JPS6124636B2 - - Google Patents
Info
- Publication number
- JPS6124636B2 JPS6124636B2 JP53053765A JP5376578A JPS6124636B2 JP S6124636 B2 JPS6124636 B2 JP S6124636B2 JP 53053765 A JP53053765 A JP 53053765A JP 5376578 A JP5376578 A JP 5376578A JP S6124636 B2 JPS6124636 B2 JP S6124636B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- storage material
- cooler
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005338 heat storage Methods 0.000 claims description 117
- 239000011232 storage material Substances 0.000 claims description 76
- 239000002667 nucleating agent Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 description 24
- 239000013078 crystal Substances 0.000 description 17
- 238000007711 solidification Methods 0.000 description 16
- 230000008023 solidification Effects 0.000 description 16
- 238000005057 refrigeration Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QHFQAJHNDKBRBO-UHFFFAOYSA-L calcium chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ca+2] QHFQAJHNDKBRBO-UHFFFAOYSA-L 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、蓄熱装置に係り、特に凝固性蓄熱材
の凝固熱を放熱器で放出して利用するのに好適な
冷凍サイクルに接続した蓄熱装置に関するもので
ある。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat storage device, and particularly to a heat storage device connected to a refrigeration cycle suitable for discharging and utilizing solidification heat of a coagulable heat storage material with a radiator. It is related to.
社会的な省エネルギーの要請に応えて、蓄熱材
および蓄熱装置の開発が行われており、特に、物
質の凝固、融解の際に発生する潜熱を利用する潜
熱形蓄熱材の開発が進んでいる。
In response to social demands for energy conservation, heat storage materials and heat storage devices are being developed, and in particular, development of latent heat type heat storage materials that utilize latent heat generated during solidification and melting of substances is progressing.
また、凝固性蓄熱材を収容した蓄熱槽に冷却器
を設け、この冷却器を冷凍サイクルの冷媒配管に
接続する蓄熱装置の開発も進められている。 Further, development of a heat storage device in which a cooler is provided in a heat storage tank containing a coagulable heat storage material and the cooler is connected to refrigerant piping of a refrigeration cycle is also underway.
この装置では、冷凍サイクルの冷媒は、冷却器
を介して蓄熱材から凝固熱を吸熱し、冷凍サイク
ルの放熱器でその熱を放出する。 In this device, the refrigerant in the refrigeration cycle absorbs heat of solidification from the heat storage material through the cooler, and releases the heat in the radiator of the refrigeration cycle.
蓄熱材への熱の補給は、太陽熱の利用、ボイラ
の余熱や工場排熱の利用などによつて行われ、一
方、蓄熱材からの熱は、暖房用、温室用、乾燥用
などさまざまな用途に利用される。 Heat is supplied to the heat storage material by using solar heat, residual heat from boilers, factory waste heat, etc. On the other hand, heat from the heat storage material can be used for various purposes such as heating, greenhouses, and drying. used for.
このような蓄熱装置では、凝固熱は、蓄熱槽内
で結晶しつつある蓄熱材と液体状態にある蓄熱材
との界面から放出され冷却器に伝わるものであ
り、冷却器が蓄熱材の結晶に囲われるて伝熱効率
が悪化するという問題がある。 In such a heat storage device, solidification heat is released from the interface between the heat storage material that is crystallizing in the heat storage tank and the heat storage material that is in a liquid state and is transmitted to the cooler. There is a problem in that the heat transfer efficiency deteriorates due to being surrounded.
したがつて、冷却器の伝熱効率の向上、特に蓄
熱材の結晶開始後の伝熱効率を良好に保つことが
重要な課題である。尚、上記に関連するものとし
ては、特公53―9596号が挙げられる。 Therefore, it is an important issue to improve the heat transfer efficiency of the cooler, especially to maintain good heat transfer efficiency after the heat storage material starts crystallizing. Note that Japanese Patent Publication No. 53-9596 is related to the above.
〔発明の目的〕
本発明は、前述の課題ないし問題点に鑑みなさ
れたもので、凝固然蓄熱材を用いた蓄熱装置にお
いて、冷凍サイクルの冷媒が蓄熱材の凝固熱を吸
熱すべき主冷却器の伝熱効率が、蓄熱材の結晶開
始後も良好に保たれ、実用に供して実益の大きい
蓄熱装置の提供を、その目的としている。[Object of the Invention] The present invention has been made in view of the above-mentioned problems or problems, and provides a main cooler in which the refrigerant of the refrigeration cycle absorbs the heat of solidification of the heat storage material in a heat storage device using a self-solidifying heat storage material. The purpose of the present invention is to provide a heat storage device in which the heat transfer efficiency of the heat storage material is maintained well even after the crystallization of the heat storage material has started, and which can be put to practical use and is highly profitable.
本発明に係る蓄熱装置の構成は、蓄熱槽内に凝
固性の蓄熱材を収容し、この蓄熱材の上層部に主
冷却器、下層部に補助冷却器を配設し、当該補助
冷却器またはその近傍に発核剤を保有せしめると
ともに、前記蓄熱材に熱を補給する加熱器を蓄熱
材内に配設するようにしたものである。
The configuration of the heat storage device according to the present invention is such that a coagulable heat storage material is housed in a heat storage tank, a main cooler is provided in the upper layer of the heat storage material, an auxiliary cooler is provided in the lower layer, and the auxiliary cooler or A nucleating agent is held in the vicinity thereof, and a heater for replenishing heat to the heat storage material is disposed within the heat storage material.
なお付記すると、本発明に係る蓄熱装置は、主
冷却器および捕助冷却器を、圧縮機、放熱器、放
熱器、減圧手段を備えた冷媒配管に接続して密閉
循環路を形成し、蓄熱材の凝固熱を前記放熱器を
放出しうるように構成したものである。 As an additional note, the heat storage device according to the present invention connects the main cooler and the supplementary cooler to refrigerant piping equipped with a compressor, a radiator, a radiator, and a pressure reducing means to form a closed circulation path. The structure is such that the heat of solidification of the material can be released through the heat radiator.
以下、本発明の各実施例を第1図ないし第11
図を参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 11.
This will be explained with reference to the figures.
まず、第1図は、本発明の一実施例に係る蓄熱
装置の略示構成図、第2図は、その蓄熱槽部の詳
細図である。 First, FIG. 1 is a schematic configuration diagram of a heat storage device according to an embodiment of the present invention, and FIG. 2 is a detailed diagram of the heat storage tank portion thereof.
図において、1は蓄熱槽、2は、蓄熱槽1内に
収容された凝固性の蓄熱材であり、例えば、30
Cで凝固―融解する6水和塩化カルシユーム
CaCl・6H2O(比重量1.5g/cm3)である。 In the figure, 1 is a heat storage tank, 2 is a coagulable heat storage material accommodated in the heat storage tank 1, and for example, 30
Calcium chloride hexahydrate coagulates and melts in C
It is CaCl.6H 2 O (specific weight 1.5 g/cm 3 ).
3は、蓄熱材2の上層部に配設された主冷却
器、4は、蓄熱材2の下層部に配設された補助冷
却器で、補助冷却器4の近傍には発核剤14が取
付けられている。 3 is a main cooler disposed in the upper layer of the heat storage material 2; 4 is an auxiliary cooler disposed in the lower layer of the heat storage material 2; a nucleating agent 14 is located near the auxiliary cooler 4; installed.
5は放熱器、6は、放熱器5用のフアン、7は
減圧手段に係る膨膨弁またはキヤピラリチユーブ
(図はキヤピラリチユーブを示す)、8は冷媒配
管、9は圧縮機であり、前記主冷却器3と補助冷
却器4は、蓄熱槽1外の圧縮器9および放熱器5
と密閉循環路に係る冷凍サイクルを構成するよう
に、冷媒配管8によつて連結されている。 5 is a radiator, 6 is a fan for the radiator 5, 7 is an expansion valve or capillary tube related to the pressure reducing means (the figure shows a capillary tube), 8 is a refrigerant pipe, 9 is a compressor, The main cooler 3 and the auxiliary cooler 4 are connected to a compressor 9 and a radiator 5 outside the heat storage tank 1.
and are connected by a refrigerant pipe 8 so as to constitute a refrigeration cycle having a closed circulation path.
冷凍サイクル内の冷媒(たてえだフロン)は、
圧縮機9によつて圧縮されて放熱器5内に送ら
れ、ここで冷却されて凝縮の潜熱を放出して冷媒
みずからは液化する。放熱器5で放出された凝縮
熱は、その外部のフアン6によつて送り込まれる
空気につよつて熱除去される。一方、凝縮液は、
冷媒配管8を通つて膨張弁またはキヤピラリチユ
ーブ7内に送り込まれ、ここで断熱膨張しながら
補助冷却器4に致達する。補助冷却器7内の冷媒
はそこで蒸発しながら主冷却器3に達するが、こ
の際冷媒は補助冷却器4および主冷却器3を介し
てその外部の蓄熱材2から熱を吸収する。蒸発し
た冷媒は圧縮機9に戻され再び同じサイクルをく
り返すが、上述の過程によつて蓄熱材2中の熱は
放熱器5に運ばれ、放熱器5を室内に設定すれば
室内の暖房に蓄熱材2中の熱が利用される。 The refrigerant (Tateeda Freon) in the refrigeration cycle is
The refrigerant is compressed by the compressor 9 and sent into the radiator 5, where it is cooled and releases the latent heat of condensation, thereby liquefying the refrigerant itself. The heat of condensation released by the radiator 5 is removed by air sent by a fan 6 outside the radiator 5. On the other hand, the condensate is
The refrigerant is fed through the refrigerant pipe 8 into the expansion valve or capillary tube 7, where it reaches the auxiliary cooler 4 while undergoing adiabatic expansion. The refrigerant in the auxiliary cooler 7 reaches the main cooler 3 while evaporating there. At this time, the refrigerant absorbs heat from the heat storage material 2 outside the auxiliary cooler 4 and the main cooler 3. The evaporated refrigerant is returned to the compressor 9 and repeats the same cycle again, but through the process described above, the heat in the heat storage material 2 is carried to the radiator 5, and if the radiator 5 is installed indoors, it can heat the room. The heat in the heat storage material 2 is utilized.
本実施例の蓄熱装置は、先に述べたように蓄熱
材2として凝固―隔解熱を利用できる物質を用い
ている。例えば、蓄熱材2として6水和塩化カル
シユームCaCl2・6H2Oを用いる場合には、30℃
で48cal/gを放出しながら凝固する。 As described above, the heat storage device of this embodiment uses a material that can utilize solidification-temporal decomposition as the heat storage material 2. For example, when using hexahydrate calcium chloride CaCl 2 6H 2 O as the heat storage material 2,
It solidifies while releasing 48 cal/g.
しかし、一般にこの種含水塩を蓄熱材2として
用いると、過冷却現象が著しく起り、発核剤14
を蓄熱材2中に保有せしめないと蓄熱材が凝固温
度に達しても凝固を開始しない。。 However, when this type of hydrated salt is generally used as the heat storage material 2, a significant supercooling phenomenon occurs, and the nucleating agent 14
Unless it is retained in the heat storage material 2, solidification will not start even if the heat storage material reaches the solidification temperature. .
蓄熱材2として6水和塩化カルシユーム
CaCl2・6H2Oを用いる場合には、発核剤14と
しては水酸化ストロンチユームSi(OE)2・8H2O
などが良い。い。 Calcium chloride hexahydrate as heat storage material 2
When using CaCl 2 .6H 2 O, the nucleating agent 14 is strontium hydroxide Si (OE) 2.8H 2 O.
etc. are good. stomach.
蓄熱槽1内の蓄熱材2の凝固開始前の温度分布
は、対流によつて下層部が低くなる。 The temperature distribution of the heat storage material 2 in the heat storage tank 1 before solidification starts is lower in the lower layer due to convection.
補助冷却器4を蓄熱材2内下層部に設ければ、
さらに下層部の温度が低くなる。そこで、補助冷
却器4の近傍に発核剤14を設けておけば、蓄熱
材2は下層部から結晶成長が開始する。 If the auxiliary cooler 4 is provided in the lower layer inside the heat storage material 2,
Furthermore, the temperature of the lower layer becomes lower. Therefore, if a nucleating agent 14 is provided near the auxiliary cooler 4, crystal growth of the heat storage material 2 will start from the lower layer.
第2図において2′は結晶した蓄熱材(以下蓄
熱材結晶という)を示す。凝固熱は結晶し続けて
いる蓄熱材結晶2′とまだ液体状態にある蓄熱材
2の界面から放出されるが、この凝固熱は、液体
状態にある蓄熱材2の対流によつて主冷却器3に
伝わる。主冷却器3の近辺には発核剤14は設け
ていないため、蓄熱材は2は主冷却器3近辺では
結晶し難い。これにより補助冷却器4は直ちに蓄
熱材結晶2′によつて囲われる。当該蓄熱熱材結
晶2′は熱伝導率が小さいため伝熱効率は悪化す
るが、主冷却器3は液体状態にある蓄熱材2によ
つて間接的に凝固熱を受けるので伝熱効率はすぐ
悪くならない。しかし、蓄熱槽1内の蓄熱材2が
全部凝固し終ると、主冷却器3は凝固熱を受けな
いので、放熱器5の暖房能力はほとんど無くな
る。そこで、何らかの手段によつて蓄熱材2中へ
熱を補給することが必要である。 In FIG. 2, 2' indicates a crystallized heat storage material (hereinafter referred to as heat storage material crystal). Solidification heat is released from the interface between the heat storage material crystal 2' which continues to crystallize and the heat storage material 2 which is still in a liquid state. This solidification heat is transferred to the main cooler by convection of the heat storage material 2 which is in a liquid state. 3. Since the nucleating agent 14 is not provided near the main cooler 3, the heat storage material 2 is difficult to crystallize near the main cooler 3. As a result, the auxiliary cooler 4 is immediately surrounded by the heat storage material crystal 2'. Since the heat storage material crystal 2' has a low thermal conductivity, the heat transfer efficiency deteriorates, but since the main cooler 3 indirectly receives solidification heat from the heat storage material 2 in a liquid state, the heat transfer efficiency does not deteriorate immediately. . However, once the heat storage material 2 in the heat storage tank 1 has completely solidified, the main cooler 3 receives no solidification heat, so the heating capacity of the radiator 5 is almost completely lost. Therefore, it is necessary to supply heat into the heat storage material 2 by some means.
第1図の実施例は、蓄熱材2への補給に太陽を
利用するものであり、13は集熱手段に係る集熱
器、10はポンプ、11は熱媒に係る温水を流通
せしめる配管である。 The embodiment shown in FIG. 1 uses the sun to replenish the heat storage material 2, and 13 is a heat collector as a heat collecting means, 10 is a pump, and 11 is a pipe for circulating hot water as a heat medium. be.
太陽熱を集熱する集熱器13で暖められた温水
はポンプ10により熱媒配管11を通つて加熱器
12へ騒り込まれ、加熱器12を介して蓄熱材結
晶2を融解しながら蓄熱を行うものである。 Hot water heated by a solar collector 13 that collects solar heat is pumped by a pump 10 to a heater 12 through a heat medium pipe 11, and is stored in heat while melting the heat storage material crystal 2 via the heater 12. It is something to do.
太陽熱を利用した蓄熱装置の運転方法として
は、日中集熱器13とポンプ10を用いて蓄熱材
2に太陽熱を蓄熱し、早朝または夕方圧縮機9を
運転して暖房を行なうという方法が多い。 As a method of operating a heat storage device using solar heat, there are many methods in which solar heat is stored in the heat storage material 2 using a heat collector 13 and a pump 10 during the day, and heating is performed by operating the compressor 9 in the early morning or evening. .
第2図の蓄熱槽の詳細図ににおいて、主冷却器
3、補助冷却器4および加熱器12には、それぞ
れ伝熱フイン3′,4′,12′が付いているが、
これにより凝固または融解速度を速め熱の出し入
れを容易にしている。 In the detailed diagram of the heat storage tank in FIG. 2, the main cooler 3, the auxiliary cooler 4, and the heater 12 are equipped with heat transfer fins 3', 4', and 12', respectively.
This speeds up the solidification or melting rate and facilitates the transfer of heat.
第3図は、第2図に示す補助励却器4と加熱器
12の立体斜視図である。 FIG. 3 is a three-dimensional perspective view of the auxiliary exciter 4 and heater 12 shown in FIG. 2.
補助冷却器4および加熱器12は、それぞれ冷
媒発管8および熱媒配管11につながるパイプを
数回U字型に折り曲げた蛇管であり、これらのパ
イプ部を多数の伝熱フインに係るプレートフイン
4′,12′に貫通固定してユニツトに構成してい
る。 The auxiliary cooler 4 and the heater 12 are flexible pipes that are connected to the refrigerant tube 8 and the heat transfer pipe 11, respectively, and are bent several times into a U-shape. 4' and 12' to form a unit.
本実施例によれば、次のような効果がある。 According to this embodiment, the following effects are achieved.
1 発核剤14により蓄熱材2の下層部から結晶
成長が促進される。1 The nucleating agent 14 promotes crystal growth from the lower layer of the heat storage material 2.
2 蓄熱槽1内に収容された蓄熱材2の下層部
に、補助冷却器4と加熱器12をユニツト状に
設けたので、蓄熱材2が凝固し終るときの熱の
補給が円滑に行なわれる。2. Since the auxiliary cooler 4 and the heater 12 are provided as a unit in the lower layer of the heat storage material 2 housed in the heat storage tank 1, heat can be smoothly replenished when the heat storage material 2 finishes solidifying. .
3 主冷却器3,補助冷却器4,加熱器12に
は、それぞれプレートフイン3′,4′,12′
が付いており、蓄熱材2の凝固または融解速度
を速め熱の出し入れを容易にしている。3 The main cooler 3, auxiliary cooler 4, and heater 12 are provided with plate fins 3', 4', and 12', respectively.
, which speeds up the solidification or melting rate of the heat storage material 2 and facilitates the introduction and removal of heat.
4 したがつて、これらから、手冷却器3の伝熱
効率が蓄熱材の結晶開始後も良効に保たれる。4. Therefore, from these, the heat transfer efficiency of the hand cooler 3 is maintained at a good level even after the heat storage material starts to crystallize.
次に、補助冷却器と加熱器の他の実施例を第4
図および第5図を参照して説明する。 Next, another example of the auxiliary cooler and heater will be described in the fourth example.
This will be explained with reference to the figures and FIG.
第4図な、本発明の他の実施例に傾る蓄熱装置
の補助冷却器および加熱器部の斜視図、第5図
は、第4図の断面図である。 FIG. 4 is a perspective view of an auxiliary cooler and heater section of a heat storage device according to another embodiment of the present invention, and FIG. 5 is a sectional view of FIG. 4.
第4図および第5図において、4Aは、冷却配
管8につながる補助励冷却器に係る伝熱パイプ、
12Aは、熱媒背管11につながる加熱器り係る
熱媒パイプで、前記伝熱パイプ4Aと熱媒パイプ
12Aとは伝熱フインに相当するリブ30によつ
て一体に連結されている。また、伝熱パイプ4A
の外側には複数の伝熱フイン4′A、熱媒パイプ
12Aの外側には複数の伝熱フイン12′が具備
されている。 In FIG. 4 and FIG. 5, 4A is a heat transfer pipe related to the auxiliary exciting cooler connected to the cooling pipe 8;
12A is a heat medium pipe related to the heater connected to the heat medium back pipe 11, and the heat transfer pipe 4A and the heat medium pipe 12A are integrally connected by ribs 30 corresponding to heat transfer fins. In addition, heat transfer pipe 4A
A plurality of heat transfer fins 4'A are provided on the outside of the heating medium pipe 12A, and a plurality of heat transfer fins 12' are provided on the outside of the heat medium pipe 12A.
この実施例では、補助冷却器に傾る伝熱パイプ
4Aと伝熱フイン4′Aの表面に発核剤14が取
付けてあり、これより、これにより発核開始まで
の時間を短くすることができ、蓄熱材2の結晶成
長がより促進される。 In this embodiment, a nucleating agent 14 is attached to the surfaces of the heat transfer pipe 4A and the heat transfer fin 4'A that are inclined toward the auxiliary cooler, and this makes it possible to shorten the time until nucleation starts. The crystal growth of the heat storage material 2 is further promoted.
この実施例では、補助冷却器に係る伝熱パイプ
4Aと伝熱フイン4′Aの表面に発核剤14が取
付けてあり、これにより発核開始までの時間を短
くすることができ、蓄熱材2の結晶成長がより促
進される。 In this embodiment, a nucleating agent 14 is attached to the surfaces of a heat transfer pipe 4A and a heat transfer fin 4'A related to the auxiliary cooler, thereby shortening the time until the start of nucleation. The crystal growth of No. 2 is further promoted.
次に、本発明のさらに他の実施例を第6図およ
び第7図を参照して説明する。 Next, still another embodiment of the present invention will be described with reference to FIGS. 6 and 7.
ここに第6図は、本発明のさらに他の実施例に
係る蓄熱装置の蓄熱部の縦断面図、第7図は、第
6図のA―A′断面図である。図中、第2図と同
一符号のものは、前述の実施例と同等部分である
から、その説明を省略する。 Here, FIG. 6 is a longitudinal sectional view of a heat storage section of a heat storage device according to still another embodiment of the present invention, and FIG. 7 is a sectional view taken along line AA' in FIG. 6. In the figure, the same reference numerals as in FIG. 2 are the same parts as in the above-described embodiment, so the explanation thereof will be omitted.
第6図の実施例では、蓄熱材2を収容した蓄熱
槽1内の底部に伝熱板15を設け、この伝熱板1
5上に、補助冷却器に係る伝熱パイプ4Bおよび
加熱器に係る熱媒パイプ12Bを蛇管状に配置し
ろう付している。この伝熱板15は、第3図、第
4図の実施例における各伝熱フインの役目をなす
ものである。 In the embodiment shown in FIG. 6, a heat transfer plate 15 is provided at the bottom of the heat storage tank 1 containing the heat storage material 2.
5, a heat transfer pipe 4B related to the auxiliary cooler and a heat medium pipe 12B related to the heater are arranged in a serpentine tube shape and brazed. This heat transfer plate 15 serves as each heat transfer fin in the embodiments shown in FIGS. 3 and 4.
伝熱板15および伝熱パイプ4Bの外面には発
核剤14が取付けられている。 Nucleating agent 14 is attached to the outer surfaces of heat transfer plate 15 and heat transfer pipe 4B.
第6図は、加熱器に係る熱媒パイプ12B内に
温水を流して蓄熱材結晶2′を融解している様子
を示している。熱媒パイプ12Bは蓄熱槽1内の
底部に設置してあるため、下部の蓄熱材2から融
解を開始する。融解した下部の蓄熱材2は対流を
起し、伝熱板15および熱媒パイプ12Bにより
熱を上部の蓄熱材結晶2′へ伝えるため、上部の
蓄熱材結晶2′も徐々に融解し続ける。 FIG. 6 shows how hot water is flowed into the heat medium pipe 12B of the heater to melt the heat storage material crystal 2'. Since the heat medium pipe 12B is installed at the bottom of the heat storage tank 1, melting starts from the heat storage material 2 at the bottom. The melted lower heat storage material 2 causes convection and transfers heat to the upper heat storage material crystal 2' through the heat transfer plate 15 and the heat medium pipe 12B, so that the upper heat storage material crystal 2' also continues to gradually melt.
次に、冷凍サイクルの配管系の実施例を8図お
よび第9図を参照して説明する。 Next, an embodiment of the piping system of the refrigeration cycle will be described with reference to FIGS. 8 and 9.
第8図および第9図は、いずれも本発明のさら
に他の実施例に係る蓄熱装置の略示構成図であ
り、いずれも図中第1図と同一符号のものは、第
1図の実施例を同等部分であるから、その説明を
省略する。 8 and 9 are both schematic configuration diagrams of a heat storage device according to still another embodiment of the present invention, and in both figures, the same reference numerals as in FIG. Since the example is equivalent, its explanation will be omitted.
まず第8図の実施例を説明する。 First, the embodiment shown in FIG. 8 will be explained.
さきの第1図の実施例では、キヤピラリチユー
ブ7を出た冷媒が補助冷却器4を通過したのち、
主冷却器3に入るような構成であつた。 In the embodiment shown in FIG. 1, after the refrigerant leaving the capillary tube 7 passes through the auxiliary cooler 4,
The structure was such that it entered the main cooler 3.
これに対し、第8図の実施例では、冷媒を主冷
却器を通したのち補助冷却器4に導入するように
冷媒配管8Aを接続している。 In contrast, in the embodiment shown in FIG. 8, the refrigerant pipe 8A is connected so that the refrigerant is introduced into the auxiliary cooler 4 after passing through the main cooler.
このようにしても、第1図の実施例と同様の効
果が期待できる。 Even in this case, the same effect as the embodiment shown in FIG. 1 can be expected.
次に、第9図の実施例は、冷媒配管8Bを2つ
の分岐して主冷却器3と補助冷却器4とに並列に
接続し、冷媒を両冷却器に同時に流し込めるよう
にしたものである。 Next, in the embodiment shown in FIG. 9, the refrigerant pipe 8B is branched into two parts and connected in parallel to the main cooler 3 and the auxiliary cooler 4, so that the refrigerant can flow into both coolers at the same time. be.
主冷却器3に接続する分岐管8B―1に、補助
冷却器4に接続する分岐管8B―2には、それぞ
れ冷媒流制御手段に係るバルブ16―1,16―
2が付いているが、蓄熱材2から主冷却器3およ
び補助冷却器4により熱を取り出す際、最初バル
ブ16―1,16―2を開いていて、補助冷却器
4近辺に蓄熱材結晶2′が成長を開始したのち、
バルブ16―2を閉じ、補助冷却器4内の冷媒の
流れを止めることができる。 The branch pipe 8B-1 connected to the main cooler 3 and the branch pipe 8B-2 connected to the auxiliary cooler 4 have valves 16-1 and 16-2 connected to the refrigerant flow control means, respectively.
2 is attached, but when heat is extracted from the heat storage material 2 by the main cooler 3 and the auxiliary cooler 4, the valves 16-1 and 16-2 are first opened, and the heat storage material crystal 2 is placed near the auxiliary cooler 4. ′ started growing,
Valve 16-2 can be closed to stop the flow of refrigerant in auxiliary cooler 4.
このようにすると、バルブ16―2を閉じたの
ちは補助冷却器4辺の蓄熱材結晶2′が極度に冷
却されないで、下層部の蓄熱材結晶2′と主冷却
器3との間の温度差が大きくとれ、主冷却器3へ
の対流熱伝達率が大きくなる。バルブ16―1,
16―2の切換え方法としては、最初バルブ16
―1を閉じてバルブ16―2を開いておき、補助
冷却器4に蓄熱材結晶2が成長したらバルブ16
―2を閉じる方法でも良い。 In this way, after the valve 16-2 is closed, the heat storage material crystals 2' on the four sides of the auxiliary cooler are not extremely cooled, and the temperature between the heat storage material crystals 2' in the lower layer and the main cooler 3 is reduced. The difference becomes large, and the convective heat transfer coefficient to the main cooler 3 becomes large. Valve 16-1,
16-2, first switch valve 16.
-1 and open the valve 16-2, and when the heat storage material crystal 2 grows in the auxiliary cooler 4, close the valve 16-1.
It is also possible to close 2.
次に、第10図は、本発明のさらに他の実施例
に係る蓄熱装置の略示構成図であり、図中第1図
と同一符号のものは、第1図の実施例と同等部分
であるから、その説明を省略する。 Next, FIG. 10 is a schematic configuration diagram of a heat storage device according to still another embodiment of the present invention, and the same reference numerals as in FIG. 1 are equivalent parts to those in the embodiment of FIG. 1. Since there is, I will omit the explanation.
第10図の実施例は、加熱器を2つの蓄熱材2
中に設置したもので、前述の各実施例のように補
助冷却器4部に設けた加熱器12―1のほかに、
主冷却器3部にも加熱器12―2を付加してい
る。 In the embodiment of FIG. 10, the heater is connected to two heat storage materials 2.
In addition to the heater 12-1 installed in the four auxiliary coolers as in each of the above-mentioned embodiments,
A heater 12-2 is also added to the third main cooler.
これにより、第1図の実施例で説明してと同様
の効果が期待されるほか、蓄熱材2の融解をより
速めることができる。 As a result, the same effects as those described in the embodiment of FIG. 1 can be expected, and the melting of the heat storage material 2 can be further accelerated.
なお、前記の実施例では、蓄熱材に熱を補給す
る加熱器の熱源を太陽熱として説明したが、本発
明はこれに限るものでなく、集熱手段で集熱する
熱源は、ボイラの余熱や工場排熱などを利用する
ものでもよいことはいうまでもない。 In the above embodiment, the heat source of the heater that replenishes heat to the heat storage material is solar heat. However, the present invention is not limited to this, and the heat source that collects heat with the heat collecting means may be the residual heat of the boiler or the like. It goes without saying that it is also possible to use waste heat from a factory.
また、同様に前記の実施例では、熱利用側は室
内暖房の例を説明したが、本発明はこれらに限る
ものでなく、温室用、乾燥用、給湯用などさまざ
まに利用できるものである。 Similarly, in the above-mentioned embodiments, the example of indoor heating on the heat utilization side was explained, but the present invention is not limited to these, and can be used in various ways such as greenhouses, drying, and hot water supply.
以上述べたように、本発明によれば、凝固性蓄
熱材を用いた蓄熱装置において、冷凍サイクルの
冷媒が蓄熱材が凝固熱を吸熱すべき主冷却器の伝
熱効率が、蓄熱材の結晶開始後も良好に保たれ、
実用に供して実益の大きい蓄熱装置を提供するこ
とができる。
As described above, according to the present invention, in a heat storage device using a coagulable heat storage material, the heat transfer efficiency of the main cooler in which the refrigerant of the refrigeration cycle should absorb heat of solidification by the heat storage material is determined by the temperature at which the heat storage material begins to crystallize. It remains in good condition even after
It is possible to provide a heat storage device that can be put to practical use and is highly profitable.
第1図は、本発明の一実施例に係る蓄熱装置の
略示構成図、第2図は、その蓄熱槽部の詳細図、
第3図は、第2図に示す補助冷却器と加熱器の立
体斜視図、第4図は、本発明の他の実施例に係る
蓄熱装置の補助冷却器および加熱器の斜視図、第
5図は、第4図の断面図、第6図は、本発明のさ
らに他の実施例に係る蓄熱装置の蓄熱槽部の縦断
面図、第7図は、第6図のA―A′断面図、第8
ないし第10図は、いずれも本発明にさらに他の
実施例に係る蓄熱装置の略示構成図である。
1…蓄熱槽、2…蓄熱材、2′…蓄熱材結晶、
3…主冷却器、3′…伝熱フイン、4…補助冷却
器、4A,4B…伝熱パイプ、4′…プレートフ
イン、4A′…伝熱フイン、5…放熱器、7…キ
ヤピラリチユーブ、8,8A,8B…冷媒配管、
9…圧縮機、11…熱媒配管、12,12―1,
12―2…加熱器、12A,12B…熱媒パイ
プ、12′…プレートフイン、12′A…伝熱フイ
ン、13…集熱器、14…発核剤、15…伝熱
板、16―,16―2…バルブ、30…リブ。
FIG. 1 is a schematic configuration diagram of a heat storage device according to an embodiment of the present invention, FIG. 2 is a detailed diagram of the heat storage tank portion thereof,
3 is a three-dimensional perspective view of the auxiliary cooler and heater shown in FIG. 2, FIG. 4 is a perspective view of the auxiliary cooler and heater of the heat storage device according to another embodiment of the present invention, and FIG. The figure is a cross-sectional view of FIG. 4, FIG. 6 is a longitudinal cross-sectional view of a heat storage tank portion of a heat storage device according to another embodiment of the present invention, and FIG. 7 is a cross-sectional view taken along line A-A' in FIG. Figure, 8th
10 through 10 are all schematic configuration diagrams of a heat storage device according to still another embodiment of the present invention. 1... Heat storage tank, 2... Heat storage material, 2'... Heat storage material crystal,
3...Main cooler, 3'...Heat transfer fin, 4...Auxiliary cooler, 4A, 4B...Heat transfer pipe, 4'...Plate fin, 4A'...Heat transfer fin, 5...Radiator, 7...Capillary tube , 8, 8A, 8B...refrigerant piping,
9... Compressor, 11... Heat medium piping, 12, 12-1,
12-2... Heater, 12A, 12B... Heat medium pipe, 12'... Plate fin, 12'A... Heat transfer fin, 13... Heat collector, 14... Nucleating agent, 15... Heat exchanger plate, 16-, 16-2...Valve, 30...Rib.
Claims (1)
材と、この蓄熱材の上層部に配設された第1の冷
却器と、蓄熱材の下層部に配設された第2の冷却
器と、この第2の冷却器に若しくはその近傍に具
備された発核剤と、前記蓄熱材に熱を補給する加
熱器とを備えたことを特徴とする蓄熱装置。1. A coagulable heat storage material built into a heat storage tank, a first cooler disposed in the upper layer of the heat storage material, and a second cooling device disposed in the lower layer of the heat storage material. A heat storage device comprising: a nucleating agent provided in or near the second cooler; and a heater for replenishing heat to the heat storage material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5376578A JPS54146054A (en) | 1978-05-08 | 1978-05-08 | Heat accumulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5376578A JPS54146054A (en) | 1978-05-08 | 1978-05-08 | Heat accumulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54146054A JPS54146054A (en) | 1979-11-14 |
JPS6124636B2 true JPS6124636B2 (en) | 1986-06-11 |
Family
ID=12951903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5376578A Granted JPS54146054A (en) | 1978-05-08 | 1978-05-08 | Heat accumulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54146054A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712256A (en) * | 1980-06-25 | 1982-01-22 | Nippon Tokkyo Kanri Kk | Heat storage device for solar heat utilization equipment |
JP4862465B2 (en) * | 2006-04-13 | 2012-01-25 | トヨタ自動車株式会社 | Thermal storage heat exchanger and air conditioning system |
JP4835745B2 (en) * | 2009-10-21 | 2011-12-14 | Jfeエンジニアリング株式会社 | Hydrate slurry production equipment |
WO2013069318A1 (en) * | 2011-11-08 | 2013-05-16 | 古河電気工業株式会社 | Solar water heater |
US20200049424A1 (en) * | 2016-04-22 | 2020-02-13 | Mitsubishi Electric Corporation | Regenerative heat exchange apparatus |
-
1978
- 1978-05-08 JP JP5376578A patent/JPS54146054A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54146054A (en) | 1979-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4403645A (en) | Compact storage of seat and coolness by phase change materials while preventing stratification | |
US4091863A (en) | Reversible latent heat storage method, and reversible latent heat accumulator | |
US4154292A (en) | Heat exchange method and device therefor for thermal energy storage | |
US4294078A (en) | Method and system for the compact storage of heat and coolness by phase change materials | |
JP3588630B2 (en) | Heat storage type heating element | |
US4258696A (en) | Passive thermal energy phase change storage apparatus | |
US4117882A (en) | Process and apparatus for heat exchange | |
EP0034164B1 (en) | A method and apparatus for storing heat | |
US4152899A (en) | Thermal energy storage and release utilizing combined sensible heat and latent heat of fusion | |
US4180124A (en) | Process and apparatus for heat exchange | |
JPS6124636B2 (en) | ||
US4153105A (en) | Reversible latent heat storage method, and reversible latent heat accumulator | |
JPS6145159B2 (en) | ||
JPS5855434B2 (en) | Method and device for preventing supercooling of heat storage device | |
JPS58178149A (en) | Latent heat type heat storage-cold heat storage system | |
JPH0115783B2 (en) | ||
JPH02259374A (en) | Cooling apparatus using metal hydride | |
JPH11325769A (en) | Heat storage type heat exchanger | |
JP2533913B2 (en) | Thermal storage refrigeration system | |
JPH11304386A (en) | Heat storage system | |
JPH0449024B2 (en) | ||
JPS58102097A (en) | Heat accumulator | |
JPH0438178Y2 (en) | ||
JP3831923B2 (en) | Latent heat storage device | |
JP2509667B2 (en) | Thermal storage refrigeration system |