JPH06349619A - Corrosion-resistant permanent magnet and manufacture thereof - Google Patents
Corrosion-resistant permanent magnet and manufacture thereofInfo
- Publication number
- JPH06349619A JPH06349619A JP5166286A JP16628693A JPH06349619A JP H06349619 A JPH06349619 A JP H06349619A JP 5166286 A JP5166286 A JP 5166286A JP 16628693 A JP16628693 A JP 16628693A JP H06349619 A JPH06349619 A JP H06349619A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- film
- magnet
- coating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000005260 corrosion Methods 0.000 title claims description 29
- 230000007797 corrosion Effects 0.000 title claims description 29
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 229910010421 TiNx Inorganic materials 0.000 claims abstract description 9
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010408 film Substances 0.000 claims description 36
- 239000011248 coating agent Substances 0.000 claims description 35
- 238000000576 coating method Methods 0.000 claims description 35
- 239000010410 layer Substances 0.000 claims description 21
- 238000009792 diffusion process Methods 0.000 claims description 19
- 239000011247 coating layer Substances 0.000 claims description 18
- 239000010409 thin film Substances 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 24
- 229910052718 tin Inorganic materials 0.000 description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 238000007733 ion plating Methods 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000007747 plating Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000722 Didymium Inorganic materials 0.000 description 1
- 241000224487 Didymium Species 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、高磁気特性を有しか
つ密着性がすぐれ、耐食性、耐酸、耐アルカリ性、耐摩
耗性にすぐれた耐食性被膜を設けたFe−B−Ra系永
久磁石に係り、耐食性、特に80℃、相対湿度90%の
雰囲気に長時間放置した場合の初期磁石特性からの劣化
が少なく、きわめて安定した磁石特性を有する耐食性永
久磁石およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-B-Ra type permanent magnet provided with a corrosion resistant coating having high magnetic properties, excellent adhesion, and excellent corrosion resistance, acid resistance, alkali resistance and wear resistance. In particular, the present invention relates to a corrosion-resistant permanent magnet having extremely stable magnet characteristics with little deterioration from the initial magnet characteristics when left in an atmosphere of 80 ° C. and 90% relative humidity for a long time, and a method for producing the same.
【0002】[0002]
【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、F
e−B−Ra系永久磁石が提案されている(特開昭59
−46008号公報、特開昭59−89401号公
報)。2. Description of the Related Art First, a light rare earth which is rich in resources centering on Nd and Pr is used as a main component of B and Fe, and does not contain expensive Sm or Co. As a new high-performance permanent magnet that greatly exceeds the characteristics, F
An e-B-Ra type permanent magnet has been proposed (Japanese Patent Laid-Open No. 59-59).
-46008, JP-A-59-89401).
【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するFe−B−
Ra系永久磁石(特開昭59−64733号、特開昭5
9−132104号)を得ており、さらに、前記Co含
有のFe−B−Ra系希土類永久磁石と同等以上のキュ
リー点並びにより高い(BH)maxを有し、その温度
特性、特にiHcを向上させるため、希土類元素(R
a)としてNdやPr等の軽希土類を中心としたCo含
有のFe−B−Ra系希土類永久磁石のRaの一部にD
y、Tb等の重希土類のうち少なくとも1種を含有する
ことにより、25MGOe以上の極めて高い(BH)m
axを保有したままで、iHcをさらに向上させたCo
含有のFe−B−Ra系希土類永久磁石が提案(特開昭
60−34005号)されている。The Curie point of the magnet alloy is generally 30.
It is 0 ° C to 370 ° C, but Fe-B- having a higher Curie point by substituting a part of Fe with Co.
Ra-based permanent magnet (JP-A-59-64733, JP-A-5-64733)
9-132104), and further has a Curie point equal to or higher than that of the Fe-B-Ra-based rare earth permanent magnet containing Co and a higher (BH) max, and improves its temperature characteristics, particularly iHc. In order to make the rare earth element (R
As a), a part of Ra of Co-containing Fe-B-Ra-based rare earth permanent magnets centering on light rare earths such as Nd and Pr is used as D.
By containing at least one of heavy rare earth elements such as y and Tb, extremely high (BH) m of 25 MGOe or more.
Co that has further improved iHc while holding ax
A Fe-B-Ra-based rare earth permanent magnet containing is proposed (Japanese Patent Laid-Open No. 60-34005).
【0004】しかしながら、上記のすぐれた磁気特性を
有するFe−B−Ra系磁気異方性焼結体からなる永久
磁石は主成分として、空気中で酸化し易い希土類元素及
び鉄を含有するため、磁気回路に組込んだ場合に、磁石
表面に生成する酸化物により、磁気回路の出力低下及び
磁気回路間のばらつきを惹起し、また、表面酸化物の脱
落による周辺機器への汚染の問題があった。However, the permanent magnet made of the Fe--B--Ra type magnetic anisotropic sintered body having the above-mentioned excellent magnetic characteristics contains iron as a main component, which is a rare earth element which is easily oxidized in air, and iron. When incorporated into a magnetic circuit, the oxide generated on the surface of the magnet causes a decrease in the output of the magnetic circuit and variations among the magnetic circuits, and there is a problem of contamination of peripheral equipment due to the loss of the surface oxide. It was
【0005】[0005]
【発明が解決しようとする課題】そこで、上記のFe−
B−Ra系永久磁石の耐食性の改善のため、磁石体表面
に無電解めっき法あるいは電解めっき法により耐食性金
属めっき層を被覆した永久磁石(特願昭58ー1623
50号)が提案されているが、このめっき法では永久磁
石体が焼結体で有孔性のため、この孔内にめっき前処理
での酸性溶液またはアルカリ溶液が残留し、経年変化と
ともに腐食する恐れがあり、また磁石体の耐薬品性が劣
るため、めっき時に磁石表面が腐食されて密着性、防蝕
性が劣る問題があった。また、耐食性めっきを設けて
も、温度60℃、相対湿度90%の条件下の耐食性試験
で100時間放置にて、磁石特性は初期磁石特性の10
%以上劣化し、非常に不安定であった。Therefore, the above Fe-
In order to improve the corrosion resistance of the B-Ra type permanent magnet, a permanent magnet whose surface is coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating (Japanese Patent Application No. 58-1623).
No. 50) has been proposed, but in this plating method, since the permanent magnet body is a sintered body and is porous, the acidic solution or alkaline solution in the plating pretreatment remains in this hole, and it corrodes with age. Since the magnet body is inferior in chemical resistance, the surface of the magnet is corroded during plating, resulting in poor adhesion and corrosion resistance. Even if corrosion resistant plating is provided, the magnet characteristics are 10 times the initial magnet characteristics when left for 100 hours in the corrosion resistance test under the conditions of a temperature of 60 ° C. and a relative humidity of 90%.
% Deteriorated and was extremely unstable.
【0006】そのため、Fe−B−Ra系永久磁石の耐
食性の改善向上のため、前記磁石表面にイオンプレーテ
ィング法、イオンスパッタリング法等により、TiN、
Ti被膜を被着して耐食性の改善向上することが提案
(特開昭61−150201号公報)されている。しか
し、TiN被膜はFe−B−Ra系磁石体と結晶構造の
他熱膨張係数、延性等が相違するため密着性が悪く、ま
たTi被膜は密着性、耐食性は良好であるが、耐摩耗性
が低い等の欠点があり、そのためFe−B−Ra系永久
磁石体表面にTiとTiNの積層被膜を被着することが
提案(特開昭63−9919号)されている。ところ
が、Ti被膜とTiN被膜は結晶構造、熱膨張係数及び
延性等が異なるため、その密着性が悪く、剥離等を生じ
て、耐食性の低下を招来する問題があった。Therefore, in order to improve the corrosion resistance of the Fe-B-Ra based permanent magnet, the surface of the magnet is coated with TiN, by an ion plating method, an ion sputtering method, or the like.
It has been proposed (Japanese Patent Laid-Open No. 61-150201) to improve the corrosion resistance by applying a Ti coating. However, the TiN coating has poor adhesion because it differs from the Fe-B-Ra-based magnet body in its crystal structure, thermal expansion coefficient, ductility, etc., and the Ti coating has good adhesion and corrosion resistance, but wear resistance. Therefore, it has been proposed (Japanese Patent Laid-Open No. 63-9919) to apply a laminated coating film of Ti and TiN on the surface of the Fe-B-Ra based permanent magnet body. However, since the Ti coating and the TiN coating have different crystal structures, coefficients of thermal expansion, ductility, and the like, there is a problem in that the adhesion is poor, peeling occurs, and the corrosion resistance decreases.
【0007】この発明は、Fe−B−Ra系永久磁石下
地との密着性にすぐれ、耐摩耗性、耐食性の改善向上を
目的に、特に温度80℃、相対湿度90%の雰囲気条件
下で長時間放置した場合の初期磁石特性からの劣化を極
力少なくし、安定した高磁石特性、耐摩耗性、耐食性を
有するFe−B−Ra系永久磁石を安価に提供すること
を目的とする。The present invention has excellent adhesion to an Fe-B-Ra-based permanent magnet substrate, and is intended to improve abrasion resistance and corrosion resistance, and particularly to improve long-term under atmospheric conditions at a temperature of 80 ° C. and a relative humidity of 90%. An object of the present invention is to provide an Fe-B-Ra-based permanent magnet that has stable high magnet characteristics, wear resistance, and corrosion resistance at a low cost by minimizing deterioration from the initial magnet characteristics when left standing for a long time.
【0008】[0008]
【課題を解決するための手段】この発明は、すぐれた耐
食性、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合においても、下地との密着性がす
ぐれ、被着した耐食性金属被膜の耐食性、耐摩耗性によ
り、その磁石特性の安定したFe−B−Ra系永久磁石
を目的に永久磁石体表面へのTiN被膜形成法について
種々検討した結果、磁石体表面をイオンスパッター法等
により清浄化した後、前記磁石体表面にイオンプレーテ
ィング法等の薄膜形成法により特定膜厚のTi被膜を形
成後、特定条件のArガスとN2ガスとの混合ガスを導
入しながらイオンプレーティング等の薄膜形成法を行っ
て、前記Ti被膜表面の特定膜厚に表面に近づくにつれ
て、N濃度が増加するN拡散層を形成後、N2ガス中に
てイオン反応プレーティング等の薄膜形成法を行って、
特定層厚のTiN被膜を形成することにより、Ti被膜
とTiN被膜との密着性が著しく改善できることを知見
し、この発明を完成した。The present invention has excellent corrosion resistance, and in particular, even when it is left for a long time under an atmospheric condition of a temperature of 80 ° C. and a relative humidity of 90%, it has excellent adhesion to a substrate and is adhered. Corrosion resistance Due to the corrosion resistance and wear resistance of the metal coating, various studies were conducted on the method of forming a TiN coating on the surface of the permanent magnet for the purpose of making a Fe-B-Ra-based permanent magnet with stable magnet characteristics. After cleaning by a method such as a method, a Ti film having a specific film thickness is formed on the surface of the magnet by a thin film forming method such as an ion plating method, and then a mixed gas of Ar gas and N 2 gas under specific conditions is introduced. A thin film forming method such as ion plating is performed to form an N diffusion layer in which the N concentration increases as the specific thickness of the Ti coating surface approaches the surface, and then the ion reaction plating is performed in N 2 gas. Thin film forming method such as coating,
It was found that the adhesion between the Ti coating and the TiN coating can be remarkably improved by forming the TiN coating having a specific layer thickness, and the present invention has been completed.
【0009】すなわち、この発明は主相が正方晶相から
なるFe−B−Ra系永久磁石体表面に、膜厚0.1μ
m〜3.0μmのTi被膜を介して膜厚0.5μm〜1
0μmにTiN被膜層が形成され、前記Ti被膜面に磁
石体側よりTiN被膜層に向かってN2濃度が連続的に
増加する膜厚0.05μm〜2.0μmのN拡散層(組
成TiNx)を有することを特徴とする耐食性永久磁石
である。また、この発明は主相が正方晶相からなるFe
−B−Ra系永久磁石体表面を洗浄化した後、薄膜形成
法により、前記磁石体面に膜厚0.1μm〜3.0μm
のTi被膜を形成後、処理容器内にArとN2混合ガス
をN2量を連続的に増加させながら導入して、Ti被膜
内にN2濃度が増加する膜厚0.05〜2.0μmのN
拡散層(組成TiNx)を形成後、薄膜形成法にて膜厚
0.5μm〜10μmのTiN被膜相を形成することを
特徴とする耐食性永久磁石の製造方法である。That is, according to the present invention, the film thickness of 0.1 μm is formed on the surface of the Fe—B—Ra type permanent magnet body whose main phase is a tetragonal phase.
m-3.0 μm Ti film thickness 0.5 μm-1
A TiN coating layer is formed in a thickness of 0 μm, and an N diffusion layer (composition TiNx) having a thickness of 0.05 μm to 2.0 μm in which the N 2 concentration continuously increases from the magnet side toward the TiN coating layer is formed on the Ti coating surface. It is a corrosion-resistant permanent magnet characterized by having. Further, in the present invention, Fe whose main phase is a tetragonal phase
-After cleaning the surface of the B-Ra based permanent magnet body, a film thickness of 0.1 μm to 3.0 μm is formed on the surface of the magnet body by a thin film forming method.
After the Ti film formation, the thickness of Ar and N 2 mixed gas into the processing vessel by introducing while continuously increasing the N 2 volume, N 2 concentration increases in the Ti film 0.05-2. 0 μm N
After the diffusion layer (composition TiNx) is formed, a TiN film phase having a film thickness of 0.5 μm to 10 μm is formed by a thin film forming method, which is a method for producing a corrosion-resistant permanent magnet.
【0010】Fe−B−Ra系永久磁石体表面に設けた
Ti被膜の上にN2濃度が連続的に増加する窒素拡散層
(組成TiNx)を介してTiN被膜層を設けたことを
特徴とする耐食性永久磁石の製造方法の一例を以下に詳
述する。例えば、アークイオンプレーティング装置を用
いて、真空容器を到達真空度1×10-3pa以下まで真
空排気した後、Arガス圧10pa、−500VでAr
イオンによる表面スパッターにてFe−B−Ra系磁石
体表面を清浄化する。次にArガス圧0.1pa、バイ
アス電圧−80Vにより、ターゲットのTiを蒸発させ
て、アークイオンプレーティング法にて、磁石体表面に
0.1μm〜3.0μm膜厚のTi被膜層を形成する。
続いて、Ti被膜層表面の特定厚に窒素拡散層(組成T
iNx)を形成するため、Tiを蒸発させながら、基板
の磁石温度を400℃に保持して、ガス圧1pa、バイ
アス電圧−100V、アーク電流100A条件にて、A
rガスと窒素混合ガスを導入後、混合ガス中のN2量を
増加させることにより、特定厚のかつTiN被膜層に向
かって、N2濃度の増加する窒素拡散層を形成する。そ
の後、さらに窒素量ガスの圧力1paでアークイオンプ
レーティングを行って、前記Ti被膜層内のN2拡散層
上に特定厚のTiN被膜を形成することができる。A TiN coating layer is provided on the Ti coating provided on the surface of the Fe-B-Ra type permanent magnet body through a nitrogen diffusion layer (composition TiNx) in which the N 2 concentration continuously increases. An example of the method for producing the corrosion-resistant permanent magnet will be described in detail below. For example, using an arc ion plating device, the vacuum container is evacuated to an ultimate vacuum of 1 × 10 −3 pa or less, and then Ar gas pressure is 10 pa and Ar is −500 V.
The surface of the Fe-B-Ra based magnet body is cleaned by surface sputtering with ions. Next, Ti of the target is evaporated by Ar gas pressure of 0.1 pa and bias voltage of −80 V, and a Ti coating layer having a thickness of 0.1 μm to 3.0 μm is formed on the surface of the magnet body by the arc ion plating method. To do.
Then, the nitrogen diffusion layer (composition T
In order to form iNx), the temperature of the magnet of the substrate is kept at 400 ° C. while evaporating Ti, the gas pressure is 1 pa, the bias voltage is −100 V, and the arc current is 100 A.
After introducing the mixed gas of r gas and nitrogen, the amount of N 2 in the mixed gas is increased to form a nitrogen diffusion layer having a specific thickness and an increasing N 2 concentration toward the TiN coating layer. After that, arc ion plating is further performed with a nitrogen amount gas pressure of 1 pa to form a TiN coating film of a specific thickness on the N 2 diffusion layer in the Ti coating layer.
【0011】この発明において、Fe−B−Ra系永久
磁石体表面に被着のTi被膜層、窒素拡散層の形成方法
としては、イオンプレーティング法や蒸着法など公知の
薄膜形成法を適宜選定できるが、被膜の緻密性、均一
性、膜形成速度等の理由から、イオンプレーティング
法、イオン反応プレーティング法が好ましい。反応被膜
生成時の基板磁石の温度は200℃〜500℃に設定す
るのが好ましく、200℃未満では基板磁石との反応密
着が十分でなく、また500℃を超えると常温(−25
℃)との温度差が大きくなり、処理後の冷却過程で被膜
に亀裂が入り、一部基板より剥離を発生するため、基板
磁石の温度を200℃〜500℃に設定する。In the present invention, a known thin film forming method such as an ion plating method or a vapor deposition method is appropriately selected as a method for forming the Ti coating layer and the nitrogen diffusion layer adhered to the surface of the Fe-B-Ra type permanent magnet body. However, the ion plating method and the ion reaction plating method are preferable for reasons such as the denseness of the film, the uniformity, and the film formation rate. The temperature of the substrate magnet at the time of forming the reaction film is preferably set to 200 ° C to 500 ° C. If the temperature is less than 200 ° C, the reaction adhesion with the substrate magnet is insufficient, and if it exceeds 500 ° C, the temperature is at room temperature (-25
The temperature difference between the substrate magnet and the substrate magnet is set to 200 ° C to 500 ° C.
【0012】この発明において、磁石体表面のTi被膜
厚を0.1μm〜3.0μmに限定した理由は、0.1
μm未満では磁石表面との密着性が十分でなく、3.0
μmを超えると効果的には問題ないが、下地膜としては
コスト上昇を招来して、実用的でなく好ましくないの
で、Ti被膜厚は0.1μm〜3.0μmとする。ま
た、Ti被膜層内に形成の窒素拡散層厚を0.05μm
〜2.0μmに限定した理由は、0.05μm未満では
拡散層が十分でなく、良好な密着性が得られず、2.0
μmを超えると効果上は問題ないが、製造コスト上昇を
招来するので実用的でなく、好ましくない。この発明に
おいて、Ti被膜層内のN2拡散層はTiN被膜層に向
かってN2濃度が連続的に増加することが好ましい。ま
た、TiN被膜厚を0.5μm〜10μmに限定した理
由は、0.5μm未満ではTiNとしての耐食性、耐摩
耗性が十分でなく、10μmを超えると効果的には問題
ないが、製造コスト上昇を招来するので好ましくない。In the present invention, the reason why the Ti film thickness on the surface of the magnet body is limited to 0.1 μm to 3.0 μm is 0.1.
If it is less than μm, the adhesion to the magnet surface is insufficient, and 3.0
If the thickness exceeds .mu.m, there is no problem in terms of effectiveness, but this causes an increase in the cost of the base film and is not practical and not preferable. Therefore, the Ti film thickness is set to 0.1 .mu.m to 3.0 .mu.m. The thickness of the nitrogen diffusion layer formed in the Ti coating layer is 0.05 μm.
The reason for limiting the thickness to 2.0 μm is that if the thickness is less than 0.05 μm, the diffusion layer is insufficient and good adhesion cannot be obtained.
If the thickness exceeds μm, there is no problem in terms of effect, but this is not preferable because it causes an increase in manufacturing cost and is not practical. In the present invention, it is preferable that the N 2 diffusion layer in the Ti coating layer has a continuously increasing N 2 concentration toward the TiN coating layer. Further, the reason why the TiN coating film thickness is limited to 0.5 μm to 10 μm is that the corrosion resistance and wear resistance as TiN are not sufficient when the thickness is less than 0.5 μm, and there is no problem effectively when the thickness exceeds 10 μm, but the manufacturing cost increases. Is not preferable because it invites
【0013】この発明の永久磁石に用いる希土類元素R
aは、組成の10原子%〜30原子%を占めるが、N
d、Pr、Dy、Ho、Tbのうち少なくとも1種、あ
るいはさらに、La、Ce、Sm、Gd、Er、Eu、
Tm、Yb、Lu、Yのうち少なくとも1種を含むもの
が好ましい。また、通常Raのうち1種をもって足りる
が、実用上は2種以上の混合物(ミッシュメタル、ジジ
ム等)を入手上の便宜等の理由により用いることができ
る。なお、このRaは純希土類元素でなくてもよく、工
業上入手可能な範囲で製造上不可避な不純物を含有する
ものでも差支えない。Raは、上記系永久磁石における
必須元素であって、10原子%未満では結晶構造がα−
鉄と同一構造の立方晶組織となるため、高磁気特性、特
に高保磁力が得られず、30原子%を超えるとRaリッ
チな非磁性相が多くなり、残留磁束密度(Br)が低下
してすぐれた特性の永久磁石が得られない。よって、R
a10原子%〜30原子%の範囲が望ましい。Rare earth element R used in the permanent magnet of the present invention
a occupies 10 atomic% to 30 atomic% of the composition, but N
At least one of d, Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, Eu,
Those containing at least one of Tm, Yb, Lu and Y are preferable. Further, although one of Ra is usually sufficient, a mixture of two or more kinds (Misch metal, didymium, etc.) can be practically used for reasons of availability. It should be noted that this Ra does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing within a range that is industrially available. Ra is an essential element in the above-mentioned permanent magnet, and if less than 10 atomic%, the crystal structure is α-.
Since it has a cubic structure with the same structure as iron, high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 30 atomic%, the Ra-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. A permanent magnet with excellent characteristics cannot be obtained. Therefore, R
The range of 10 at% to 30 at% is desirable.
【0014】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。B is an essential element in the above-mentioned permanent magnet, and if it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. If it exceeds 28 atomic%, B is rich. Non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atom% to 28 atom%.
【0015】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。Fe is an essential element in the above-mentioned permanent magnets. If it is less than 65 atom%, the residual magnetic flux density (Br) is lowered, and if it exceeds 80 atom%, a high coercive force cannot be obtained. % To 80 atomic% is desirable.
Further, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, it is contrary. It is not preferable because the magnetic properties deteriorate. When the amount of substitution of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.
【0016】また、Ra、B、Feの他、工業的生産上
不可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、のうち少なくとも1種は、Fe−B−Ra
系永久磁石材料に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。なお、添加量の上限は、磁石
材料の(BH)maxを20MGOe以上とするには、
(Br)が少なくとも9kG以上必要となるため、該条
件を満す範囲が望ましい。In addition to Ra, B, and Fe, the presence of impurities that are inevitable in industrial production can be tolerated. For example, part of B is 4.0 wt% or less of C, 2.0 wt% or less of P, 2 .0
By substituting at least one of S of 2.0 wt% or less and Cu of 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.
Furthermore, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
At least one of Zn and Hf is Fe-B-Ra.
It can be added to a permanent magnet material because it is effective in improving the coercive force, squareness of demagnetization curve, improving manufacturability, and reducing cost. In addition, the upper limit of the addition amount is to set (BH) max of the magnetic material to 20 MGOe or more,
Since (Br) is required to be at least 9 kG or more, a range satisfying the condition is desirable.
【0017】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。The permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase and a nonmagnetic phase of 1% to 50% by volume ( (Excluding an oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.
【0018】[0018]
【作用】この発明は、Fe−B−Ra系永久磁石体表面
をイオンスパッター法等により清浄化した後、前記磁石
体表面にイオンプレーティング法等の薄膜形成法により
Ti被膜を形成後、特定条件のArガスとN2ガスとの
混合ガスを導入しながらイオンプレーティング等の薄膜
形成法を行って、前記Ti被膜表面に順次N濃度が増加
するN拡散層を形成後、N2ガス中にてイオン反応プレ
ーティング等の薄膜形成法を行って、TiN被膜を形成
したことを特徴とし、N拡散層を介在させてTi被膜上
にTiN被膜を積層するため、両被膜の密着性が著しく
改善され、すぐれた耐食性、特に温度80℃、相対湿度
90%の雰囲気条件下で長時間放置した場合において
も、下地との密着性がすぐれ、被着した耐食性金属被膜
の耐食性、耐摩耗性により、その磁石特性の安定したF
e−B−Ra系永久磁石が得られる。According to the present invention, after the surface of the Fe-B-Ra-based permanent magnet body is cleaned by the ion sputtering method or the like, a Ti coating film is formed on the surface of the magnet body by a thin film forming method such as the ion plating method, and then specified. performing a thin film formation method such as ion plating while introducing a mixed gas of Ar gas and N 2 gas conditions, after the formation of the N diffusion layer sequentially N concentration on the Ti coating film surface increases, N 2 gas A thin film forming method such as ion reaction plating was performed to form a TiN coating film. Since the TiN coating film is laminated on the Ti coating film with an N diffusion layer interposed, the adhesion between both coating films is remarkable. Improved and excellent corrosion resistance, especially even when left for a long time under an atmospheric condition of temperature 80 ° C and relative humidity 90%, it has excellent adhesion to the underlayer and has excellent corrosion resistance and wear resistance of the adhered corrosion resistant metal coating. The stable magnetic characteristics of F
An e-B-Ra system permanent magnet is obtained.
【0019】[0019]
実施例1 公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼
結、熱処理後に、16Nd−77Fe−7B組成の径1
2mm×厚み2mm寸法の磁石体試験片を得た。その磁
石特性を表1に示す。真空容器内を1×10-3pa以下
に真空排気し、Arガス圧10pa、−500Vで20
分間、表面スパッターを行って、磁石体表面を清浄化し
た後、Arガス圧0.1pa、バイアス電圧−80V、
アーク電流100A、基板磁石温度を400℃にて、タ
ーゲットとして金属Tiをアークイオンプレーティング
法にて、磁石体表面に0.1μm厚のTi被膜層を形成
する。次に基板磁石400℃、バイアス電圧−100
V、アーク電流100Aで、Ar:N2=9:1の混合
ガス1paを導入し、混合ガス比率をAr:N2比率を
9:1→7:3→5:5→3:7→0:10と連続的に
混合ガス組成を変えて、30分でTi被膜表面に膜厚
0.3μmの窒素拡散層(組成TiNx)を形成した。
さらに、N2ガス1pa、バイアス電圧−100V、ア
ーク電流100Aでアークイオンプレーティングを行っ
て、3時間で前記窒素拡散層上にTiN被膜を3μm形
成した。その後、放冷後、得られたTiN被膜を表面に
有する永久磁石を温度80℃、相対湿度90%の条件下
で1000時間放置した後の磁石特性及びその劣化状況
を測定し、その結果を第2表に示す。Example 1 A known casting ingot was crushed, finely crushed, molded, sintered, and heat-treated, and then a diameter of 1 of 16Nd-77Fe-7B composition was obtained.
A magnet test piece having a size of 2 mm and a thickness of 2 mm was obtained. The magnet characteristics are shown in Table 1. The inside of the vacuum vessel was evacuated to 1 × 10 −3 pa or less, and the Ar gas pressure was 10 pa, and the pressure was −500 V for 20 seconds.
After the surface is sputtered for a minute to clean the surface of the magnet body, Ar gas pressure is 0.1 pa, bias voltage is −80 V,
A Ti coating layer having a thickness of 0.1 μm is formed on the surface of the magnet body by an arc ion plating method using metal Ti as a target with an arc current of 100 A and a substrate magnet temperature of 400 ° C. Next, the substrate magnet 400 ° C., bias voltage -100
V, arc current 100A, mixed gas 1pa of Ar: N 2 = 9: 1 was introduced, and mixed gas ratio was Ar: N 2 ratio 9: 1 → 7: 3 → 5: 5 → 3: 7 → 0. The composition of the mixed gas was continuously changed to 10 minutes to form a nitrogen diffusion layer (composition TiNx) having a film thickness of 0.3 μm on the surface of the Ti coating film in 30 minutes.
Further, arc ion plating was performed with N2 gas of 1 pa, bias voltage of -100 V, and arc current of 100 A to form a TiN coating film of 3 μm on the nitrogen diffusion layer in 3 hours. Then, after allowing to cool, the permanent magnet having the obtained TiN coating on the surface was allowed to stand for 1000 hours under the conditions of a temperature of 80 ° C. and a relative humidity of 90%, and the magnet characteristics and its deterioration state were measured. The results are shown in Table 2.
【0020】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にて表面清浄化した後、実施例1と同一条件にて1.
0μm厚のTi被膜を形成後、Ti被膜上に実施例1と
同一条件にてTiN被膜を3μm厚に形成した。その
後、実施例1と同一の温度80℃、相対湿度90%の条
件下で1000時間放置後の磁石特性及びその劣化状況
を測定し、その結果を第2表に示す。Comparative Example 1 A magnet test piece having the same composition as in Example 1 was surface-cleaned under the same conditions as in Example 1, and then 1.
After forming a Ti film having a thickness of 0 μm, a TiN film having a thickness of 3 μm was formed on the Ti film under the same conditions as in Example 1. Then, the magnet characteristics and its deterioration state after standing for 1000 hours under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1 were measured, and the results are shown in Table 2.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】表2に示すように、同一磁石特性を有する
Fe−B−Ra系永久磁石体表面にTi被膜とTiN被
膜層を設けた比較例磁石は、温度80℃、相対湿度90
%の条件下で1000時間放置した耐食試験前後の磁石
特性の劣化が大きくかつ発錆しているのに対して、Ti
被膜の上にN2濃度が連続的に増加する窒素拡散層(組
成TiNx)を介してTiN被膜層を設けたこの発明の
Fe−B−Ra系永久磁石は、錆は発生せず、磁石特性
もほとんど変わらないことが明らかである。As shown in Table 2, the comparative example magnet having the Ti coating and the TiN coating layer on the surface of the Fe-B-Ra type permanent magnet having the same magnet characteristics has a temperature of 80 ° C. and a relative humidity of 90.
%, The magnet characteristics were largely deteriorated before and after the corrosion resistance test after being left for 1000 hours under the conditions of 100%
The Fe-B-Ra-based permanent magnet of the present invention in which the TiN coating layer is provided on the coating through the nitrogen diffusion layer (composition TiNx) in which the N 2 concentration continuously increases does not generate rust, and the magnet characteristics Is almost unchanged.
【0024】[0024]
【発明の効果】この発明による磁石表面に設けたTi被
膜の上にN2濃度が連続的に増加する窒素拡散層(組成
TiNx)を介してTiN被膜層を設けたFe−B−R
a系永久磁石体は、実施例の如く、苛酷な耐食試験条
件、特に、温度80℃、相対湿度90%の条件下で、1
000時間放置した後、その磁石特性の劣化はほとんど
なく、現在、最も要求されている高性能かつ安価な永久
磁石として極めて適している。According to the present invention, the Fe-B-R having the TiN coating layer provided on the surface of the magnet according to the present invention is provided with the TiN coating layer via the nitrogen diffusion layer (composition TiNx) in which the N 2 concentration continuously increases.
The a-type permanent magnet body was subjected to severe corrosion resistance test conditions as in the example, particularly, under the conditions of a temperature of 80 ° C. and a relative humidity of 90%.
After being left for 000 hours, there is almost no deterioration in the magnet characteristics, and it is extremely suitable as the most demanded high-performance and inexpensive permanent magnet at present.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 7/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053 7/02 Z
Claims (2)
系永久磁石体表面に、膜厚0.1μm〜3.0μmのT
i被膜を介して膜厚0.5μm〜10μmにTiN被膜
層が形成され、前記Ti被膜面に磁石体側よりTiN被
膜層に向かってN2濃度が連続的に増加する膜厚0.0
5μm〜2.0μmのN拡散層(組成TiNx)を有す
ることを特徴とする耐食性永久磁石。1. Fe-B-Ra whose main phase is a tetragonal phase
Of a film thickness of 0.1 μm to 3.0 μm on the surface of the system permanent magnet body
A TiN coating layer having a film thickness of 0.5 μm to 10 μm is formed through the i coating, and the N 2 concentration is continuously increased from the magnet side toward the TiN coating layer on the Ti coating surface to a film thickness of 0.0
A corrosion resistant permanent magnet having an N diffusion layer (composition TiNx) of 5 μm to 2.0 μm.
系永久磁石体表面を洗浄化した後、薄膜形成法により、
前記磁石体面に膜厚0.1μm〜3.0μmのTi被膜
を形成後、処理容器内にArとN2混合ガスをN2量を連
続的に増加させながら導入して、Ti被膜内にN2濃度
が増加する膜厚0.05〜2.0μmのN拡散層(組成
TiNx)を形成後、薄膜形成法にて膜厚0.5μm〜
10μmのTiN被膜層を形成することを特徴とする耐
食性永久磁石の製造方法。2. Fe-B-Ra whose main phase is a tetragonal phase
After cleaning the surface of the permanent magnet system, a thin film forming method
After forming a Ti coating having a film thickness of 0.1 μm to 3.0 μm on the surface of the magnet body, a mixed gas of Ar and N 2 is introduced into the processing container while continuously increasing the amount of N 2 , and the N coating is applied to the Ti coating. 2 After forming an N diffusion layer (composition TiNx) having a film thickness of 0.05 to 2.0 μm with increasing concentration, a film thickness of 0.5 μm to
A method for producing a corrosion resistant permanent magnet, which comprises forming a TiN coating layer having a thickness of 10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16628693A JP3737830B2 (en) | 1993-06-11 | 1993-06-11 | Corrosion-resistant permanent magnet and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16628693A JP3737830B2 (en) | 1993-06-11 | 1993-06-11 | Corrosion-resistant permanent magnet and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06349619A true JPH06349619A (en) | 1994-12-22 |
JP3737830B2 JP3737830B2 (en) | 2006-01-25 |
Family
ID=15828548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16628693A Expired - Lifetime JP3737830B2 (en) | 1993-06-11 | 1993-06-11 | Corrosion-resistant permanent magnet and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3737830B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997023884A1 (en) * | 1995-12-25 | 1997-07-03 | Sumitomo Special Metals Company Limited | Permanent magnet for ultrahigh vacuum application and method for manufacturing the same |
WO1998009300A1 (en) * | 1996-08-30 | 1998-03-05 | Sumitomo Special Metals Co., Ltd. | Corrosion-resistant permanent magnet and method for manufacturing the same |
KR100354371B1 (en) * | 1998-04-16 | 2002-09-28 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Corrosion-resisting permanent magnet and method for producing the same |
JP2012204517A (en) * | 2011-03-24 | 2012-10-22 | Tdk Corp | Rare earth magnet |
-
1993
- 1993-06-11 JP JP16628693A patent/JP3737830B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997023884A1 (en) * | 1995-12-25 | 1997-07-03 | Sumitomo Special Metals Company Limited | Permanent magnet for ultrahigh vacuum application and method for manufacturing the same |
US6080498A (en) * | 1995-12-25 | 2000-06-27 | Sumitomo Special Metals Co., Ltd. | Permanent magnet for ultra-high vacuum and production process thereof |
KR100302929B1 (en) * | 1995-12-25 | 2001-11-02 | 오카모토 유지 | Permanent magnet for ultra-high vacuum and production process thereof |
KR100305974B1 (en) * | 1995-12-25 | 2001-11-07 | 오카모토 유지 | Method of using a permanent magnet usable for ultra-high vacuum |
CN1091537C (en) * | 1995-12-25 | 2002-09-25 | 住友特殊金属株式会社 | Permanent magnet for ultrahigh vacuum application and method for mfg. same |
WO1998009300A1 (en) * | 1996-08-30 | 1998-03-05 | Sumitomo Special Metals Co., Ltd. | Corrosion-resistant permanent magnet and method for manufacturing the same |
KR100354371B1 (en) * | 1998-04-16 | 2002-09-28 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Corrosion-resisting permanent magnet and method for producing the same |
JP2012204517A (en) * | 2011-03-24 | 2012-10-22 | Tdk Corp | Rare earth magnet |
Also Published As
Publication number | Publication date |
---|---|
JP3737830B2 (en) | 2006-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100354371B1 (en) | Corrosion-resisting permanent magnet and method for producing the same | |
JPH0742553B2 (en) | Permanent magnet material and manufacturing method thereof | |
WO1997023884A1 (en) | Permanent magnet for ultrahigh vacuum application and method for manufacturing the same | |
JPH06349619A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
JPH07283017A (en) | Corrosion resistant permanent magnet and production thereof | |
EP0923087B1 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPH07249509A (en) | Corrosion-resistant permanent magnet and its manufacture | |
JPH0569282B2 (en) | ||
JPH1074607A (en) | Corrosion-resisting permanent magnet and its manufacture | |
JP3652816B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP3383338B2 (en) | Corrosion-resistant permanent magnet and its manufacturing method | |
JPS61281850A (en) | Permanent magnet material | |
JP3208057B2 (en) | Corrosion resistant permanent magnet | |
JP3676513B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPH06140226A (en) | Corrosion-resistant permanent magnet | |
JP3652818B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP3234306B2 (en) | Corrosion resistant permanent magnet | |
JPH1083905A (en) | Corrosion-resistant permanent magnet and its manufacture | |
JPH09180921A (en) | Permanent magnet for ultra high vacuum and manufacture thereof | |
JP2007273850A (en) | Magnet member, and manufacturing method thereof | |
JP3595082B2 (en) | Ultra-high vacuum permanent magnet and method of manufacturing the same | |
JPS63254702A (en) | Manufacture of corrosion resisting permanent magnet | |
JP3595078B2 (en) | Ultra-high vacuum permanent magnet and method of manufacturing the same | |
JP3411605B2 (en) | Corrosion resistant permanent magnet | |
JPH10106818A (en) | Permanent magnet for ultra high vacuum and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051028 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081104 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |