわち、シールド・プレート電極5を形成
する前に所定の領域のゲート酸化膜3の一部を除去して
おけば、シールド・プレート電極5の形成後、例えばソ
ース・ドレイン層の形成工程に含まれる熱処理工程によ
ってシールド・プレート電極5のn形ポリシリコンから
n形不純物が半導体素子形成領域1及び2に拡散されて
形成される。n+拡散層10及び11を有することによ
り、n1拡散層10及び11と、n形の半導体素子形成
領域2及び導電極9が同電位になるため、導電極9とn
+拡散層10に挟まれた酸化膜8及び導電極9とn形シ
リコン領域2及びn+拡散層11に挟まれた酸化膜8に
は電圧差が生じないため、この部分の酸化膜の絶縁耐性
に起因する問題が防止される。また、電子線などの放射
線照射によって酸化膜8内に正電荷が発生するが、この
電荷によって、p形の半導体素子形成領域1の溝周囲に
反転層が形成された場合には、この反転層とp形の半導
体素子形成領域1内のn+拡散層10は同電位になるた
め、反転層と導電極9に挟まれた酸化膜8には電位差が
生じないため、この部分の酸化膜の絶縁耐性に起因する
問題も防止される。
Furthermore, in the configuration of FIG. 1, an n-type diffusion layer 11 formed around the opening of the trench in the n-type silicon semiconductor element formation region 2 and a trench opening in the p-type silicon semiconductor element formation region 1 are formed. The n-type diffusion layer 10 formed around the opening constitutes the conductive electrode 9 of the MIS structure on the inner surface of the trench and the element isolation region on the n-type silicon semiconductor element formation region 2. It is electrically connected to a silicon shield plate electrode 5, and a predetermined voltage v1 is applied thereto. In this embodiment, the n+ diffusion layers 10 and 11 are made of n-type polysilicon without adding any special process such as ion implantation. That is, if a part of the gate oxide film 3 in a predetermined region is removed before forming the shield plate electrode 5, the process of forming the source/drain layer, for example, can be performed after forming the shield plate electrode 5. Through the heat treatment process, n-type impurities are diffused from the n-type polysilicon of the shield plate electrode 5 into the semiconductor element forming regions 1 and 2. By having the n+ diffusion layers 10 and 11, the n1 diffusion layers 10 and 11, the n-type semiconductor element formation region 2, and the conductive electrode 9 have the same potential, so that the conductive electrode 9 and the n
Since no voltage difference occurs between the oxide film 8 sandwiched between the + diffusion layer 10 and the conductive electrode 9 and the oxide film 8 sandwiched between the n-type silicon region 2 and the n+ diffusion layer 11, the insulation resistance of the oxide film in this part is reduced. problems caused by this will be prevented. In addition, positive charges are generated in the oxide film 8 by radiation irradiation such as electron beams, and if an inversion layer is formed around the groove in the p-type semiconductor element forming region 1 due to this charge, this inversion layer Since the n+ diffusion layer 10 in the p-type semiconductor element formation region 1 has the same potential, there is no potential difference between the oxide film 8 sandwiched between the inversion layer and the conductive electrode 9, so the insulation of the oxide film in this part Problems due to resistance are also prevented.

第2図は本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the invention.

第2図において、14はp形の低抵抗シリコン基板、1
5はp形のエピタキシ゛ヤル・シリコン層である。
In FIG. 2, 14 is a p-type low resistance silicon substrate;
5 is a p-type epitaxial silicon layer.

本実施例は、本発明をp++形基板上に成長させたp形
エピタキシャル層を半導体素子形成領域として、適用し
た場合である。この場合には、低抵抗基板14の効果に
よって、寄生抵抗が減少するため、前記第1の実施例に
おいて説明した溝分離の効果とあいまって、ラッチ・ア
ップ耐性がさらに向上する。この向上効果は、溝の深さ
に依存し、プロセス中の熱処理による抵抗抗基板14か
らエピタキシャル成長層15への不純物拡散を考慮する
と、溝の深さは、エピタキシャル成長層の厚さの4割以
上深くすることが必要である。
This embodiment is a case where the present invention is applied to a p-type epitaxial layer grown on a p++-type substrate as a semiconductor element formation region. In this case, the parasitic resistance is reduced due to the effect of the low resistance substrate 14, and this, together with the trench isolation effect described in the first embodiment, further improves the latch-up resistance. This improvement effect depends on the depth of the groove, and considering the diffusion of impurities from the resistance substrate 14 to the epitaxial growth layer 15 due to heat treatment during the process, the depth of the groove should be at least 40% deeper than the thickness of the epitaxial growth layer. It is necessary to.

第3図は本発明の第3の実施例を示す断面図であり1本
実施例の構成においては、第2図におけるn+拡散層1
0が省略されている。すなねち、溝内壁の酸化膜8の耐
圧上の問題がなければ、第2図におけるn+拡散層10
は第3図のように省略することが可能であり、これによ
り高密度の集積回路を形成することができる。
FIG. 3 is a sectional view showing a third embodiment of the present invention. In the configuration of this embodiment, the n+ diffusion layer 1 in FIG.
0 is omitted. In other words, if there is no problem with the breakdown voltage of the oxide film 8 on the inner wall of the groove, the n+ diffusion layer 10 in FIG.
can be omitted as shown in FIG. 3, thereby making it possible to form a high-density integrated circuit.

第4図は本発明の第4の実施例を示す断面図である。こ
れまで内壁に酸化膜8を有し、n形のポリシリコン9で
埋め込まれた溝が、p形シリコンの半導体素子形成領域
1とn形シリコンの半導体素子形成領域2の境界を含む
ように配置されていたが、第4図では、さらに、他のシ
ールド・プレート電極下に配置されており、溝内部のn
形ポリシリコン電極9は、n形ポリシリコンのシールド
・プレート電極4と電気的に接続され、所定電圧v2が
印加されている。このように、溝分離を多用することに
より、ラッチ・アップ耐性はより向上する。また、第4
図に示すように、本実施例においても、このような溝分
離がn形シリコンの半導体素子形成領域2内でシールド
・プレート電極5の下に設けてあり、導電極9をシール
ド・プレート電極5と電気的に接続し、所定電圧V工を
印加しであるので、これによってもラッチ・アップ耐性
が向上することはいうまでもない。
FIG. 4 is a sectional view showing a fourth embodiment of the present invention. Up to now, the groove, which has an oxide film 8 on its inner wall and is filled with n-type polysilicon 9, has been arranged so as to include the boundary between the p-type silicon semiconductor element formation region 1 and the n-type silicon semiconductor element formation region 2. However, in Fig. 4, it is further placed under the other shield plate electrode, and the n inside the groove is
The type polysilicon electrode 9 is electrically connected to the n-type polysilicon shield plate electrode 4, and a predetermined voltage v2 is applied thereto. In this way, the latch-up resistance is further improved by frequently using trench isolation. Also, the fourth
As shown in the figure, in this embodiment as well, such groove separation is provided below the shield plate electrode 5 in the n-type silicon semiconductor element formation region 2, and the conductive electrode 9 is connected to the shield plate electrode 5. Needless to say, this also improves the latch-up resistance since it is electrically connected to the terminal and a predetermined voltage V is applied.

なお、これまでnウェルを用いた構造で、本発明の実施
例を示したが、pウェルを用いた構造、あるいは両ウェ
ルを用いた構造にも、本発明が実施できることはいうま
でもない。また、低抵抗の半導体領域14はn形でもp
形でも本発明は実施されうる。さらに、MOSFETの
ゲート電極及びシールド・プレート電極の、材料は低抵
抗化のため。
Although the embodiments of the present invention have been shown in the structure using an n-well, it goes without saying that the present invention can also be implemented in a structure using a p-well or a structure using both wells. Furthermore, the low resistance semiconductor region 14 may be of n-type or p-type.
The present invention can also be carried out in this form. Furthermore, the materials used for the gate electrode and shield plate electrode of the MOSFET are designed to reduce resistance.

ポリシリコン上に金属材料をはり合わせた、いわゆるポ
リサイド構造にすることもできる。
It is also possible to have a so-called polycide structure in which a metal material is bonded onto polysilicon.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、シールド・プレー
ト電極を設けたことにより酸化膜を薄くすることができ
、放射線照射によるトータル・ドーズ耐量を向上させる
ことができ、かつ、素子分離領域に溝を設けることによ
りラッチ・アップ耐性を向上させることができる。
As explained above, according to the present invention, by providing the shield plate electrode, the oxide film can be made thinner, the total dose resistance due to radiation irradiation can be improved, and the grooves in the element isolation region can be made thinner. By providing this, latch-up resistance can be improved.

また、溝周囲の半導体素子形成領域表面上のゲート酸化
膜を一部除去しておき、シールド・プレート電極部材か
ら不純物を拡散させることにより半導体素子形成領域表
面と高不純物濃度層を設けることによって、溝内部の酸
化膜の耐性を向上させることができる。
In addition, a portion of the gate oxide film on the surface of the semiconductor element formation region around the groove is removed, and impurities are diffused from the shield plate electrode member to form a high impurity concentration layer on the surface of the semiconductor element formation region. The resistance of the oxide film inside the trench can be improved.

さらに、シールド・プレート電極とゲート電極の導電形
が同一なので電極材料への不純物導入工程が簡略である
効果もある。
Furthermore, since the conductivity types of the shield plate electrode and the gate electrode are the same, the process of introducing impurities into the electrode material is simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図はそれぞれ本発明の実施例を示す断面
図である。 1・・・p形シリコンの半導体素子形成領域2・・・n
形シリコンの半導体素子形成領域3・・・ゲート酸化膜 4.5・・・n形ポリシリコンのシールド・プレート電
極 6.7・・・n形ポリシリコンのゲート電極8・・・シ
リコン酸化膜 9・・・n形ポリシリコンの導電極 10.11.12− n+拡散層 13・・・P+拡散層
1 to 4 are cross-sectional views showing embodiments of the present invention, respectively. 1...p-type silicon semiconductor element formation region 2...n
Semiconductor element formation region 3 of type silicon...gate oxide film 4.5...shield plate electrode of n-type polysilicon 6.7...gate electrode 8 of n-type polysilicon...silicon oxide film 9 ...N-type polysilicon conductive electrode 10.11.12- n+ diffusion layer 13...P+ diffusion layer

Claims (1)

【特許請求の範囲】[Claims]  相補形MIS半導体集積回路において、第1の導電形
の半導体素子形成領域上に形成されたMIS構造の第2
の導電形のゲート電極と、上記第1の導電形の半導体素
子形成領域上の素子分離領域に形成され、かつ第1の所
定電圧が印加されたMIS構造の第2の導電形のシール
ド・プレート電極と、第2の導電形の半導体素子形成領
域上に形成されたMIS構造の第2の導電形のゲート電
極と、上記第2の導電形の半導体素子形成領域上の素子
分離領域に形成され、かつ第2の所定電圧が印加された
MIS構造の第2の導電形のシールド・プレート電極と
、上記半導体素子形成領域内の素子分離領域の所定部分
に形成された溝と、上記溝の内壁面に設けられた絶縁膜
と、上記絶縁膜の内部に配設され、かつ上記第2の導電
形のシールド・プレート電極と電気的に接続されたMI
S構造の第2の導電形の溝電極と、上記第1の導電形及
び第2の導電形の半導体素子形成領域の少なくとも一方
の領域内でかつ上記溝の開口部周辺の所定領域に形成さ
れた第2の導電形の拡散層とを備え、かつ第1の導電形
及び第2の導電形の半導体素子形成領域内の少なくとも
一方の領域に形成した上記拡散層のいずれか一方もしく
は両方と上記第2の導電形のシールド・プレート電極と
を電気的に接続した構造を有する相補形MIS半導体集
積回路。
In a complementary MIS semiconductor integrated circuit, a second MIS structure formed on a semiconductor element formation region of a first conductivity type
a gate electrode of a conductivity type, and a shield plate of a second conductivity type of the MIS structure formed in an element isolation region on the semiconductor element formation region of the first conductivity type and to which a first predetermined voltage is applied. an electrode, a gate electrode of a second conductivity type of the MIS structure formed on the semiconductor element formation region of the second conductivity type, and an element isolation region formed on the semiconductor element formation region of the second conductivity type. , and a second conductivity type shield plate electrode of the MIS structure to which a second predetermined voltage is applied, a groove formed in a predetermined portion of the element isolation region in the semiconductor element formation region, and an insulating film provided on a wall surface; an MI disposed inside the insulating film and electrically connected to the second conductivity type shield plate electrode;
A groove electrode of a second conductivity type having an S structure and a predetermined area formed in at least one of the semiconductor element formation regions of the first conductivity type and the second conductivity type and around the opening of the groove. and a diffusion layer of a second conductivity type formed in at least one of the semiconductor element formation regions of the first conductivity type and the second conductivity type; A complementary MIS semiconductor integrated circuit having a structure in which a shield plate electrode of a second conductivity type is electrically connected.
JP60131920A 1985-06-19 1985-06-19 Complementary MIS semiconductor integrated circuit device Expired - Lifetime JPH0770686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131920A JPH0770686B2 (en) 1985-06-19 1985-06-19 Complementary MIS semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131920A JPH0770686B2 (en) 1985-06-19 1985-06-19 Complementary MIS semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS61290753A true JPS61290753A (en) 1986-12-20
JPH0770686B2 JPH0770686B2 (en) 1995-07-31

Family

ID=15069284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131920A Expired - Lifetime JPH0770686B2 (en) 1985-06-19 1985-06-19 Complementary MIS semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0770686B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932445A1 (en) * 1988-09-29 1990-04-05 Mitsubishi Electric Corp COMPLEMENTAL SEMICONDUCTOR DEVICE WITH IMPROVED INSULATION AREA
DE3942171A1 (en) * 1988-12-21 1990-06-28 Mitsubishi Electric Corp ELECTRONIC INTEGRATION CIRCUIT WITH AN ELECTRODE LAYER FOR INSULATING BLOCKS
US5040043A (en) * 1988-10-12 1991-08-13 Nippon Telegraph And Telephone Corporation Power semiconductor device
US5557135A (en) * 1991-10-17 1996-09-17 Nippon Steel Semiconductor Corporation Semiconductor device with field shield isolation structure and a method of manufacturing the same
DE19716102A1 (en) * 1997-04-17 1998-10-22 Siemens Ag Integrated circuit arrangement with several components and method for their production
US5859466A (en) * 1995-06-07 1999-01-12 Nippon Steel Semiconductor Corporation Semiconductor device having a field-shield device isolation structure and method for making thereof
JP2007201220A (en) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Semiconductor device
JP2008016863A (en) * 2007-08-31 2008-01-24 Denso Corp Vertical hall element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932445A1 (en) * 1988-09-29 1990-04-05 Mitsubishi Electric Corp COMPLEMENTAL SEMICONDUCTOR DEVICE WITH IMPROVED INSULATION AREA
US5040043A (en) * 1988-10-12 1991-08-13 Nippon Telegraph And Telephone Corporation Power semiconductor device
DE3942171A1 (en) * 1988-12-21 1990-06-28 Mitsubishi Electric Corp ELECTRONIC INTEGRATION CIRCUIT WITH AN ELECTRODE LAYER FOR INSULATING BLOCKS
US5557135A (en) * 1991-10-17 1996-09-17 Nippon Steel Semiconductor Corporation Semiconductor device with field shield isolation structure and a method of manufacturing the same
US5859466A (en) * 1995-06-07 1999-01-12 Nippon Steel Semiconductor Corporation Semiconductor device having a field-shield device isolation structure and method for making thereof
US6274919B1 (en) 1995-06-07 2001-08-14 Nippon Steel Semiconductor Corporation Semiconductor device having a field-shield device isolation structure
DE19716102A1 (en) * 1997-04-17 1998-10-22 Siemens Ag Integrated circuit arrangement with several components and method for their production
US6597053B1 (en) 1997-04-17 2003-07-22 Siemens Aktiengesellschaft Integrated circuit arrangement with a number of structural elements and method for the production thereof
DE19716102C2 (en) * 1997-04-17 2003-09-25 Infineon Technologies Ag Integrated circuit arrangement with several components and method for their production
JP2007201220A (en) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Semiconductor device
JP2008016863A (en) * 2007-08-31 2008-01-24 Denso Corp Vertical hall element

Also Published As

Publication number Publication date
JPH0770686B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US5420061A (en) Method for improving latchup immunity in a dual-polysilicon gate process
US4306916A (en) CMOS P-Well selective implant method
KR950006479B1 (en) Laieral transistor
JP2965783B2 (en) Semiconductor device and manufacturing method thereof
JPS61248459A (en) Complementary type mis semiconductor integrated circuit
US4853340A (en) Semiconductor device isolated by a pair of field oxide regions
JPS61290753A (en) Complementary type mis semiconductor integrated circuit device
JP3348782B2 (en) Method for manufacturing semiconductor device
JPS62149163A (en) Manufacture of complementary mos integrated circuit
JPS62262462A (en) Semiconductor device
JPS60206040A (en) Insulation isolator for semiconductor ic
JPS61164265A (en) Mis type semiconductor integrated circuit device
US6337252B1 (en) Semiconductor device manufacturing method
JP3064003B2 (en) Method for manufacturing semiconductor device
JPH06244428A (en) Mos device and manufacture thereof
JPH0462975A (en) Semiconductor device
US5675171A (en) Integrated insulated gate field effect transistors with thin insulation region between field insulation regions
JP3503292B2 (en) Method for manufacturing semiconductor device
JP3064002B2 (en) Method for manufacturing semiconductor device
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6193641A (en) Semiconductor device
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPS61203679A (en) Mos transistor of high withstand voltage
JPH02219237A (en) Mis type semiconductor device
KR100291193B1 (en) Method for manufacturing transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term