[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0115783B2 - - Google Patents

Info

Publication number
JPH0115783B2
JPH0115783B2 JP58107063A JP10706383A JPH0115783B2 JP H0115783 B2 JPH0115783 B2 JP H0115783B2 JP 58107063 A JP58107063 A JP 58107063A JP 10706383 A JP10706383 A JP 10706383A JP H0115783 B2 JPH0115783 B2 JP H0115783B2
Authority
JP
Japan
Prior art keywords
heat
latent
heat storage
storage tank
latent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58107063A
Other languages
Japanese (ja)
Other versions
JPS60257A (en
Inventor
Takahito Ishii
Kazuo Yamashita
Hiroshi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58107063A priority Critical patent/JPS60257A/en
Publication of JPS60257A publication Critical patent/JPS60257A/en
Publication of JPH0115783B2 publication Critical patent/JPH0115783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽熱、廃熱等を貯え給湯・冷暖房な
どに用いる潜熱形蓄熱材を用いた潜熱形蓄熱装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a latent heat type heat storage device using a latent heat type heat storage material that stores solar heat, waste heat, etc. and is used for hot water supply, air conditioning, etc.

従来例の構成とその問題点 従来のこの種の太陽熱蓄熱装置は、第1図に示
すように集熱器1、入水2、出水3管を備えた貯
湯蓄熱槽4と、貯湯蓄熱槽4内の放熱器5と、前
記集熱器1と放熱器5を結ぶ集熱媒体6の循環パ
イプ7と、前記循環パイプ7途中に配置されたポ
ンプ8とにより構成されていた。この構成では集
熱を開始して貯湯蓄熱槽4内の水9の温度が上昇
してくると集熱器1の集熱媒体6による集熱効率
が低下すると共に循環パイプ7からの断熱ロスが
大きくなりシステムとしての太陽熱集熱効率は低
下する。また、集熱器1出口における集熱媒体6
温度は常に貯湯蓄熱槽4内の水9温度よりも高く
なければ集熱できないという問題を有していた。
Configuration of conventional example and its problems As shown in FIG. A heat radiator 5, a circulation pipe 7 for a heat collection medium 6 connecting the heat collector 1 and the heat radiator 5, and a pump 8 disposed in the middle of the circulation pipe 7. In this configuration, when heat collection starts and the temperature of the water 9 in the hot water storage tank 4 rises, the heat collection efficiency by the heat collection medium 6 of the heat collector 1 decreases, and the insulation loss from the circulation pipe 7 increases. Therefore, the solar heat collection efficiency as a system will decrease. In addition, the heat collecting medium 6 at the outlet of the heat collector 1
There was a problem in that heat could not be collected unless the temperature was always higher than the temperature of the water 9 in the hot water storage tank 4.

発明の目的 本発明はかかる従来の問題を解消するもので太
陽熱、廃熱等を効率よく集熱・蓄熱することを目
的とする。
OBJECTS OF THE INVENTION The present invention solves these conventional problems and aims to efficiently collect and store solar heat, waste heat, etc.

発明の構成 この目的を達成する為に本発明は容器内部に、
室温以下の融点を有する潜熱形蓄熱材と、前記蓄
熱材に対してほとんど不相溶性であり、熱吸収時
に液体から気体に、熱放出時に気体から液体にな
る伝熱媒体を上方に空間部を残して封入した潜熱
形蓄熱槽と、前記潜熱形蓄熱槽の空間部に蒸発器
を配してなるヒート・ポンプ回路と、集熱器、前
記潜熱形蓄熱槽内の放熱器、集熱媒体の循環パイ
プ、ポンプからなる集熱回路とを設けたものであ
る。
Structure of the Invention In order to achieve this object, the present invention provides the following features:
A space is formed above a latent heat type heat storage material having a melting point below room temperature and a heat transfer medium that is almost incompatible with the heat storage material and changes from a liquid to a gas when absorbing heat and from a gas to a liquid when releasing heat. A heat pump circuit comprising a latent heat type heat storage tank and an evaporator disposed in the space of the latent heat type heat storage tank, a heat collector, a radiator in the latent heat type heat storage tank, and a heat collecting medium. It is equipped with a heat collection circuit consisting of circulation pipes and a pump.

この構成によつて太陽熱、廃熱等を低温(潜熱
形蓄熱材の融点)で集熱するため集熱効率を高め
ることができる。
With this configuration, solar heat, waste heat, etc. can be collected at a low temperature (melting point of the latent heat type heat storage material), so that heat collection efficiency can be improved.

実施例の説明 以下、本発明の実施例を第2図を用いて説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described using FIG. 2.

第2図は太陽熱潜熱形蓄熱装置であり、集熱器
1、ポンプ8、放熱器5、集熱媒体6の循環パイ
プ7からなる集熱回路Aを有する。また内部に、
室温近傍の融点を有する潜熱形蓄熱材10とし
て、例えば、炭酸ナトリウム・10水塩(融点32
℃、密度1.44g/cm3)と、炭酸ナトリウム・10水
塩10に対してほとんど不相溶性であり、熱吸収
時に液体から気体に、熱放出時に気体から液体に
なる伝熱媒体11として、例えば、フロン−11
(融点23.8℃、密度25℃、1.48g/cm3)とを上方
に空間部12Aを残して封入した潜熱形蓄熱槽1
2も有する。さらに入水管2・出湯管3を備えた
水9の貯湯槽4との間で潜熱形蓄熱槽12の空間
部12Aに蒸発器13、貯湯槽4内に凝縮器14
を配してなるヒート・ポンプ回路Bより構成され
ている。但し、15はコンプレツサー、16は膨
張弁である。なお、第1図と同一部材には同一番
号を付している。
FIG. 2 shows a solar latent heat type heat storage device, which has a heat collection circuit A consisting of a heat collector 1, a pump 8, a radiator 5, and a circulation pipe 7 for a heat collection medium 6. Also inside,
As the latent heat type heat storage material 10 having a melting point near room temperature, for example, sodium carbonate decahydrate (melting point 32
℃, density 1.44 g/cm 3 ) and is almost incompatible with sodium carbonate decahydrate 10, and as a heat transfer medium 11 that changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, For example, Freon-11
(melting point 23.8℃, density 25℃, 1.48g/cm 3 ) is sealed in a latent heat type heat storage tank 1 with a space 12A left above.
It also has 2. In addition, an evaporator 13 is placed in the space 12A of the latent heat type heat storage tank 12 between the hot water storage tank 4 for water 9 and the hot water storage tank 4 is equipped with an inlet pipe 2 and a hot water outlet pipe 3.
The heat pump circuit B consists of However, 15 is a compressor, and 16 is an expansion valve. Note that the same members as in FIG. 1 are given the same numbers.

上記構成において、先ず、集熱回路Aの集熱器
1で集められた太陽熱エネルギーは放熱器5より
潜熱形蓄熱槽12に導入される。導入された熱エ
ネルギーは、炭酸ナトリウム・10水塩10の顕
熱・融解潜熱の形で貯えられる。なお、炭酸ナト
リウム・10水塩充填部12Bの内部には、通常放
熱に伴う結晶化の際体積変化により生じた炭酸ナ
トリウム・10水塩10の空隙が巣状に存在し、し
かもその空隙内にはフロン−1111が介在してい
る。この状態から蓄熱を開始するのであるが、炭
酸ナトリウム・10水塩7の固相の熱伝達率は低
く、代わつてフロン−1111がすばやく受熱し熱
を炭酸ナトリウム・10水塩10に伝達する。但
し、夏期において外気温が30℃程度になる場合は
太陽熱を集熱するまでもなく炭酸ナトリウム・10
水塩10の融点以下の顕熱分は充足される。ま
た、炭酸ナトリウム・10水塩10が蓄熱途中、す
なわち、融解している段階では潜熱形蓄熱槽12
は炭酸ナトリウム・10水塩10の融点32℃に保た
れるので低温集熱となり集熱効率は大幅に増大し
た。こうして、潜熱形蓄熱槽12は炭酸ナトリウ
ム・10水塩10の融液と気・液体からなるフロン
−1111の飽和蒸気で満たされる。
In the above configuration, first, solar energy collected by the heat collector 1 of the heat collection circuit A is introduced into the latent heat type heat storage tank 12 from the radiator 5. The introduced thermal energy is stored in the form of sensible heat and latent heat of fusion of sodium carbonate and decahydrate. In addition, inside the sodium carbonate/decahydrate filling section 12B, there are nest-like voids of sodium carbonate/decahydrate 10 that are generated due to a volume change during crystallization due to heat radiation, and moreover, in the voids, Freon-1111 is involved. Heat storage starts from this state, but the heat transfer coefficient of the solid phase of sodium carbonate/decahydrate 7 is low, so Freon-1111 quickly receives heat and transfers the heat to sodium carbonate/decahydrate 10. However, in the summer when the outside temperature is around 30℃, there is no need to collect solar heat and the sodium carbonate 10
The sensible heat below the melting point of the aqueous salt 10 is sufficient. In addition, when the sodium carbonate decahydrate 10 is in the middle of heat storage, that is, when it is melted, the latent heat type heat storage tank 12
was maintained at the melting point of sodium carbonate decahydrate 10 at 32°C, resulting in low-temperature heat collection and greatly increased heat collection efficiency. In this way, the latent heat type heat storage tank 12 is filled with the melt of sodium carbonate/decahydrate 10 and the saturated vapor of Freon-1111, which is composed of gas and liquid.

次に、潜熱形蓄熱槽12からの熱の取り出し、
及び、貯湯蓄熱槽4内の水9の加熱について説明
する。潜熱形蓄熱槽12の空間部12Aには蒸発
器13、貯湯蓄熱槽4内には凝縮器14を配して
なるヒート・ポンプ回路Bにより炭酸ナトリウ
ム・10水塩10が貯えた顕熱・融解潜熱を吸み上
げ、水9に供熱する。ヒート・ポスプ運転中、潜
熱形蓄熱槽12内の蒸発器13には膨張弁16を
経て断熱膨張した低温のヒート・ポンプ用媒体
(フロン)が気・液2相の状態で流入し、そこで
受熱して気体となる。その際、蒸発器13の外周
ではフロン−1111の蒸気は蒸発潜熱を放出して
凝縮液となり炭酸ナトリウム・10水塩10中に戻
る。そこで、フロン−1111は炭酸ナトリウム・
10水塩10が放出する融解潜熱、及び、顕熱を受
熱して再び空間部12Aに蒸発する。炭酸ナトリ
ウム・10水塩10の融液はこうしたフロン−111
1の蒸発・凝縮サイクルにおける対流により激し
く撹拌されており、融液は過冷却・相分離を起こ
すことなく結晶化し融解潜熱を放出する。こうし
て、炭酸ナトリウム・10水塩10が貯えた熱と有
効に、かつ高出力で取り出すことができる。ま
た、気体となつたヒート・ポンプ用媒体はコンプ
レツサー15により高温・高圧となり貯湯蓄熱槽
14内の凝縮器14に導入され、凝縮熱を放出し
て水9を加熱する。媒体は、凝縮液となり膨張弁
16へと導かれる。また、こうしたヒート・ポン
プ運転における蒸発器13の雰囲気は炭酸ナトリ
ウム・10水塩10が融解潜熱を放出している間は
約30℃のフロン−1111の飽和蒸気であり、通常
のヒート・ポンプ暖房のように外気温変動による
影響を受けることはなく定常運転としての設計が
可能である。
Next, extracting heat from the latent heat type heat storage tank 12,
Also, heating of the water 9 in the hot water storage heat storage tank 4 will be explained. Sensible heat and melting of sodium carbonate and decahydrate 10 stored in the heat pump circuit B, which includes an evaporator 13 in the space 12A of the latent heat type heat storage tank 12 and a condenser 14 in the hot water storage tank 4, is carried out. It absorbs latent heat and supplies it to water 9. During heat pump operation, adiabatically expanded low-temperature heat pump medium (fluorocarbon) flows into the evaporator 13 in the latent heat storage tank 12 through the expansion valve 16 in a gas/liquid two-phase state, where it receives heat. It becomes a gas. At this time, at the outer periphery of the evaporator 13, the vapor of Freon-1111 releases latent heat of vaporization, becomes a condensate, and returns to the sodium carbonate decahydrate 10. Therefore, Freon-1111 is sodium carbonate.
It receives the latent heat of fusion and sensible heat released by the 10-hydrate salt 10 and evaporates into the space 12A again. The melt of sodium carbonate decahydrate 10 is like this Freon-111
The melt is vigorously stirred by convection in the evaporation/condensation cycle 1, and the melt crystallizes without supercooling or phase separation, releasing latent heat of fusion. In this way, the heat stored in the sodium carbonate decahydrate 10 can be extracted effectively and with high output. Further, the heat pump medium that has become a gas is brought to a high temperature and high pressure by the compressor 15 and is introduced into the condenser 14 in the hot water storage heat storage tank 14, and releases the heat of condensation to heat the water 9. The medium becomes a condensate and is directed to the expansion valve 16. In addition, the atmosphere in the evaporator 13 during such a heat pump operation is saturated steam of Freon-1111 at approximately 30°C while the sodium carbonate decahydrate 10 releases latent heat of fusion, and is a saturated vapor of Freon-1111 at about 30°C, which is normal for ordinary heat pump heating. It is not affected by outside temperature fluctuations and can be designed for steady operation.

こうして、低温(室温以下)の融点を有する潜
熱形蓄熱機とヒート・ポンプの組合せにより低温
集熱、及びヒート・ポンプ定常運転という相乗効
果が得られる。
In this way, a synergistic effect of low-temperature heat collection and constant operation of the heat pump can be obtained by combining a latent heat type heat storage device having a melting point of low temperature (below room temperature) and a heat pump.

なお、上記実施例においては太陽熱蓄熱給湯シ
ステムについて述べたが、風呂の廃熱等を熱源と
したり、暖房に利用できることは言うまでもな
い。
In the above embodiment, a solar heat storage hot water supply system has been described, but it goes without saying that waste heat from a bath or the like can be used as a heat source or used for heating.

発明の効果 本発明の潜熱形蓄熱システムによれば次の効果
が得られる。
Effects of the Invention According to the latent heat type heat storage system of the present invention, the following effects can be obtained.

(1) 集熱は低温(室温以下)の融点を有する潜熱
形蓄熱材に対して行われるので低温集熱となり
太陽熱集熱効率を大幅に増大できる。また、断
熱コストを低減できる。
(1) Heat collection is performed using a latent heat storage material that has a melting point at a low temperature (below room temperature), which results in low-temperature heat collection and can significantly increase solar heat collection efficiency. In addition, insulation costs can be reduced.

(2) 潜熱形蓄熱槽内の蓄熱材の蓄・放熱は伝熱媒
体が介在することにより応答性が高く熱交換効
率を高くできる。
(2) The heat storage and radiation of the heat storage material in the latent heat storage tank has high responsiveness and heat exchange efficiency due to the presence of a heat transfer medium.

(3) 潜熱形蓄熱槽の空間部にヒート・ポンプ回路
の蒸発器を配設することにより、必要に応じて
熱(蓄熱材の融解潜熱、及び、顕熱)を吸み上
げて利用することができる。
(3) By installing the evaporator of the heat pump circuit in the space of the latent heat storage tank, heat (latent heat of melting of the heat storage material and sensible heat) can be sucked up and used as necessary. Can be done.

(4) ヒート・ポンプ運転は、その蒸発器の回りが
蓄熱材の融点近傍の伝熱媒体の飽和蒸気で満た
されているので定常運転となり、最適な運転状
態とすることができる。
(4) During heat pump operation, the area around the evaporator is filled with saturated vapor of the heat transfer medium near the melting point of the heat storage material, so it is a steady operation and can be in an optimal operating state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽熱蓄熱システムの断面図、
第2図は本発明の潜熱形蓄熱システムの一実施例
を示す断面図である。 10……潜熱形蓄熱材、11……伝熱媒体、1
2……潜熱形蓄熱槽(但し、12A……空間部、
12B……蓄熱材充填部)、13……蒸発器、1
4……凝縮器、15……コンプレツサー、16…
…膨張弁、A……集熱回路、B……ヒート・ポン
プ回路。
Figure 1 is a cross-sectional view of a conventional solar heat storage system.
FIG. 2 is a sectional view showing an embodiment of the latent heat type heat storage system of the present invention. 10...Latent heat type heat storage material, 11...Heat transfer medium, 1
2...Latent heat type heat storage tank (however, 12A...space part,
12B... heat storage material filling part), 13... evaporator, 1
4... Condenser, 15... Compressor, 16...
...Expansion valve, A... Heat collection circuit, B... Heat pump circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 容器内部に、室温以下の融点を有する潜熱形
蓄熱材と、前記蓄熱材に対してほとんど不相溶性
であり、熱吸収時に液体から気体に、熱放出時に
気体から液体になる伝熱媒体とを上方に空間部を
残して封入した潜熱形蓄熱槽と、前記潜熱形蓄熱
槽の空間部に蒸発器を配してなるヒート・ポンプ
回路と、集熱器、前記潜熱形蓄熱槽内の放熱器、
集熱媒体が循環する循環パイプ、及び、ポンプか
ら成る集熱回路とにより構成した潜熱形蓄熱装
置。
1 Inside the container, a latent heat type heat storage material having a melting point below room temperature, and a heat transfer medium that is almost incompatible with the heat storage material and changes from a liquid to a gas when absorbing heat and from a gas to a liquid when releasing heat. a latent heat type heat storage tank sealed with a space left above, a heat pump circuit comprising an evaporator arranged in the space of the latent heat type heat storage tank, a heat collector, and a heat dissipation in the latent heat type heat storage tank. vessel,
A latent heat type heat storage device consisting of a circulation pipe through which a heat collection medium circulates and a heat collection circuit consisting of a pump.
JP58107063A 1983-06-15 1983-06-15 Latent heat type heat accumulating device Granted JPS60257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107063A JPS60257A (en) 1983-06-15 1983-06-15 Latent heat type heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107063A JPS60257A (en) 1983-06-15 1983-06-15 Latent heat type heat accumulating device

Publications (2)

Publication Number Publication Date
JPS60257A JPS60257A (en) 1985-01-05
JPH0115783B2 true JPH0115783B2 (en) 1989-03-20

Family

ID=14449545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107063A Granted JPS60257A (en) 1983-06-15 1983-06-15 Latent heat type heat accumulating device

Country Status (1)

Country Link
JP (1) JPS60257A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669782A (en) * 1985-09-20 1987-06-02 Toyota Jidosha Kabushiki Kaisha Belt anchor incorporating seat track structure
JPH0529173Y2 (en) * 1985-09-20 1993-07-27
AUPM835894A0 (en) * 1994-09-22 1994-10-13 Thermal Energy Accumulator Products Pty Ltd A temperature control system for liquids
DE102010044122A1 (en) * 2010-11-18 2012-05-24 BSH Bosch und Siemens Hausgeräte GmbH Heat pump for water heating

Also Published As

Publication number Publication date
JPS60257A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JPS61110852A (en) Absorption heat pump/refrigeration system
JPH0252962A (en) Method and device for generating cold heat
US4437321A (en) Absorption cooling and heating system
JPH0115783B2 (en)
JP2678211B2 (en) Heat storage type cold / heat generator
JPS58178149A (en) Latent heat type heat storage-cold heat storage system
JPH01269862A (en) Geotherm exchanger
JPS6150212B2 (en)
JPS62182538A (en) Latent heat accumulating type heat retrieval heat pump air conditioner
JPS60256797A (en) Heat accumulating and heat exchanging device
JPS59217451A (en) Heat collector utilizing solar heat
JPS6335324Y2 (en)
JPH0225113B2 (en)
CN118757940A (en) Heat pipe rib-photovoltaic heat absorption type energy accumulator and heat pump refrigerating system adopting same
JPS6138787B2 (en)
JPH0350373Y2 (en)
JPS63209526A (en) Cooling and heating apparatus for culture of plant
JPS61228293A (en) Underground storage of heat by hygroscopic substance
JPS6314285Y2 (en)
JPH0424316Y2 (en)
JPS6119894B2 (en)
JPS60501325A (en) Solar energy driven cold air generation system
JPH0236880B2 (en)
JPS5866761A (en) Heat collector