JPS6128716A - Internal-combustion engine with supercharger - Google Patents
Internal-combustion engine with superchargerInfo
- Publication number
- JPS6128716A JPS6128716A JP14852184A JP14852184A JPS6128716A JP S6128716 A JPS6128716 A JP S6128716A JP 14852184 A JP14852184 A JP 14852184A JP 14852184 A JP14852184 A JP 14852184A JP S6128716 A JPS6128716 A JP S6128716A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- control valve
- supercharge
- condition
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/44—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
- F02B33/446—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs having valves for admission of atmospheric air to engine, e.g. at starting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は過給機付内燃機関に関する。[Detailed description of the invention] Industrial applications The present invention relates to a supercharged internal combustion engine.
従来の技術
ルーツポンプやベーンポンプ等を利用した過給機は知ら
れている。このような過給機は機関出力軸に連結されて
駆動されるために、過給を必要としない機関軽負荷時に
は燃費が悪化することになる。このような不都合が特開
昭56−167817号公報に記載の発明によって解決
されている。これによると、過給機に電磁フランチを設
けるとともに、過給機をバイパスするバイパス通路を形
成してそこにエンジンの負荷に桑応して作動するバイパ
ス弁を配置し、過給をしない領域では電磁クラッチを切
るとともにバ、イバスを開き、電磁クラッチとバイパス
弁の作動にわずかの時間差をもたせて電磁フランチの大
切のショックも緩和されるようになっている」
発明が解決しようとする問題点
上記した先!テ技術においては、電磁クラッチがほぼ一
定の負荷条件(マニホルド負圧、スロットル開度等)で
開閉される。従って、過給領域を相対的に高負荷側に設
定しておくと軽中負荷領域から加速したい場合にレスポ
ンスが遅れることになり、逆に過給領域を相対的に低負
荷側から始めるように設定しておくと本来的に過給を必
要としない通常の定常走行(例えば市街地走行等)でも
頻繁に過給が行われるようになるために燃費が悪化する
ようになる。本発明は、特定すれば加速時に相対的に低
負荷側から過給を開始し、定常時には高負荷領域で過給
する構成を得ることにある。Conventional technology Superchargers using roots pumps, vane pumps, etc. are known. Since such a supercharger is connected to the engine output shaft and driven, fuel efficiency deteriorates when the engine is lightly loaded and does not require supercharging. Such inconveniences have been solved by the invention described in Japanese Patent Application Laid-Open No. 56-167817. According to this, an electromagnetic flanch is installed in the turbocharger, a bypass passage is formed to bypass the turbocharger, and a bypass valve is placed there that operates in response to the engine load. By disengaging the electromagnetic clutch and opening the bypass valve, there is a slight time difference between the activation of the electromagnetic clutch and the bypass valve, thereby alleviating the important shock of the electromagnetic flanch.'' Problems that the invention aims to solve: Where I did it! In this technology, an electromagnetic clutch is opened and closed under almost constant load conditions (manifold negative pressure, throttle opening, etc.). Therefore, if you set the supercharging region to a relatively high load side, the response will be delayed when you want to accelerate from a light to medium load region. If this setting is made, fuel efficiency will deteriorate because supercharging will be performed frequently even during normal steady driving (for example, city driving) that does not originally require supercharging. Specifically, it is an object of the present invention to obtain a configuration in which supercharging is started from a relatively low load side during acceleration, and supercharging is performed in a high load region during steady state.
問題点を解決するための手段
本発明による過給機付内燃機関は、過給機をバイパスし
て形成されたバイパス吸気通路に制御弁を配置し、この
制御弁の制御装置がスロットル弁の作動速度に基いて前
記制御弁の作動速度を決定する手段を含むことを特徴と
するものである。Means for Solving the Problems In the internal combustion engine with a supercharger according to the present invention, a control valve is disposed in a bypass intake passage formed by bypassing the supercharger, and a control device for the control valve controls the operation of the throttle valve. The invention is characterized in that it includes means for determining the operating speed of the control valve based on the speed.
作用
スロットル弁の作動速度により運転状態が判定されるこ
とができ、スロットル弁の作動速度が速いときには加速
又は減速と判断して早期に過給を開始し、又は過給を停
止する。スロットル弁の作動が遅いときには定常走行と
判断して徐々に過給に向かって又は”無過給に向かって
切換える。過給はバイパス制御弁を閉じることによって
行なわれ、無s給はバイパス制御弁を開くことによって
行なわれる。過給機は常時回り続けていてもバイパス通
路にリリーフすることによって過給機の負荷が。The operating state can be determined by the operating speed of the throttle valve, and when the operating speed of the throttle valve is high, it is determined that acceleration or deceleration is occurring and supercharging is started or stopped early. When the throttle valve operates slowly, it is determined that the vehicle is running at a steady state and gradually switches toward supercharging or "no supercharging."Supercharging is performed by closing the bypass control valve, and no supercharging is performed by closing the bypass control valve. Even if the turbocharger continues to rotate, the load on the turbocharger is relieved by relief into the bypass passage.
減少し、無過給時の燃費が改善される。 ゛実施
例
第1図において、機関本体1には公知の吸気通路2と排
気通路3が接続され、吸気通路2はバイブ等によってそ
の上流端はエアクリーナ4まで延びる。吸気通路2には
、順にエアフローメータ5、スロットル弁6、過給機7
、燃料噴射弁8が配置される。エアフローメータ5は公
知のものであり、その出力信号は電子制御装置9に送ら
れる。又、スロットル弁6の位置を検出するためのスロ
ットルボジシッンセンサ10も公知であり、その出力信
号も電子制御装置9に送られる。第1図には省略されて
いるがその他にクランクシャフトの位置を検出するクラ
ンクセンサや機関に冷却水温センサ等の出力信号も電子
制御装置9に送られ、電子制御袋W19は燃料噴射弁8
及び後述するバイパス流量制御弁11に制御信号を送る
。12はバッテリである。This reduces fuel consumption and improves fuel efficiency without supercharging. Embodiment In FIG. 1, a well-known intake passage 2 and an exhaust passage 3 are connected to an engine body 1, and the upstream end of the intake passage 2 extends to an air cleaner 4 by means of a vibrator or the like. An air flow meter 5, a throttle valve 6, and a supercharger 7 are installed in the intake passage 2 in this order.
, a fuel injection valve 8 is arranged. The air flow meter 5 is of a known type, and its output signal is sent to an electronic control unit 9. Further, a throttle body sensor 10 for detecting the position of the throttle valve 6 is also known, and its output signal is also sent to the electronic control device 9. Although not shown in FIG. 1, output signals from a crank sensor that detects the position of the crankshaft, a cooling water temperature sensor for the engine, etc. are also sent to the electronic control unit 9, and the electronic control bag W19 is connected to the fuel injection valve 8.
And a control signal is sent to a bypass flow control valve 11, which will be described later. 12 is a battery.
過給機7は第1図にはルーツポンプを利用したものが示
されているが、ベーンポンプ等のその他のタイプのポン
プが利用できる。過給機7のロータ13を支持するシャ
フトにはプーリ14が取付けられ、このプーリ14はベ
ルト又はチェーン15により機関のクランクシャフトに
取付けたクランクプーリ16に連結され、従って、過給
機7は機関のクランクシャフトにより駆動される。この
過給機7をバイパスしてバイパス吸気通路17が形成さ
れ、その上流側はスロットル弁6と過給機7との間で主
吸気通路2に連通され、その下流側は過給機7と燃料噴
射弁8(の上流の図示しないサージタンク)の間で主吸
気通路2に連通される。Although the supercharger 7 is shown in FIG. 1 as using a roots pump, other types of pumps such as vane pumps can be used. A pulley 14 is attached to the shaft supporting the rotor 13 of the supercharger 7, and this pulley 14 is connected by a belt or chain 15 to a crank pulley 16 attached to the crankshaft of the engine. is driven by a crankshaft. A bypass intake passage 17 is formed by bypassing the supercharger 7, and its upstream side communicates with the main intake passage 2 between the throttle valve 6 and the supercharger 7, and its downstream side communicates with the supercharger 7. The main intake passage 2 is communicated between the fuel injection valve 8 (a surge tank, not shown, upstream of the fuel injection valve 8).
バイパス吸気通路17には通路面積を変えることのでき
るバイパス流量制御弁11が配置される。A bypass flow control valve 11 that can change the area of the passage is arranged in the bypass intake passage 17.
バイパス流量制御弁11が全開のときには、機関本体1
に供給される空気量は機関と相対的に回転される過給機
7により過給されたものであることが分かろう。バイパ
ス流量制御弁11が全閉かられずかに開かれると、過給
機7により過給された゛空気の一部はその開度に応じて
バイパス吸気通路17から逃げ、従って、機関に供給さ
れる空気量は過給された空気量からバイパス吸気通路1
7を通って逃げた空気量を差し引いた量になる。バイパ
ス流量制御弁11が全開(若しくは所定の開度以上)に
なると、バイパス吸気通路17からの逃げ量が多くなっ
て過給機7の下流側の圧力はもはやその上流側の(大気
圧に近い)圧力になる。かくして、この場合には、過給
機7は回転し続けていても機関に吸入にされる空気量は
過給機が無い場合の無過給相当になる。しかも、この場
合に過給機7が回転し続けていても過給機7に負荷がか
からないので過給機7を駆動するための機関の動力損失
は非常に小さくなり、燃費上有利である。When the bypass flow control valve 11 is fully open, the engine body 1
It will be seen that the amount of air supplied to the engine is supercharged by the supercharger 7 which is rotated relative to the engine. When the bypass flow control valve 11 is slightly opened from fully closed, a portion of the air supercharged by the supercharger 7 escapes from the bypass intake passage 17 depending on the degree of opening, and is therefore supplied to the engine. The amount of air is determined from the amount of supercharged air into the bypass intake passage 1.
The amount is obtained by subtracting the amount of air that escaped through 7. When the bypass flow control valve 11 becomes fully open (or opens more than a predetermined opening degree), the amount of escape from the bypass intake passage 17 increases, and the pressure on the downstream side of the supercharger 7 no longer reaches the pressure on the upstream side (close to atmospheric pressure). ) becomes pressure. Thus, in this case, even if the supercharger 7 continues to rotate, the amount of air taken into the engine is equivalent to that without supercharging when there is no supercharger. Moreover, in this case, even if the supercharger 7 continues to rotate, no load is applied to the supercharger 7, so the power loss of the engine for driving the supercharger 7 becomes extremely small, which is advantageous in terms of fuel efficiency.
以上の説明から、バイパス流量制御弁11により過給状
態にあるか、又は無過給状態にあるか、又はこれらの両
状態間の移行状態にあるかが制御されることが分かる。From the above description, it can be seen that the bypass flow control valve 11 controls whether the engine is in a supercharging state, a non-supercharging state, or a transition state between these two states.
又、本発明によるバイパス吸気通路17の作用は上記し
た特開昭56−167817号公報のバイパスの作用と
は異なっているものである。Further, the function of the bypass intake passage 17 according to the present invention is different from the function of the bypass disclosed in the above-mentioned Japanese Patent Application Laid-open No. 167817/1983.
次に制御装置9の構成及び作用を第2図及び第3図を参
照して説明する。第2図に示されるように、制御装置9
は公知のディジタルコンピュータからなり、クロックを
備えた中央演算処理装置(CPU)20、リードオンリ
メモリ (ROM)21、ランダムアクセスメモリ (
RAM)22を備えたものであり、各種センサからの信
号が入力されることができ、例えばエアフローメータ5
からの信号はクランタ角センサ23からの信号とともに
直接CPIIに入力され、スロットルポジションセンサ
10からの信号はA/D変換機24を介して入力される
。バイパス流量制御弁(EACV) 11及び燃料噴射
弁8への制御信号は出力インターフェース25を介して
行われる。第3図はバイパス流量制御弁11のための制
御フローチャートを示すものである。このルーチンは所
定の短時間毎に起動される。Next, the configuration and operation of the control device 9 will be explained with reference to FIGS. 2 and 3. As shown in FIG.
consists of a known digital computer, including a central processing unit (CPU) 20 equipped with a clock, a read-only memory (ROM) 21, and a random access memory (
RAM) 22, and signals from various sensors can be input, for example, an air flow meter 5.
The signal from the throttle position sensor 10 is input directly to the CPII together with the signal from the cluster angle sensor 23, and the signal from the throttle position sensor 10 is input via the A/D converter 24. Control signals to the bypass flow control valve (EACV) 11 and the fuel injection valve 8 are provided via the output interface 25. FIG. 3 shows a control flowchart for the bypass flow control valve 11. This routine is activated at predetermined short intervals.
第3図において、ステップ101にてスロットル開度(
TA)を取り込む。次いでステップ102にてスロット
ル開度TAが予め定められた第一の設定値Xより小さい
か否かを判定する。第一の設定値Xは例えば第4図に示
されるようにスロットル開度10°付近に設定されるこ
とができ、又、第二の設定値Yが70’付近に設定され
ることができる。スロットル開度TAが第一の設定値X
より小さければステップ111に進んでバイパス流量制
御11を全開に維持する。ステップ102 Lでノーと
判定されると、ステップ103にてさらに第二の設定値
Yと比較する。TAがYより大きければ高負荷領域にあ
ると判断してステップ112にてバイパス流量制御弁E
ACVIIを全閉に維持する。ステップ103にてイエ
スであれば、ステップ104に進、み、記憶されていた
前回のスロットル開度TAOLDと比較し、TA≧TA
OLDであれば加速方向にスロットル弁6を操示してい
ることを示し、TA 七TAOLDであれば減速中であ
ることを示している。加速中であればステップ105へ
進み、減速中であればステソフ108へ進む。そして、
この制御ルーチンが所定の短時間毎に始動されるので、
ΔTA=TA−TAOLD又はΔTA ’ = TAO
L、D−TAによりスロットル弁6の開閉作動速度を知
ることができる。In FIG. 3, the throttle opening (
TA). Next, in step 102, it is determined whether the throttle opening degree TA is smaller than a predetermined first set value X. For example, as shown in FIG. 4, the first set value X can be set to around 10 degrees of throttle opening, and the second set value Y can be set to around 70'. Throttle opening TA is the first set value X
If it is smaller, the process proceeds to step 111 and the bypass flow rate control 11 is maintained fully open. If the determination in step 102L is NO, then in step 103 the second set value Y is further compared. If TA is larger than Y, it is determined that the load is in a high load region, and the bypass flow control valve E is activated in step 112.
Keep ACVII fully closed. If YES in step 103, the process proceeds to step 104, where it is compared with the previously stored throttle opening TAOLD and TA≧TA is determined.
OLD indicates that the throttle valve 6 is being operated in the acceleration direction, and TA 7 indicates that the throttle valve 6 is being operated in the direction of acceleration, and TA OLD indicates that the vehicle is decelerating. If the vehicle is accelerating, the program advances to step 105; if the vehicle is decelerating, the program advances to step 108. and,
Since this control routine is started at predetermined short intervals,
ΔTA=TA−TAOLD or ΔTA′=TAO
The opening/closing speed of the throttle valve 6 can be known from L and D-TA.
制御装W9のROM21には第5図のようなマツプ形体
でスロットル開閉速度に対するバイパス流量制御弁11
の開閉速度が記憶されており、このマツプからステップ
106又は109にてEACVの閉じ速度(S+ )又
は開き速度(S2)を求めることができ、ステップ10
7又は110にてそれぞれに求めた速度でバイパス流量
制御弁11を駆動する制御信号を発生する。この実施例
では、第5図のマツプが流量制御弁11の作動速度を決
定する手段となる。The ROM 21 of the control unit W9 stores the bypass flow rate control valve 11 corresponding to the throttle opening/closing speed in a map format as shown in FIG.
The opening/closing speed of the EACV is stored, and the closing speed (S+) or opening speed (S2) of the EACV can be determined from this map in step 106 or 109.
7 or 110, a control signal is generated to drive the bypass flow control valve 11 at the respective determined speeds. In this embodiment, the map shown in FIG. 5 serves as a means for determining the operating speed of the flow control valve 11.
上記フローチャートに従ってバイパス故量制御弁(EA
CV) 11の動きを追ってみると、例えば第4図のよ
うになる。機関アイドル時にはバイパス流量制御弁11
は全開となっていて無過給運転が行われる。アイドルか
らアクセルを踏み込んでスロットル弁を開くときには加
速状態であり、このときには第一の設定値Xでバイパス
流量制御弁1工が閉じられ始め、このときは第5図のマ
ツプ−1から分かるようにバイパス流量制御弁11の閉
じ速度も速いために矢印(alで示されるようにスロッ
トル開度に対して速い時期に全閉となりて過給のレスポ
ンスがよくなる。加速が終了しても高速高負荷運転が続
けられるときにはバイパス流量IIJ111I弁11は
全開に維持される。加速が終了して市街地走行等の定常
走行に移るときにはスロットル弁6がゆっくりと成る開
度まで戻されるのが一般的であた、このときは矢印0)
lで示されるように流量制御弁11はゆっくりと開き、
従って過給状態から無過給状態へ向かってゆっくりと移
行する。従って、このときに急激なトルクの変動がない
ためにドライバビリティが損なわれることがない。そし
て、定常走行状態では普通アクセル操作が小さくてその
作動速度も遅いために流量制御弁11はほとんど全開に
近い位置に維持される。その定常走行状態から加速する
ときには、そのときにスロットル弁6があった位置から
流量制御弁11が急速に閉じてレスポンスのよい加速を
行うことができる。又、高負荷状態から急減速するとき
には、流量制御弁1iは矢印(C)に示されるようにス
ロットル弁6がそのときにあった位置付近で急速に閉じ
、レスポンスのよい減速性能が得られることになる。Bypass failure control valve (EA) according to the above flowchart.
If you follow the movement of CV) 11, it will look like Figure 4, for example. Bypass flow control valve 11 when the engine is idle
is fully opened and non-supercharging operation is performed. When you step on the accelerator from idle and open the throttle valve, it is in an acceleration state, and at this time, the bypass flow control valve 1 begins to close at the first set value X, as can be seen from map 1 in Figure 5. Since the closing speed of the bypass flow control valve 11 is also fast, as shown by the arrow (al), it is fully closed at a faster time than the throttle opening, improving the response of supercharging. Even after acceleration is finished, high-speed, high-load operation continues When this continues, the bypass flow rate IIJ111I valve 11 is kept fully open.When the acceleration is finished and the vehicle starts steady driving such as city driving, the throttle valve 6 is generally returned to a slow opening. In this case, arrow 0)
The flow control valve 11 slowly opens as shown by l.
Therefore, there is a slow transition from the supercharged state to the non-supercharged state. Therefore, since there is no sudden torque change at this time, drivability is not impaired. In a steady running state, the accelerator operation is usually small and the operating speed is slow, so the flow control valve 11 is maintained at a position close to fully open. When accelerating from the steady running state, the flow rate control valve 11 closes rapidly from the position where the throttle valve 6 was at that time, making it possible to perform acceleration with good response. Furthermore, when decelerating suddenly from a high load state, the flow rate control valve 1i closes rapidly near the position where the throttle valve 6 was at that time, as shown by arrow (C), so that responsive deceleration performance can be obtained. become.
発明の効果
以上説明したように、本発明によればスロットル弁の作
動速度に応じて過給条件を制御することがで、き、加速
時には相対的に低負荷側から過給を開始し、定常時には
無過給領域を広げることができるので、レスポンスに優
れ且つ燃費に優れた内燃機関が得られる。Effects of the Invention As explained above, according to the present invention, the supercharging conditions can be controlled according to the operating speed of the throttle valve, and during acceleration, supercharging is started from the relatively low load side, and the Since the non-supercharging region can sometimes be expanded, an internal combustion engine with excellent response and excellent fuel efficiency can be obtained.
第1図は本発明の実施例のシステム構成図、第2図は第
1図の制御装置の構成図、第3図は第1図の制御装置の
制御フローチャート、第4図は流量制御弁の作動を説明
する図、第5図は流量制御弁の開閉速度を定めたマツプ
である。
1・・・機関本体、 2・・・吸気通路、6・
・・スロットル弁、 7・・・過給機、9・・・制
御装置、
10・・・スロットルポジションセンサ、11・・・流
量制御弁、
17・・・バイパス吸気通路。
第4面
握
スロットル開度
第5■FIG. 1 is a system configuration diagram of an embodiment of the present invention, FIG. 2 is a configuration diagram of the control device in FIG. 1, FIG. 3 is a control flowchart of the control device in FIG. FIG. 5, which is a diagram explaining the operation, is a map that defines the opening and closing speed of the flow rate control valve. 1... Engine body, 2... Intake passage, 6...
... Throttle valve, 7... Supercharger, 9... Control device, 10... Throttle position sensor, 11... Flow rate control valve, 17... Bypass intake passage. 4th page grip throttle opening 5th ■
Claims (1)
パス吸気通路に制御弁を配置し、該制御弁の制御装置が
スロットル弁の作動速度に基いて前記制御弁の作動速度
を決定する手段を含むことを特徴とする過給機付内燃機
関。A control valve is provided in a bypass intake passage formed by bypassing the supercharger, and a control device for the control valve determines the operating speed of the control valve based on the operating speed of the throttle valve. A supercharged internal combustion engine characterized by comprising means for.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14852184A JPS6128716A (en) | 1984-07-19 | 1984-07-19 | Internal-combustion engine with supercharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14852184A JPS6128716A (en) | 1984-07-19 | 1984-07-19 | Internal-combustion engine with supercharger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6128716A true JPS6128716A (en) | 1986-02-08 |
JPH0526923B2 JPH0526923B2 (en) | 1993-04-19 |
Family
ID=15454634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14852184A Granted JPS6128716A (en) | 1984-07-19 | 1984-07-19 | Internal-combustion engine with supercharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6128716A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62276220A (en) * | 1986-05-23 | 1987-12-01 | Mazda Motor Corp | Engine provided with supercharger |
US5154155A (en) * | 1990-10-12 | 1992-10-13 | Toyota Jidosha Kabushiki Kaisha | Boost pressure control system for a supercharged engine |
US5269144A (en) * | 1991-09-10 | 1993-12-14 | Detroit Diesel Corporation | Methanol fueled turbocharged diesel cycle internal combustion engine |
CN105201667A (en) * | 2014-06-18 | 2015-12-30 | 丰田自动车株式会社 | Vehicle Drive Control Device |
JP2018017179A (en) * | 2016-07-28 | 2018-02-01 | 株式会社Subaru | Air bypass valve control device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59101536A (en) * | 1982-11-30 | 1984-06-12 | Suzuki Motor Co Ltd | Suction pressure controller for engine fitted with supercharger |
-
1984
- 1984-07-19 JP JP14852184A patent/JPS6128716A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59101536A (en) * | 1982-11-30 | 1984-06-12 | Suzuki Motor Co Ltd | Suction pressure controller for engine fitted with supercharger |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62276220A (en) * | 1986-05-23 | 1987-12-01 | Mazda Motor Corp | Engine provided with supercharger |
US5154155A (en) * | 1990-10-12 | 1992-10-13 | Toyota Jidosha Kabushiki Kaisha | Boost pressure control system for a supercharged engine |
US5269144A (en) * | 1991-09-10 | 1993-12-14 | Detroit Diesel Corporation | Methanol fueled turbocharged diesel cycle internal combustion engine |
US5355677A (en) * | 1991-09-10 | 1994-10-18 | Detroit Diesel Corporation | Method of operating a supercharged methanol fueled diesel cycle internal combustion engine |
CN105201667A (en) * | 2014-06-18 | 2015-12-30 | 丰田自动车株式会社 | Vehicle Drive Control Device |
US9739220B2 (en) | 2014-06-18 | 2017-08-22 | Toyota Jidosha Kabushiki Kaisha | Vehicle drive control device |
JP2018017179A (en) * | 2016-07-28 | 2018-02-01 | 株式会社Subaru | Air bypass valve control device |
US10400717B2 (en) | 2016-07-28 | 2019-09-03 | Subaru Corporation | Air-bypass valve control device |
Also Published As
Publication number | Publication date |
---|---|
JPH0526923B2 (en) | 1993-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4774812A (en) | Turbocharged engine | |
JPH07101011B2 (en) | Method and apparatus for operating a supercharged internal combustion engine | |
JP2004245104A (en) | Supercharging type engine | |
JPH04140422A (en) | Supercharged pressure control device for engine | |
JPS6128716A (en) | Internal-combustion engine with supercharger | |
JPS62197655A (en) | Suction control device of internal combustion engine | |
JPH0692757B2 (en) | Bypass air amount control method for internal combustion engine | |
JP3185165B2 (en) | Control method of supercharged engine | |
JPH10288056A (en) | Internal combustion engine with turbo supercharger | |
JP2600851Y2 (en) | Engine with turbocharger | |
JPS62276221A (en) | Accelerator for turbo-charger | |
JP2515812B2 (en) | Control device for engine with supercharger | |
JPH0125883B2 (en) | ||
JPH10196381A (en) | Control device of internal combustion engine mounted with variable nozzle type turbocharger | |
JP2595658Y2 (en) | Engine with turbocharger | |
JPS6338614A (en) | Control device for supercharge pressure of internal combustion engine with supercharger | |
JPH03225032A (en) | Load control method for internal combustion engine | |
JPH0672545B2 (en) | Exhaust turbocharger | |
JPH08189368A (en) | Deceleration control device for engine | |
JP3187613B2 (en) | Control method of supercharged engine | |
JP3186344B2 (en) | Control method of supercharged engine | |
JP3349849B2 (en) | Automotive engine supercharger | |
JPS6034753Y2 (en) | Boost pressure control device for turbocharged engines | |
JP3331240B2 (en) | Control method of supercharged engine | |
JP3159346B2 (en) | Control method of supercharged engine |