JPS61212040A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS61212040A JPS61212040A JP5220785A JP5220785A JPS61212040A JP S61212040 A JPS61212040 A JP S61212040A JP 5220785 A JP5220785 A JP 5220785A JP 5220785 A JP5220785 A JP 5220785A JP S61212040 A JPS61212040 A JP S61212040A
- Authority
- JP
- Japan
- Prior art keywords
- film
- melting point
- high melting
- point metal
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、半導体装置における電極配線の改良に関し、
詳しくは高融点金属(W、MO,Taなど)を主材料と
する電極配線を用いた半導体装置の製造方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to improvement of electrode wiring in a semiconductor device,
Specifically, the present invention relates to a method of manufacturing a semiconductor device using electrode wiring mainly made of a high melting point metal (W, MO, Ta, etc.).
周知のように、従来高融点金属を用いた電極配線は一般
に用いられているが、高融点金属だけでは、不純物をイ
オン打込みした際のマスク性に乏しく、微量の酸素と反
応して酸化するといった欠点があった。そのため、配線
表面をsiow膜などの保護膜で覆うことが広く行なわ
れている。しかしながら、配線の側面をも含んだ表面だ
けをSigh膜で覆うことは技術的で非常に困磯であっ
た。たとえば、高融点金属電極配線を含む全面に5in
2膜を被着した後、RI E (Reactive I
onEtching )で8jOzをエツチングし、
主として、高融点金属電極配ls側酊の8i0z膜だけ
を残すという公知の技術はあるが、この場合製造方法が
煩雑なだけでなく、側面を含む電極配線表面全体に一様
な厚さのSigh膜が形成できないため、プロセスに必
要な一様な厚さの8io2膜を制御よく形成できないと
いう欠点があった。なお、この特許と関連するものとし
ては、例えば、特開昭53−134139.55−34
463.56−71977号公報等が挙げられる。As is well known, electrode wiring using high-melting point metals is commonly used, but high-melting point metals alone have poor masking properties when impurities are ion-implanted, and they react with trace amounts of oxygen and oxidize. There were drawbacks. Therefore, it is widely practiced to cover the wiring surface with a protective film such as a SiOW film. However, it is technically very difficult to cover only the surface including the side surfaces of the wiring with the Sigh film. For example, 5 inches on the entire surface including high melting point metal electrode wiring.
After depositing the two films, RI E (Reactive I
onEtching) to etch 8jOz,
There is a known technique that mainly leaves only the 8i0z film on the sides of the high-melting point metal electrode wiring, but in this case, not only is the manufacturing method complicated, but the sigh film has a uniform thickness over the entire electrode wiring surface including the sides. Since a film cannot be formed, there is a drawback that an 8io2 film with a uniform thickness required for the process cannot be formed in a well-controlled manner. In addition, as related to this patent, for example, Japanese Patent Application Laid-open No. 53-134139.55-34
463.56-71977 and the like.
本発明の目的は、上記従来の問題を屏決し、高融点金属
を用いた安定な1頂配線を提供することにある。It is an object of the present invention to solve the above-mentioned conventional problems and to provide a stable unilateral wiring using a high melting point metal.
上記目的を達成するため、本発明は高融点金属中に微量
のSi(重量比にして11)pm以上)を混入し、該高
融点金属中の8itl−表面に拡散させて酸化させて、
表面に8i01jJEを形成することを特徴とする。一
般にSiを酸化させる際K、高融点金属も同時に酸化す
る。しかし、本発明者の検討によれば、水蒸気と水素の
混合雰囲気中で加熱すれば、高融点金属を酸化させるこ
となしにSiの酸化が可能となる。酸化した8i(Si
02)は、高融点金属表面に8i0.膜を形成する。In order to achieve the above object, the present invention mixes a trace amount of Si (11 pm or more in weight ratio) into a high melting point metal, diffuses it to the surface of the high melting point metal, and oxidizes it.
It is characterized by forming 8i01jJE on the surface. Generally, when Si is oxidized, K and a high melting point metal are also oxidized at the same time. However, according to the studies of the present inventors, by heating in a mixed atmosphere of water vapor and hydrogen, it becomes possible to oxidize Si without oxidizing the high melting point metal. Oxidized 8i (Si
02) is 8i0.0 on the high melting point metal surface. Forms a film.
実施例1:
以下、本発明の一実施例を第1図により説明する。第1
図に、本発明を用いたMO8電界効果半導体装置の製造
方法を示す。まずSi結晶基板3表面に形成した厚さ2
Qnmのゲートシリコン酸化膜2(2′は予め形成した
フィールド酸化膜)の上に、Siを101含むタングス
テン膜1倉厚さ300 nm形成し、これをゲートa極
のパターンにパターニングした(第1図(a))。、J
!X1の被着方法としては、Wと3iとの同時スパッタ
蒸着、めるいは、*Fs (六弗化タングステン)S
:Ha(モノシラン)ガスを用いた化学蒸着法(CVD
)を試みた。ついで、同図(b)のように、N20を5
チ言むN2雰囲気中でIQOOlr、30分間加熱して
、タングステン膜1の表面に厚さ50nm程度の酸化シ
リコン膜2“全形成した。また、この熱処理によって、
ゲート周辺部のシリコン酸化膜2は、ゲート下の酸化膜
に比べて20nm程度厚くなった。さらに同図(C)に
示すように酸化シリコンg2“とタングステンglをマ
スクとしてAsのイオン打込み(エネルギー80 ke
V )により不純物導入を行ない、さらに% N2雰囲
気中で950C130分間加熱することで、ノース領域
およびドレイン領域4f、形成した。ついで、同図(d
)に示すようにりん硅酸ガラス(PSG)ds (50
0n m )をCVD法で被着した後、通常の7オトリ
ソグラフイー法とドライエツチング技術を用いて、ソー
ス・ドレイン領域4上にコンタクト穴をあけ、アルミニ
ウム配線6を形成した。このようにして作製したMO8
電界効果半導体装置は良好な電気特性を示した。タング
ステン膜1のシー)i抗は0.59/口と十分に低く、
純粋なタングステンを用いた場合に比べて、数チ大きい
値になっ九。一般に、Siが混入し念高融点金属膜は、
その抵抗が大きくなるが、本実施例では膜中の81をS
lowに変えており、このため、抵抗上昇が抑制された
と思われる。また、タングステン膜1表面の酸化膜2“
の厚さは、N2中のHsOの分圧。Example 1: Hereinafter, one example of the present invention will be described with reference to FIG. 1st
The figure shows a method of manufacturing an MO8 field effect semiconductor device using the present invention. First, a thickness of 2 is formed on the surface of the Si crystal substrate 3.
A tungsten film containing 101 Si was formed to a thickness of 300 nm on a Qnm gate silicon oxide film 2 (2' is a field oxide film formed in advance), and this was patterned into a gate a-pole pattern (first Figure (a)). , J.
! The method for depositing X1 is simultaneous sputter deposition of W and 3i, or *Fs (tungsten hexafluoride) S.
:Chemical vapor deposition method (CVD) using Ha (monosilane) gas
) was attempted. Next, as shown in the same figure (b), 5 times N20 was added.
The silicon oxide film 2" with a thickness of about 50 nm was completely formed on the surface of the tungsten film 1 by heating for 30 minutes in an N2 atmosphere. Also, by this heat treatment,
The silicon oxide film 2 around the gate is approximately 20 nm thicker than the oxide film under the gate. Furthermore, as shown in the same figure (C), As ion implantation (energy 80 ke
A north region and a drain region 4f were formed by introducing impurities using V.V.) and heating for 130 minutes at 950C in a %N2 atmosphere. Then, the same figure (d
) as shown in phosphosilicate glass (PSG) ds (50
0 nm) by the CVD method, contact holes were made on the source/drain regions 4 and aluminum interconnections 6 were formed using the usual 7-lithography method and dry etching technique. MO8 produced in this way
The field effect semiconductor device showed good electrical properties. The i resistance of tungsten film 1 is sufficiently low at 0.59/mouth.
The value is several orders of magnitude higher than when pure tungsten is used. In general, a high melting point metal film mixed with Si is
Although the resistance becomes large, in this example, 81 in the film is S
It is thought that the resistance increase was suppressed because the resistance was changed to low. In addition, the oxide film 2" on the surface of the tungsten film 1
The thickness of is the partial pressure of HsO in N2.
加熱@度、加熱時間を変えることで様々な値にすること
が可能である事を付記する。It should be noted that various values can be obtained by changing the heating@degree and heating time.
一方、Siの含有率がippm未満の場合には、W表面
に一様な8i02膜が形成できなかった。又、f3iが
重量比にして25チを越えて含まれた場合、組成wsr
2に含まれるsiの含有率よりも犬きくなり、この場合
配線抵抗が犬きくなり実用に適さなかった。On the other hand, when the Si content was less than ippm, a uniform 8i02 film could not be formed on the W surface. In addition, if f3i is contained in a weight ratio exceeding 25 cm, the composition wsr
In this case, the wiring resistance was too high to be suitable for practical use.
実施例2: 第2図に他の実施例を示す。Example 2: FIG. 2 shows another embodiment.
3i結晶基板3表面に形成した厚さ40nmの熱酸化膜
(SiOx)2の上に、タングステンと3iとの化合物
タングステンシリサイド(wsit)膜7を厚さ250
.nm程CVDf&で被着した(第2図(a))。つい
で、Hzoを8チ含むN2雰囲気中でtoooC11時
間加熱するとタングステンシリサイド膜7上には、約1
100nの5tyx膜2′が形成された(第2図(b)
)。この加熱処理後のタングステンシリサイド膜7を、
オージェ電子分光法により分析すると、膜に含有される
Si量が加熱前に比べて強度にして2割程度減少してい
た。On a thermal oxide film (SiOx) 2 with a thickness of 40 nm formed on the surface of the 3i crystal substrate 3, a tungsten silicide (wsit) film 7, which is a compound of tungsten and 3i, is formed to a thickness of 250 nm.
.. It was deposited by CVDf& to a thickness of about 100 nm (Fig. 2(a)). Then, when heated for 11 hours in an N2 atmosphere containing 8 Hz of Hzo, approximately 1
A 5tyx film 2' of 100n was formed (Fig. 2(b)).
). The tungsten silicide film 7 after this heat treatment is
Analysis by Auger electron spectroscopy revealed that the amount of Si contained in the film was reduced by about 20% in terms of strength compared to before heating.
この結果は、タングステンシリサイド膜7の中のf9i
が拡散し、表面で酸化して、膜表面に5io2を形成し
たものと考えられる。This result shows that f9i in the tungsten silicide film 7
It is thought that 5io2 was diffused and oxidized on the surface to form 5io2 on the film surface.
実施例3:
第3図にさらに他の実施例を示す。まず第3図(a)
K示すようにSi結晶基板3表面に形成した厚さ20n
mのゲートシリコン酸化膜2(2′は予め形成したフィ
ールド酸化膜)の上に、siを5チ含むタングステン膜
1を厚さ350nm@成し、さらにその上にりん硅酸ガ
ラス(PSG)膜5′をCVD法で厚さ5Qnm程被着
する。このタングステン、PSGの2層膜をゲート電極
のパターンにパターニングした。またPSG膜5′とタ
ングステン膜1をマスクとして、Pを4Qke’V、I
X 10’ ” cm−’ の条件でイオン打込みを行
ない、N2#囲気中で900C110分間加熱すること
で、ソース領域およびドレイン領域4を形成した。Embodiment 3: Still another embodiment is shown in FIG. First, Figure 3(a)
A thickness of 20 nm formed on the surface of the Si crystal substrate 3 as shown in K.
On the gate silicon oxide film 2 (2' is the field oxide film formed in advance), a tungsten film 1 with a thickness of 350 nm containing 5 Ti of Si is formed, and on top of that, a phosphosilicate glass (PSG) film is formed. 5' is deposited to a thickness of about 5 Qnm using the CVD method. This two-layer film of tungsten and PSG was patterned into a gate electrode pattern. Also, using the PSG film 5' and the tungsten film 1 as a mask, P is 4Qke'V, I
Source and drain regions 4 were formed by performing ion implantation under the conditions of X 10'''cm-' and heating in a N2# atmosphere for 110 minutes at 900C.
この際、タングステン膜1表面のPSG膜5′は、イオ
ン打込みの際のイオンの突き抜けを防止する。At this time, the PSG film 5' on the surface of the tungsten film 1 prevents ions from penetrating during ion implantation.
ついで、H2Oを101含むN2雰囲気中で950C1
30分間加熱して、タングステンゲート側面に厚さ30
nm椙度の酸化シリコン膜2″を形成した(第3図(b
))。ついで、同図(C)に示すようにA s f80
keV 、 5 X 10” cm−”の条件で・イ
オン打込みを行ない、N2雰囲気中で9500゜20分
間加熱して、ソース・ドレイ/領域4に、ゲート端部を
除いて重なる形で新九にソース・ドレイン領域4′を形
成した。Then, 950C1 in an N2 atmosphere containing 101H2O.
Heat for 30 minutes and apply a thickness of 30 mm on the side of the tungsten gate.
A silicon oxide film 2'' of nm thickness was formed (Fig. 3(b)
)). Then, as shown in the same figure (C), A s f80
Ion implantation was performed under the conditions of keV, 5 x 10"cm-" and heating at 9500° for 20 minutes in a N2 atmosphere to form a new ion implant in the source/drain/region 4 with the exception of the gate edge. Source/drain regions 4' were formed.
この場合、ゲート側面の酸化シリコン膜2“はイオン打
込みのマスクとなり、いわゆるスペイサ−の役割を果た
す。このよう:C1低濃度の不純物を含むノース・ドレ
イン領域4と、高濃度の不純物を含むソース・ドレイン
領域4′がゲート端を除いて重なったドレイン構造はL
D D (Lightlyl)□ped prain
)と呼ばれ、高耐圧デバイス構造として広く矧られて
いる。ついで、同図(d)のようにPSG膜5を500
nm、CVD法で被着した後、ソース・ドレイン領域上
に、コンタクト穴をあけ、アルミニウム配線6を形成し
た。この様にしてI’l”製したMO8電界効果半導体
装置は良好な電気特性を示した。他の高融点金属、たと
えばMOにおいても同様な試作が可能であった。In this case, the silicon oxide film 2'' on the side of the gate serves as a mask for ion implantation and plays the role of a so-called spacer.Like this: C1 is a north drain region 4 containing a low concentration of impurities, and a source region 4 containing a high concentration of impurities.・The drain structure where the drain regions 4' overlap except for the gate edge is L.
D D (Lightlyl) ped plain
), and is widely regarded as a high-voltage device structure. Then, as shown in the same figure (d), the PSG film 5 is
After depositing the aluminum by CVD, contact holes were made on the source/drain regions, and aluminum interconnections 6 were formed. The MO8 field effect semiconductor device manufactured in this manner showed good electrical characteristics. Similar prototypes could be made using other high melting point metals, such as MO.
本発明によれば、高融点金属表面に選択的に一様な厚さ
のSiOx膜が形成できるために、高融点金属の耐酸化
性、イオン打込みに対するマスク性は著しく向上する。According to the present invention, since a SiOx film having a uniform thickness can be selectively formed on the surface of a high melting point metal, the oxidation resistance of the high melting point metal and the maskability against ion implantation are significantly improved.
又、他のプロセスと組合わせることで、容易にLDD構
造などに応用できる、特に、高融点金属中のSiをすべ
て酸化すれば、純粋の金、礪と同等の低低抗値が帰られ
る点も長所の1つである。本発明は、Siを混入する操
作と、そのSiを酸化させる操作とからなり、共に現状
の半導体製造装置を用いて容易に実現でき、経済性、効
率の上からも優れている。In addition, by combining with other processes, it can be easily applied to LDD structures, etc. In particular, if all the Si in the high melting point metal is oxidized, a low resistance value equivalent to that of pure gold or copper can be returned. is also one of its strengths. The present invention consists of an operation of mixing Si and an operation of oxidizing the Si, both of which can be easily realized using current semiconductor manufacturing equipment and are excellent in terms of economy and efficiency.
第1図、第2図、第3図はいずれも本発明の一実施例を
示す工程説明図である。
1・・・Siを含んだタングステン膜、2.2’、2“
・・・酸化シリコン膜、3・・・シリコン結晶基板、4
・・・ソース・ドレイン領域、5,5’・・・りんガラ
ス、6・・・アルミニウム配線、7・・タングステンシ
リサ扁 j 回
第 3 区
5′FIG. 1, FIG. 2, and FIG. 3 are all process explanatory diagrams showing one embodiment of the present invention. 1... Tungsten film containing Si, 2.2', 2"
...Silicon oxide film, 3...Silicon crystal substrate, 4
...Source/drain region, 5,5'...Phosphorus glass, 6...Aluminum wiring, 7...Tungsten silica flattened jth 3rd section 5'
Claims (1)
配線を有する半導体装置において、上記高融点金属中に
重量比で1ppm以上25%以下のSiを混入させ、そ
のSiの一部ないしすべてを酸化させることで、電極配
線表面に一様な厚さ(1〜500nm)のSiO_2膜
を形成することを特徴とする半導体装置の製造方法。In a semiconductor device having an electrode wiring mainly made of a high melting point metal (W, Mo, Ta, etc.), Si of 1 ppm or more and 25% or less by weight is mixed into the high melting point metal, and a part or A method for manufacturing a semiconductor device, characterized in that a SiO_2 film with a uniform thickness (1 to 500 nm) is formed on the surface of an electrode wiring by oxidizing all the parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052207A JPH0789549B2 (en) | 1985-03-18 | 1985-03-18 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052207A JPH0789549B2 (en) | 1985-03-18 | 1985-03-18 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61212040A true JPS61212040A (en) | 1986-09-20 |
JPH0789549B2 JPH0789549B2 (en) | 1995-09-27 |
Family
ID=12908322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60052207A Expired - Lifetime JPH0789549B2 (en) | 1985-03-18 | 1985-03-18 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0789549B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100548588B1 (en) * | 1998-09-15 | 2006-04-06 | 주식회사 하이닉스반도체 | Wiring Formation Method of Semiconductor Device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54116184A (en) * | 1978-03-01 | 1979-09-10 | Mitsubishi Electric Corp | Manufacture for semiconductor device |
JPS56161674A (en) * | 1980-05-16 | 1981-12-12 | Nec Corp | Metal oxide semiconductor device |
JPS6037123A (en) * | 1983-08-10 | 1985-02-26 | Hitachi Ltd | Manufacture of semiconductor device |
-
1985
- 1985-03-18 JP JP60052207A patent/JPH0789549B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54116184A (en) * | 1978-03-01 | 1979-09-10 | Mitsubishi Electric Corp | Manufacture for semiconductor device |
JPS56161674A (en) * | 1980-05-16 | 1981-12-12 | Nec Corp | Metal oxide semiconductor device |
JPS6037123A (en) * | 1983-08-10 | 1985-02-26 | Hitachi Ltd | Manufacture of semiconductor device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100548588B1 (en) * | 1998-09-15 | 2006-04-06 | 주식회사 하이닉스반도체 | Wiring Formation Method of Semiconductor Device |
Also Published As
Publication number | Publication date |
---|---|
JPH0789549B2 (en) | 1995-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4505028A (en) | Method of producing semiconductor device | |
DE19963864A1 (en) | Copper interconnection structure for semiconductor memory, logic circuits, involves exposing interactive connection structure with copper layer to reduction plasma and forming silicon nitride film | |
JPS6094757A (en) | resistor | |
TW291574B (en) | Method to prevent silicide bubble in the VLSI process | |
DE102005057075B4 (en) | Semiconductor device having a copper alloy as a barrier layer in a Kupfermetallisierungsschicht and method for its preparation | |
DE102004019101A1 (en) | Method of manufacturing a silicon carbide semiconductor device | |
JPS61212040A (en) | Manufacture of semiconductor device | |
JPS6029222B2 (en) | Method for manufacturing solid-state electronic devices | |
JPS61150276A (en) | Semiconductor device | |
JPS5966165A (en) | Electrode wiring and its manufacturing method | |
JP2918914B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH03280471A (en) | Manufacture of semiconductor device | |
JPS63126264A (en) | Semiconductor device | |
JPH02106971A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH022678A (en) | MIS field effect transistor | |
JP2857170B2 (en) | Method for manufacturing semiconductor device | |
JPH0228893B2 (en) | ||
JPH0770725B2 (en) | Method for manufacturing semiconductor device | |
DD289156A5 (en) | METHOD FOR PRODUCING SILICON DIOXIDE LAYERS ON HIDDEN EASILY OXYGENIZABLE METAL LAYERS | |
JPS5893331A (en) | Forming method for insulating film in semiconductor device | |
JPH0380542A (en) | Semiconductor integrated circuit device | |
JPH01241137A (en) | Manufacture of semiconductor device | |
JPS6257235A (en) | Manufacture of semiconductor device | |
JPS58158930A (en) | Formation of high melting point metal oxide | |
JPS61263243A (en) | Manufacture of high melting point metal silicide wiring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |