[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61281850A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS61281850A
JPS61281850A JP60124941A JP12494185A JPS61281850A JP S61281850 A JPS61281850 A JP S61281850A JP 60124941 A JP60124941 A JP 60124941A JP 12494185 A JP12494185 A JP 12494185A JP S61281850 A JPS61281850 A JP S61281850A
Authority
JP
Japan
Prior art keywords
permanent magnet
thin film
atomic
film layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60124941A
Other languages
Japanese (ja)
Other versions
JPH0535216B2 (en
Inventor
Hitoshi Yamamoto
日登志 山本
Masato Sagawa
佐川 真人
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60124941A priority Critical patent/JPS61281850A/en
Publication of JPS61281850A publication Critical patent/JPS61281850A/en
Publication of JPH0535216B2 publication Critical patent/JPH0535216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve coercive force and corrosion resistance by allowing a prescribed thin film layer to adhere to the surface to be ground of a sintered body containing prescribed percentage of rare earth elements such as Nd, Pr, Dy, etc., B, and Fe. CONSTITUTION:The Al thin film layer is allowed to adhere to the surface to be ground of the sintered magnetic body having a main phase composed of tetragonal crystal phase and also having a volume of <=2.5cm<3> or a thickness of <=5mm to form a permanent magnet material. The above sintered body is mainly composed of, by atom, 10-30% R (>=1 kind among Nd, Pr, Dy, Ho, La, Ce, Sm, etc.), 2-28% B, and 65-80% Fe and the above surface to be ground has a metallic thin film layer having body-centered cubic crystal structure mainly composed of Nd.

Description

【発明の詳細な説明】 利用産業分野 この発明は、焼結永久磁石表面の研削加工等に伴なう磁
石特性の劣化を防止し、ざらに磁石材料の耐食性を改善
したFa−B−R系永久磁石に係り、特に、体積が2.
501?以下あるいは厚みが5.0mm以下の小物ある
いは薄物用永久磁石材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention is an Fa-BR-based magnet that prevents the deterioration of magnetic properties caused by grinding of the surface of a sintered permanent magnet and roughly improves the corrosion resistance of the magnet material. Regarding permanent magnets, especially those with a volume of 2.
501? The present invention relates to permanent magnet materials for small or thin objects with a thickness of 5.0 mm or less.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

この希土類コバルト磁石は、磁気特性が格段にすぐれて
いるため、多種用途に利用されているが、主成分のSm
、Coは共に資源的に不足し、かつ高価であり、今後長
期間にわたって、安定して多量に供給されることは困難
である。
This rare earth cobalt magnet has extremely excellent magnetic properties and is used for a variety of purposes, but the main component is S.
, Co are both in short supply and expensive, and it will be difficult to supply them in large quantities stably over a long period of time.

そのため、磁気特性がすぐれ、かつ安価で、ざらに資源
的に豊富で今後の安定供給が可能な組成元素からなる永
久11石材料が切望されてきた。
Therefore, there has been a strong desire for a permanent 11-stone material that has excellent magnetic properties, is inexpensive, has abundant resources, and is composed of elements that can be stably supplied in the future.

本出願人は先に、高価なSmやらを含有しない新しい高
性能永久磁石としてFe−B−R系(RはYを含む希土
類元素のうち少なくとも1種)永久磁石を提案した(特
開昭59−46008号、特開昭59−64733号、
特開昭59−89401 @、特開昭59−13210
4号)。
The present applicant previously proposed a Fe-BR-based permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive Sm (Japanese Patent Application Laid-Open No. 59-1991). -46008, JP-A-59-64733,
JP-A-59-89401@, JP-A-59-13210
No. 4).

この永久磁石は、Rとして陶や円を中心とする資源的に
豊富な軽希土類を用い、Feを主成分として25MGO
a以上の極めて高いエネルギー積を示すすぐれた永久磁
石である。
This permanent magnet uses resource-rich light rare earth materials such as ceramics and circles as R, and uses 25MGO with Fe as the main component.
It is an excellent permanent magnet that exhibits an extremely high energy product of more than a.

最近、磁気回路の高性能化、小形化に伴ない、Fa−B
−R系永久磁石材料が益々注目され、さらに、体積が2
.5G+?以下あるいは厚みが5.0+nm以下の小物
おるいは薄物用Fs−B−R系永久磁石材料が要望され
てきた。
Recently, with the improvement in performance and miniaturization of magnetic circuits, Fa-B
-R-based permanent magnet materials are attracting more and more attention, and the volume is 2
.. 5G+? There has been a demand for Fs-BR-based permanent magnet materials for small or thin items having a thickness of 5.0+ nm or less.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体は、その表面の凹凸
や歪みを除去するため、あるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を切削加工する必要があり、加工には
外周刃切断機。
In order to manufacture permanent magnet materials for such uses, small or ultra-thin sintered magnets must be processed to remove surface irregularities and distortions, or to remove surface oxidation layers, and to remove magnetic In order to incorporate it into the circuit, it is necessary to cut the entire surface or the required surface of the magnet, and a peripheral blade cutting machine is used for the processing.

内周刃切断機2表面研削機、センタレスグラインダー、
ラッピングマシン等が使用される。
Internal blade cutting machine 2 surface grinding machine, centerless grinder,
A wrapping machine etc. are used.

しかしながら、上記装置にてFs−B−R系永久磁石材
料を研削加工すると、例えば、厚み20mmより1M〜
10mm製品厚みに加工すると、第1図の曲線すに示す
如く、各磁気特性が劣化する問題があった。
However, when grinding the Fs-B-R permanent magnet material with the above-mentioned device, for example, the thickness of 1M~
When processed to a product thickness of 10 mm, there was a problem that various magnetic properties deteriorated, as shown by the curved line in FIG.

また、Fe  B  R系磁気異方性焼結体からなる永
久磁石を、磁気回路に組込んだ場合に、磁石表面に生成
する酸化物により、磁気回路の出力低下及び磁気回路間
のばらつきを惹起し、また、表面酸化物の脱落による周
辺機器への汚染の問題があった。
Furthermore, when a permanent magnet made of an FeBR-based magnetically anisotropic sintered body is incorporated into a magnetic circuit, oxides generated on the magnet surface may cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits. However, there was also the problem of contamination of peripheral equipment due to shedding of surface oxides.

そこで、出願人は先に、上記のFe  B  R系永久
磁石の耐食性の改善のため、磁石体表面に無電解めっき
法あるいは電解めっき法により耐食性金属めっき層を被
覆した永久磁石(特願昭58−162350号)及び磁
石体表面にスプレー法あるいは浸漬法によって耐食性樹
脂層を被覆した永久磁石を提案(特願昭58−1719
07号)した。
Therefore, in order to improve the corrosion resistance of the above-mentioned FeBR-based permanent magnet, the applicant first developed a permanent magnet (patent application filed in 1983) whose surface was coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating. -162350) and proposed a permanent magnet in which the surface of the magnet body was coated with a corrosion-resistant resin layer by spraying or dipping (Japanese Patent Application No. 58-1719).
No. 07).

しかし、前者のめつき法では永久磁石体が焼結体であり
有孔性のため、この孔内にめっき前処理で酸性溶液また
はアルカリ性溶液が残留し、経年変化とともに発錆する
恐れがあり、また磁石体の耐薬品性が劣るため、めっき
時に磁石表面が腐食されて密着性・防食性が劣る問題が
あった。
However, in the former plating method, since the permanent magnet body is a sintered body and is porous, there is a risk that acidic or alkaline solutions may remain in the holes from the plating pretreatment, causing rust over time. Furthermore, since the chemical resistance of the magnet body is poor, there is a problem that the magnet surface is corroded during plating, resulting in poor adhesion and corrosion resistance.

また後者のスプレー法による樹脂の塗装には方向性があ
るため、被処理物表面全体に均一な樹脂被膜を施すのに
多大の工程1手間を要し、特に形状が複雑な異形磁石体
に均一厚みの被膜を施すことは困雌であり、また浸漬法
では樹脂被膜厚みが不均一になり、製品寸法精度が悪い
問題があった。
Furthermore, since resin coating using the latter spray method is directional, it takes a lot of time and effort to apply a uniform resin coating to the entire surface of the object to be treated, and it is especially difficult to apply uniformly to odd-shaped magnets with complex shapes. It is difficult to apply a thick coating, and the dipping method has the problem of uneven resin coating thickness and poor product dimensional accuracy.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結Wi磁石体切削加工に伴なう磁気特性の劣化を防止し
、ざらに、腐蝕性薬品等を使用あるいは接触させること
なく、密着性、防蝕性にすぐれた耐食性薄膜層を被着さ
せた永久磁石材料を目的としている。
Purpose of the Invention The present invention prevents deterioration of magnetic properties associated with machining of sintered Wi magnets, especially for small or ultra-thin objects, in a new permanent magnet material mainly composed of rare earth elements, boron, and iron. In general, the purpose is to create a permanent magnet material on which a corrosion-resistant thin film layer with excellent adhesion and corrosion resistance is deposited without using or contacting with corrosive chemicals.

発明の構成と効果 発明者らは、Fe−B−R系永久磁石材料の保磁力につ
いて種々検討した結果、前記磁石体の保磁力の大小は、
結晶粒内よりも粒界構造の差異に基因しており、研摩さ
れた焼結磁石表面を、Ke−rr効果を用いた光学顕微
鏡で、磁区の反転機構を詳細に調べると、磁石体表面の
磁化反転が磁石体内部の保磁力の172以下の非常に低
い磁界で起り、焼結磁石体の加工された表面第1層の結
晶群の保磁力が低い理由は、高保磁力を出現するために
必要な最適の体心立方晶構造を有する金属相(以下、体
心立方相という)が存在しないためであることを知見し
た。
Structure and effect of the invention As a result of various studies on the coercive force of Fe-B-R permanent magnet materials, the inventors found that the magnitude of the coercive force of the magnet body is as follows:
This is due to differences in the grain boundary structure rather than within the crystal grains, and when the polished sintered magnet surface is examined in detail with an optical microscope using the Ke-rr effect, the magnetic domain reversal mechanism is found to be Magnetization reversal occurs in a very low magnetic field below the coercive force of 172 inside the magnet, and the reason why the coercive force of the crystal group in the first layer on the processed surface of the sintered magnet is low is because high coercive force appears. It has been found that this is due to the absence of a metal phase having the necessary optimal body-centered cubic structure (hereinafter referred to as body-centered cubic phase).

発明者が始めて発見した高保磁力を出現させる体心立方
相を、加工された焼結磁石体表面の結晶群上に、最適の
厚みでかつ特殊な体心立方相構造を有する粒界相として
設けることは、通常の方法では容易ではないが、厚み1
万以下のNdを主成分とする体心立方相の蒸着層を形成
することにより、Fe−B−R系永久磁石材料の保磁力
並びに減磁曲線の角型性を改善向上させ得ることを知見
し、この発明を完成したものである。
The body-centered cubic phase that exhibits high coercive force, which was first discovered by the inventor, is provided as a grain boundary phase with an optimal thickness and a special body-centered cubic phase structure on the crystal group on the surface of the processed sintered magnet. This is not easy to do using normal methods, but if the thickness is 1
It was discovered that the coercive force and squareness of the demagnetization curve of Fe-B-R permanent magnet materials can be improved by forming a body-centered cubic phase vapor deposited layer containing less than 1,000 Nd as a main component. This invention has now been completed.

さらに、永久磁石材料表面に、薄膜形成法によって、M
Fil膜を被着することにより、腐蝕性薬品等の使用、
残留がなく、かつ薄膜の被着強度か高く、すぐれた耐食
性が長期にわたって安定して得られることを知見したも
のである。
Furthermore, M
The use of corrosive chemicals, etc. can be prevented by applying a Fil film.
It was discovered that there is no residue, the adhesion strength of the thin film is high, and excellent corrosion resistance can be stably obtained over a long period of time.

すなわち、この発明は、 R(Rはm、 Pr、 Dy、 )io、 Tbのうち
少なくとも1種あるいはざらに、La、 Ce、 Sm
、 Cd、 Er、 Eu、丁m。
That is, the present invention provides at least one of R (R is m, Pr, Dy, )io, Tb, or roughly, La, Ce, Sm
, Cd, Er, Eu, Dingm.

Yb、 La、 Yのうち少なくとも1種からなる)1
0%〜30原子%、 □ B2原子%〜28原子%、 1”e6565原子80原子%を主成分とし、主相が正
方晶相からなる体積が2.5a+?以下あるいは厚みが
5.0mm以下の焼結磁石体の被研削加工面に、Ndを
主成分とする体心立方相からなる薄膜層を有し、 前記薄膜層を含む上記磁石体表面に被着したAI薄膜層
を有する ことを特徴する永久磁石材料である。
consisting of at least one of Yb, La, Y)1
0% to 30 atomic%, □ B2 atomic% to 28 atomic%, 80 atomic% of 1"e6565 atoms as the main component, and the main phase is a tetragonal phase. The volume is 2.5a+? or less, or the thickness is 5.0mm or less. A thin film layer consisting of a body-centered cubic phase containing Nd as a main component is provided on the surface to be ground of the sintered magnet body, and an AI thin film layer is adhered to the surface of the magnet body including the thin film layer. It is a characteristic permanent magnetic material.

さらに詳述すれば、上記の焼結磁石体の被研削加工面に
、陶あるいはNdを主成分とし、残部はNdを除きYを
含む希土類元素のうち少なくとも1種からなる蒸着層を
被着形成後、700℃〜1000℃及び650℃〜45
0℃の2段の時効処理を施して、体心立方相からなる薄
膜層を被着させ、該加工表面第1層の結晶群に保磁力を
付与し、研削加工による磁気特性の劣化を防止し、さら
に、体心立方相からなる薄膜層を含む焼結磁石体全表面
に、AI薄膜層を被着したことを特徴する永久磁石材料
である。
More specifically, on the surface to be ground of the above-mentioned sintered magnet body, a vapor deposited layer is formed, which is mainly composed of ceramic or Nd, and the remainder is made of at least one rare earth element, excluding Nd and including Y. After that, 700℃~1000℃ and 650℃~45
A two-stage aging treatment at 0°C is applied to deposit a thin film layer consisting of a body-centered cubic phase, imparting coercive force to the crystal group of the first layer on the processed surface, and preventing deterioration of magnetic properties due to grinding. Furthermore, this permanent magnet material is characterized in that an AI thin film layer is adhered to the entire surface of the sintered magnet body including a thin film layer consisting of a body-centered cubic phase.

また、この発明の永久磁石材料は平均結晶粒径が1〜a
oljJnの範囲にある正方晶系の結晶構造を有する化
合物を主相とし、体積比で1%〜50%の非磁性相(酸
化物相を除く)を含むことを特徴とする。
Further, the permanent magnet material of the present invention has an average crystal grain size of 1 to a
It is characterized by having a main phase of a compound having a tetragonal crystal structure in the range of oljJn, and containing a nonmagnetic phase (excluding oxide phase) of 1% to 50% by volume.

したがって、この発明の永久磁石材料は、Rとして陶あ
るいはざらに円を中心とする資源的に豊富な軽希土類を
主に用い、Fa、B、R,を主成分とすることにより、
25MGOa以上の極めて高いエネルギー積並びに、高
残留磁束密度、高保磁力を有し、かつ研削加工による磁
気特性の劣化を防止し、ざらに、磁石材料の耐食性を高
めたFa−B−R系永久磁石材料を安価に得ることがで
きる。
Therefore, the permanent magnet material of the present invention mainly uses a light rare earth, which is rich in resources, mainly ceramics or rough circles as R, and has Fa, B, and R as the main components.
An Fa-B-R permanent magnet that has an extremely high energy product of 25 MGOa or more, high residual magnetic flux density, and high coercive force, prevents deterioration of magnetic properties due to grinding, and generally improves the corrosion resistance of the magnet material. Materials can be obtained at low cost.

この発明において、焼結磁石体の被研削加工表面に、陽
を主成分とする体心立方相の薄膜層を被着させるには、
真空蒸着、イオンスパッタリング、イオンブレーティン
グ、イオン蒸着薄膜形成法(IVD>、プラズマ蒸着薄
膜形成法(EVD)等の薄膜形成方法が適宜選定利用で
きる。また、蒸着層の厚みは、11inを越えると該蒸
着層の剥離あるいは機械的強度の低下を招来し、かつ体
心立方相を形成しないため好ましくなく、1.J+以下
の厚みとし、最も好ましくは0.5J以下の層厚みであ
る。
In this invention, in order to deposit a thin film layer of body-centered cubic phase mainly composed of cation onto the surface of the sintered magnet to be ground,
Thin film forming methods such as vacuum evaporation, ion sputtering, ion blating, ion evaporation thin film formation (IVD), and plasma evaporation thin film formation (EVD) can be selected and used as appropriate. This is not preferable because it causes peeling of the deposited layer or a decrease in mechanical strength and does not form a body-centered cubic phase, and the layer thickness is preferably 1.J+ or less, and most preferably 0.5J or less.

この発明において、焼結磁石体の上記Ndを主成分とす
る体心立方相の薄膜層表面を含む表面全体に、M層を被
着させるには、真空蒸着、スパッタリング、イオンブレ
ーティング等の上述の薄膜形成方法が適宜選定利用でき
る。また、薄膜層の厚みは、薄膜層の剥離あるいは機械
的強度の低下並びに防蝕性の確保等を考慮して、30J
以下の厚みが好ましく、最も好ましくは5−〜25屡の
層厚みである。
In this invention, in order to deposit the M layer on the entire surface of the sintered magnet body, including the surface of the body-centered cubic phase thin film layer mainly composed of Nd, the above-mentioned methods such as vacuum evaporation, sputtering, ion blating, etc. can be used. The following thin film forming methods can be selected and used as appropriate. In addition, the thickness of the thin film layer is 30J, taking into account peeling of the thin film layer, reduction in mechanical strength, and ensuring corrosion resistance.
The following thicknesses are preferred, most preferably 5-25 layer thicknesses.

永久磁石材料の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の1
0原子%〜30原子%を占めるが、陶、 Pr。
Reason for limiting the composition of the permanent magnet material The rare earth element R used in the permanent magnet of this invention has a composition of 1
It accounts for 0 atomic% to 30 atomic%, but ceramic, Pr.

〜、Hb、Toのうち少なくとも1種、あるいはさらに
、ム、 Co、 Sm、 CA、 Er、 Eu、丁m
、 Yb、 La、 Yのうち少なくとも1種を含むも
のが好ましい。
~, Hb, and at least one of To, or in addition, Mu, Co, Sm, CA, Er, Eu, and D
, Yb, La, and Y are preferred.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、IQJlを子%未満では、結晶構造がα−鉄と
同一構造の立方晶組織となるため、高磁気特性、特に高
保磁力が得られず、30原子%を越えると、Rリッチな
非磁性相が多くなり、残留磁束密度(B「)が低下して
、すぐれた特性の永久磁石が得られない。よって、希土
類元素は、10原子%〜30原子%の範囲とする。
R is an essential element in the new above-mentioned permanent magnet material, and when IQJl is less than %, the crystal structure becomes a cubic structure that is the same as α-iron, so it has high magnetic properties, especially high coercive force. If the rare earth element is not obtained and exceeds 30 atomic %, the R-rich nonmagnetic phase increases, the residual magnetic flux density (B') decreases, and a permanent magnet with excellent characteristics cannot be obtained. The range is 10 atomic % to 30 atomic %.

Bは、この発明による永久磁石材料における、必須元素
であって、2原子%未満では、菱面体構造が主相となり
、高い保磁力(iHC)は得られず、28原子%を越え
ると、Bリッチな非磁性相が多くなり、残留磁束密度(
Br)が低下するため、すぐれた永久磁石が得られない
。よって、Bは・ 2原子%〜28原子%の範囲とする
B is an essential element in the permanent magnet material according to the present invention, and if it is less than 2 atomic %, the rhombohedral structure becomes the main phase and high coercive force (iHC) cannot be obtained, and if it exceeds 28 atomic %, B The rich nonmagnetic phase increases, and the residual magnetic flux density (
Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B should be in the range of 2 to 28 at%.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度Brが低下し、8
0原子%を越えると、高い保磁力が得られないので、F
eは65原子%〜80原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet, and if it is less than 65 at%, the residual magnetic flux density Br decreases, and the
If it exceeds 0 atom%, high coercive force cannot be obtained, so F
The content of e is 65 atomic % to 80 atomic %.

また、この発明による永久磁石材料において、Faの一
部をGで置換することは、得′られる磁石の磁気特性を
損うことなく、温度特性を改善することができるが、6
置換量がFaの20%を越えると、逆に磁気特性が劣化
するため、好ましくない。乙の置換量がFaともの合計
量で5原子%〜15原子%の場合は、(B「)は置換し
ない場合に比較して増加するため、高磁束密度を得るた
めには好ましい。
Furthermore, in the permanent magnet material according to the present invention, replacing a part of Fa with G can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the amount of substitution exceeds 20% of Fa, the magnetic properties will deteriorate, which is not preferable. When the amount of substitution of B is 5 at % to 15 at % in the total amount of Fa and F, it is preferable to obtain a high magnetic flux density because (B'') increases compared to the case where no substitution is made.

また、この発明による永久磁石は、R,B、FEIの他
、工業的生産上不可避的不純物の存在を許容できるが、
Bの一部を4.0原子%以下のC13,5原子%以下の
P、2.5原子%以下のS、3.5原子%以下の伍のう
ち少なくとも1種、合計量で4.0原子%以下で置換す
ることにより、永久磁石の製造性改善、低価格化が可能
である。
In addition, the permanent magnet according to the present invention can tolerate the presence of impurities that are inevitable in industrial production in addition to R, B, and FEI;
Part of B is 4.0 at% or less of C13, 5 at% or less of P, 2.5 at% or less of S, 3.5 at% or less of 5, and the total amount is 4.0 By substituting at atomic % or less, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

また、下記添加元素のうち少なくとも1種は、R−B−
Fa系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。しかし、保磁力改善のための
添加に伴ない残留磁束密度(Br)の低下を招来するの
で、従来のハードフェライト磁石の残留磁束密度と同等
以上となる範囲での添加が望ましい。
Furthermore, at least one of the following additional elements is R-B-
It can be added to Fa-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

9.5原子%以下のA1.4.5原子%以下の丁119
.5原子%以下のV、8.5原子%以下のCr。
A1 of 9.5 atom% or less; D119 of 4.5 atom% or less
.. V at 5 atomic % or less, Cr at 8.5 atomic % or less.

8、O原子%以下の)In、  5.0原子%以下のB
119.5原子%以下のNb、  9.5原子%以下の
丁a。
8, O atomic % or less) In, 5.0 atomic % or less B
119.5 atomic % or less of Nb, 9.5 atomic % or less of Dye a.

9.5原子%以下のNo、  9.5原子%以下の縁、
2.5原子%以下のsb、7 原子%以下のGe、3.
5原子%以下のSn、5.5原子%以下のZr、9.0
原子%以下のNi、  9.0原子%以下のSi、1.
1原子%以下のZn、5.5原子%以下のHf、のうち
少なくとも1種を添加含有、但し、2種以上含有する場
合は、その最大含有量は当該添加元素のうち最大値を有
するものの原子%以下の含有させることにより、永久磁
石の高保磁力化が可能になる。
No less than 9.5 atom%, Edge less than 9.5 atom%,
2.5 atomic % or less of sb, 7 atomic % or less of Ge, 3.
Sn of 5 atomic% or less, Zr of 5.5 atomic% or less, 9.0
Ni at % or less, Si at 9.0 atomic % or less, 1.
At least one of Zn of 1 atomic % or less and Hf of 5.5 atomic % or less is added. However, if two or more types are contained, the maximum content is the maximum value of the added elements. By containing atomic percent or less, it becomes possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方品であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is essential that the main phase of the crystalline phase is a tetragonal one in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久[iは、保磁力(HC≧1に08、
残留磁束密度Br> 4 kG、を示し、最大エネルギ
ー積(Btl)maxは、最も好ましい組成範囲では、
(BH)maX≧108GOeを示し、最大値は25H
GOa以上に達する。
Permanence according to this invention [i is coercive force (08 for HC≧1,
The residual magnetic flux density Br>4 kG, and the maximum energy product (Btl) max is, in the most preferred composition range,
(BH) maX≧108GOe, maximum value is 25H
Reach GOa or higher.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上を動及び円を主とする軽希土類金属が占める
場合で、R12原子%〜20原子%、B44原子〜24
原子%、F874原子%〜80原子%、を主成分とする
とき、(BH)max 358GOs以上のすぐれた磁
気特性を示し、特に軽希土類金属が陶の場合には、その
最大値が428GOa以上に達する。
In addition, in the case where the main component of R in the alloy powder for permanent magnets of this invention is light rare earth metals mainly composed of dynamic and circular elements, R12 to 20 at%, B44 to 24 at.
When the main component is (BH) max 358 GOs or more, especially when the light rare earth metal is ceramic, the maximum value is 428 GOa or more. reach

実施例 叉施■ユ 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上のNdを使用し、これらを
配合後高周波溶解し、その後水冷銅鋳型に鋳造し、15
.5Nd 7.5 B 77Fgなる組成の鋳塊を得た
Example Example 1 As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, and Nd with a purity of 99.7% or more were used. After mixing these, they were high-frequency melted, and then cast in a water-cooled copper mold. 15
.. An ingot having a composition of 5Nd 7.5B 77Fg was obtained.

その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度3.0項の
微粉末を得た。
Thereafter, this ingot was coarsely ground using a stamp mill, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 3.0 items.

この微粉末を金型に挿入し、20 koeの磁界中で配
向し、磁界に平行方向に、1.5 tJの圧力で成形し
た。
This fine powder was inserted into a mold, oriented in a magnetic field of 20 koe, and molded at a pressure of 1.5 tJ in a direction parallel to the magnetic field.

得られた成形体を、1100℃、1時間、 Ar雰囲気
中、の条件で焼結し、長さ2OmmX幅10mmX厚み
10mm寸法の焼結体を得た。
The obtained molded body was sintered at 1100° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of 20 mm in length, 10 mm in width, and 10 mm in thickness.

そして焼結体より、長ざ20mmX幅5mmX厚み10
mm寸法の試験片に切出して厚みを暫時減少させた種々
の試験片を得たのち、真空度2x10−4Torrの石
英管内に、出金属と共に挿入し、1000℃、5時間加
熱して、試料全面に、100人〜2000人の動源膜層
を被着ざぜた。
And from the sintered body, length 20mm x width 5mm x thickness 10
After obtaining various test pieces whose thickness was temporarily reduced by cutting them into test pieces of mm size, they were inserted into a quartz tube with a vacuum level of 2 x 10-4 Torr together with the extracted metal, and heated at 1000°C for 5 hours to completely remove the entire surface of the sample. Between 100 and 2,000 people were deposited in the membrane layer.

ざらにAr中での800℃、1時間と630℃、1.5
時間の2段時効処理を施して、被研削加工面に体心立方
相を形成したこの発明による永久磁石を作製した。
Roughly 800℃, 1 hour and 630℃, 1.5 in Ar
A permanent magnet according to the present invention was fabricated by performing a two-step aging treatment to form a body-centered cubic phase on the surface to be ground.

また、上記の種々厚みの試験片を動源膜層を設けること
なく直ちに時効処理した比較試験片を作製した。
Comparative test pieces were also prepared by immediately aging the above-mentioned test pieces having various thicknesses without providing a dynamic membrane layer.

得られた各永久磁石材料の3r、  iHc及び(BH
)maX値を、振動試料型磁力計(VSH)を用いて測
定して第1図にその結果を示す。曲線aは111ki薄
IiU層を有する本発明永久磁石で、曲線すは比較例永
久磁石の場合でおる。
3r, iHc and (BH
) The maX value was measured using a vibrating sample magnetometer (VSH), and the results are shown in FIG. Curve a is for the permanent magnet of the present invention having a 111 ki thin IiU layer, and curve a is for the comparative permanent magnet.

実施例2 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上のNdを使用し、これらを
配合後高周波溶解し、その後水冷銅鋳型に鋳造し、15
.5Nd 9.0B75.5Feなる組成の鋳塊を得た
Example 2 As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, and Nd with a purity of 99.7% or more were used, and after blending these, they were high-frequency melted, and then cast in a water-cooled copper mold.
.. An ingot having a composition of 5Nd 9.0B75.5Fe was obtained.

その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度3.2屡の
微粉末を得た。
Thereafter, this ingot was coarsely ground using a stamp mill and then finely ground using a ball mill to obtain a fine powder with an average particle size of 3.2 tons.

この微粉末を金型に挿入し、10 kOaの磁界中で配
向し、磁界に平行方向に、i、o t、gの圧力で成形
した。
This fine powder was inserted into a mold, oriented in a magnetic field of 10 kOa, and molded at a pressure of i, ot, g in a direction parallel to the magnetic field.

得られた成形体を、1100℃、1時間、 Ar雰囲気
中、の条件で焼結し、長ざ10w+mX幅15 mm 
X厚み8mm寸法の焼結体を得た。
The obtained molded body was sintered at 1100°C for 1 hour in an Ar atmosphere to a length of 10 W + m x width of 15 mm.
A sintered body with a thickness of 8 mm was obtained.

そして焼結体より、長さ2.75 mtnX幅0.7m
w+X厚み0.7mm寸法の試験片に切出したのち、真
空度2X10−4TOrrの石英管内に、陶金属と共に
挿入し、i ooo℃、5時間加熱して、試料全面に、
100人〜2000人のNd薄膜層を被着させた。
And from the sintered body, length 2.75 mtn x width 0.7 m
After cutting into a test piece with w +
Between 100 and 2000 Nd thin film layers were deposited.

ざらにAr中での800℃、2時間と630℃、4時間
の2段時効処理を施して、被研削加工面に体心立方相を
形成した永久磁石を作製した。
A two-stage aging treatment of 800° C. for 2 hours and 630° C. for 4 hours in Ar was performed to produce a permanent magnet with a body-centered cubic phase formed on the surface to be ground.

また、上記の種々厚みのの試験片をNd薄膜層を設ける
ことなく直ちに時効処理した比較試験片を作製した。
Comparative test pieces were also prepared by immediately aging the above test pieces of various thicknesses without providing a Nd thin film layer.

次に、真空度5x10−5Torrの真空容器内に、上
記試料を入れ、Arガスを送入し、1xlO−2Tor
rのArガス中、 400 Vの電圧で20分間の放電
を行なった後、引続き、コーティング材料として、純度
99.99%の1〜515M粉末を用い、これを加熱し
、蒸発Nをイオン化し、これらイオン化粒子が電界に引
かれて、陰極を構成する前記試験片に付着し、AI薄膜
を形成した。試験片表面に形成した薄膜厚みは20虜で
おった。上記イオン・ブレーティング条件は、電圧1.
8  kV、 12分間処理であった。
Next, the above sample was placed in a vacuum container with a vacuum degree of 5 x 10-5 Torr, Ar gas was introduced, and the vacuum was heated to 1 x lO-2 Torr.
After discharging for 20 minutes at a voltage of 400 V in Ar gas at R, then using 1-515M powder with a purity of 99.99% as a coating material, it was heated to ionize the evaporated N, These ionized particles were attracted by the electric field and adhered to the test piece constituting the cathode, forming an AI thin film. The thickness of the thin film formed on the surface of the test piece was 20 mm. The above ion brating conditions are voltage 1.
The treatment was at 8 kV for 12 minutes.

また、比較のため、上記Nd薄膜層を有する試験片に、
トリクレンにて3分間溶剤脱脂し、5%NaOHにて6
0℃、3分間のアルカリ脱脂した後、2%HCfにて室
温、10秒間の酸洗しワット浴にて、電流密度4A/d
m’、浴温度60’C,20分間の条件にて、電気ニッ
ケルめっきを行ない表面に201An厚みのニッケルめ
っき層を有する比較試験片(比較例)を得た。
In addition, for comparison, the test piece having the above Nd thin film layer was
Solvent degreasing for 3 minutes with trichloride, and 6 minutes with 5% NaOH.
After alkaline degreasing at 0°C for 3 minutes, pickling with 2% HCf at room temperature for 10 seconds in a Watts bath at a current density of 4A/d.
Electrolytic nickel plating was performed under the conditions of m', bath temperature of 60'C, and 20 minutes to obtain a comparative test piece (comparative example) having a nickel plating layer with a thickness of 201 An on the surface.

この試験片に耐食性試験と耐食性試験後の薄膜の密着強
度試験を行なった。また、耐食性試験前後の磁気特性を
測定した。試験結果及び測定結果は第1表に示す。
This test piece was subjected to a corrosion resistance test and a thin film adhesion strength test after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

耐食性試験は、上記試験片を60℃の温度90%の湿度
の雰囲気に、500時間放置した場合の試験片外観状況
でもって評価した。
The corrosion resistance test was evaluated based on the appearance of the test piece when the test piece was left in an atmosphere of 60° C., 90% humidity, and 90% humidity for 500 hours.

また、密着強度試験は、耐食性試験後の上記試験片を、
粘着テープで11Tlff1間隔の枡目部分を引張り、
薄膜層が剥離するか否か(無剥Ii!を枡目数/全枡目
数)で評価した。
In addition, in the adhesion strength test, the above test piece after the corrosion resistance test was
Using adhesive tape, pull the squares at 11Tlff1 intervals,
Evaluation was made based on whether or not the thin film layer peeled (no peeling Ii! = number of squares/number of total squares).

以下余白 第1図、第1表の結果から明らかなように、Ndを主成
分とする体心立方相からなる蒸着層が、研削加工面の磁
気特性劣化防止に極めて有効であり、特に、製品厚みが
薄いものほど、その効果が著しく、また耐食性M薄膜層
の密着強度が極めて高く、耐食性が安定していることが
分る。
As is clear from the results in Figure 1 and Table 1 below, the deposited layer consisting of a body-centered cubic phase containing Nd as a main component is extremely effective in preventing deterioration of the magnetic properties of the ground surface, and is particularly effective in preventing the deterioration of the magnetic properties of the ground surface. It can be seen that the thinner the thickness, the more remarkable the effect is, and the adhesion strength of the corrosion-resistant M thin film layer is extremely high, indicating that the corrosion resistance is stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は永久磁石材料試験片厚みとBr。 iHC及び(BH)maxとの関係を示すグラフである
Figure 1 shows the thickness of a permanent magnet material test piece and Br. It is a graph showing the relationship between iHC and (BH)max.

Claims (1)

【特許請求の範囲】 1 R(RはNd、Pr、Dy、Hb、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Cd、
Er、Eu、Tm、Yb、La、Yのうち少なくとも1
種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる体積が2.5cm^3以下あるいは厚みが
5.0mm以下の焼結磁石体の被研削加工面に、Ndを
主成分とする体心立方晶構造を有する金属相からなる薄
膜層を有し、前記薄膜層を含む上記磁石体表面に被着し
たAl薄膜層を有することを特徴する永久磁石材料。
[Claims] 1 R (R is at least one of Nd, Pr, Dy, Hb, Tb, or furthermore, La, Ce, Sm, Cd,
At least one of Er, Eu, Tm, Yb, La, Y
The main components are 10% to 30 atomic% (consisting of seeds), 28 atomic% to B2 atomic%, and 65 atomic% to 80 atomic% Fe, and the main phase is a tetragonal phase with a volume of 2.5 cm^3 or less or a thickness of A thin film layer made of a metal phase having a body-centered cubic structure containing Nd as a main component is provided on the surface to be ground of a sintered magnet body of 5.0 mm or less, and the surface of the magnet body including the thin film layer is coated. A permanent magnetic material characterized in that it has a deposited Al thin film layer.
JP60124941A 1985-06-07 1985-06-07 Permanent magnet material Granted JPS61281850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60124941A JPS61281850A (en) 1985-06-07 1985-06-07 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60124941A JPS61281850A (en) 1985-06-07 1985-06-07 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPS61281850A true JPS61281850A (en) 1986-12-12
JPH0535216B2 JPH0535216B2 (en) 1993-05-26

Family

ID=14897977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60124941A Granted JPS61281850A (en) 1985-06-07 1985-06-07 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS61281850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188745A (en) * 1986-02-13 1987-08-18 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
FR2768551A1 (en) * 1997-09-12 1999-03-19 Rhodia Chimie Sa Flat coated magnet with improved magnetic properties
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
US8038807B2 (en) 2006-01-31 2011-10-18 Hitachi Metals, Ltd. R-Fe-B rare-earth sintered magnet and process for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717517U (en) * 1993-09-06 1995-03-28 岡三機工株式会社 Mortar mixer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188745A (en) * 1986-02-13 1987-08-18 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
FR2768551A1 (en) * 1997-09-12 1999-03-19 Rhodia Chimie Sa Flat coated magnet with improved magnetic properties
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
US8038807B2 (en) 2006-01-31 2011-10-18 Hitachi Metals, Ltd. R-Fe-B rare-earth sintered magnet and process for producing the same
JP4831074B2 (en) * 2006-01-31 2011-12-07 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same

Also Published As

Publication number Publication date
JPH0535216B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JPS6274048A (en) Permanent magnet material and its production
JPS62192566A (en) Permanent magnet material and its production
EP0991085B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPS62188745A (en) Permanent magnet material and its production
JPS61150201A (en) Permanent magnet with excellent anticorrosion property
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPS61281850A (en) Permanent magnet material
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
WO1998009300A1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPS61264157A (en) Material for permanent magnet
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPS62120004A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPH09139307A (en) Anticorrosion permanent magnet
JPH06349619A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP3595082B2 (en) Ultra-high vacuum permanent magnet and method of manufacturing the same
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPS6260212A (en) Manufacture of permanent magnet material
JPS61270308A (en) Production of permanent magnet material
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0821511B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPS63255376A (en) Production of corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees