[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61216482A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPS61216482A
JPS61216482A JP60057813A JP5781385A JPS61216482A JP S61216482 A JPS61216482 A JP S61216482A JP 60057813 A JP60057813 A JP 60057813A JP 5781385 A JP5781385 A JP 5781385A JP S61216482 A JPS61216482 A JP S61216482A
Authority
JP
Japan
Prior art keywords
gate
polycrystalline silicon
silicon layer
insulating film
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60057813A
Other languages
Japanese (ja)
Inventor
Susumu Hasunuma
蓮沼 晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60057813A priority Critical patent/JPS61216482A/en
Publication of JPS61216482A publication Critical patent/JPS61216482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable to write and to erase at a high speed by constructing to have the third polycrystalline silicon layer formed to have a region electrically connected with the first polycrystalline silicon layer for generating a tunnel current through a thin insulating film on a semiconductor substrate. CONSTITUTION:A field oxide film 12 is formed on the surface of a P-type semiconductor substrate 11, and a gate oxide film 14 of a channel region 19 of a memory transistor is formed. Then, the first polycrystalline silicon layer to become a floating gate is formed, patterned, oxidized on the surface as a gate oxide film 17, the second polycrystalline silicon layer is formed, patterned and then oxidized on the surface to form a gate oxide film 21. A contacting hole 26 is opened at the portion of the floating gate 16 projected externally of a control gate 18, the oxide film is removed to expose the surface of the floating gate 16 of the portion, the third polycrystalline silicon layer is formed, and so patterned as to coat the part of a thin gate oxide film 25 and the hole 26 to form an auxiliary floating gate 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄い絶縁膜を介してトンネル電流により導電層
に電子の注入・引出しを行なう手段を有する不揮発性半
導体記憶装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonvolatile semiconductor memory device having means for injecting and extracting electrons into and out of a conductive layer by means of a tunnel current through a thin insulating film.

〔従来の技術〕[Conventional technology]

従来、薄い絶縁膜を介してトンネル電流により導電層に
電子の注入・引出しを行なう手段を有する不揮発性半導
体記憶装置(以下、単にメモリという。)は、第7図の
ような平面構造を有していた。ここで書込み・消去の原
理を説明するために第7図のA−A’線断面図を第8図
に示す。このような構造の×(す1は例えば、P型半導
体基板1にL0008法を用いてフィールド絶縁膜2、
チャンネル領域9のゲート絶縁膜およびトンネル電流を
流す薄いゲート絶縁膜3を設け、n型拡散ff1isを
ゲート絶縁膜3の下に設け、さらに薄いゲート絶縁膜3
の上に浮遊ゲート6、ゲート絶縁膜7、制御ゲー)8t
−順次重ねて形成することによって得られる。
Conventionally, a nonvolatile semiconductor memory device (hereinafter simply referred to as a memory), which has a means for injecting and extracting electrons into and out of a conductive layer using a tunnel current through a thin insulating film, has a planar structure as shown in FIG. was. In order to explain the principle of writing and erasing, FIG. 8 shows a cross-sectional view taken along the line AA' in FIG. 7. In this structure, for example, the field insulating film 2,
A gate insulating film in the channel region 9 and a thin gate insulating film 3 through which tunnel current flows are provided, an n-type diffusion ff1is is provided under the gate insulating film 3, and an even thinner gate insulating film 3 is provided.
floating gate 6, gate insulating film 7, control gate) 8t
-obtained by sequentially stacking them.

このメモリに情報の書込み・消去會行なう場合には、N
型拡散層5と制御ゲート8との間に電圧を印加し、間型
拡散層5と浮遊ゲート6と制御ゲート8間の容量結合に
よって、薄いゲート絶縁膜3(例えば8i02膜)中に
高電界を印加し、トンネル電流領域」0を流れる、7ア
ウラーーノルトハイA (Fowler−Nordhe
im ) ) yネル電流を発生することによって、浮
遊ゲート6に電子を注入または浮遊ゲート6から電子を
引出し、これKよって制御ゲート8からメモリトランジ
スタのチャンネル領域9の閾値電圧を変化させる。
When writing/erasing information to this memory, N
A voltage is applied between the type diffusion layer 5 and the control gate 8, and a high electric field is generated in the thin gate insulating film 3 (for example, 8i02 film) due to the capacitive coupling between the intertype diffusion layer 5, floating gate 6, and control gate 8. is applied, and the tunnel current flows in the tunnel current region ``0'', 7 A. (Fowler-Nordhe
im ) ) Y By generating a channel current, electrons are injected into or withdrawn from the floating gate 6 , thereby changing the threshold voltage of the channel region 9 of the memory transistor from the control gate 8 .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合、情報の書込み・消去のスピードは各電極間に
印加される電圧、薄いゲート絶縁膜3の厚さ、各電極間
の容量の比率等によって決定され、スピードを速くする
ため罠は印加電圧を高くし、薄いゲート絶縁膜3t−よ
シ薄<シ、浮遊グー)−制御ゲート間の容量を他の容量
に比して相対的九人きくすること(以下、容量比の改善
という。)がそれぞれ望ましい。しかし、印加電圧を高
めることはメモリの耐圧等により制限され、またゲート
絶縁膜の薄膜化もピンホール密度の増加、絶縁破壊等に
よって制限されている。容量比の改善を実現するために
は、浮遊ゲート−制御ゲート間のゲート絶縁膜厚を薄く
する方法と、オーバーラツプ面積を大きくする方法とが
考えられるが、絶縁膜厚を薄くするのは両ゲート間のリ
ーク電流あるいは絶縁破壊から制限され、オーバーラツ
プ面積の増大はデバイスの面積の増大につなかシ高集積
化の妨けとなる。
In this case, the speed of writing and erasing information is determined by the voltage applied between each electrode, the thickness of the thin gate insulating film 3, the ratio of capacitance between each electrode, etc. In order to increase the speed, the trap is set by the applied voltage. , and increase the capacitance between the thin gate insulating film 3t (thinner than floating) and the control gate relative to other capacitances (hereinafter referred to as improving the capacitance ratio). are each desirable. However, increasing the applied voltage is limited by the withstand voltage of the memory, and making the gate insulating film thinner is also limited by increased pinhole density, dielectric breakdown, and the like. In order to improve the capacitance ratio, two methods are considered: reducing the thickness of the gate insulating film between the floating gate and the control gate, and increasing the overlap area. An increase in the overlap area leads to an increase in the area of the device and impedes higher integration.

また、メモリ特性の面から考えても、従来のように拡散
層上に薄いゲート絶縁膜を介して浮遊ゲートを形成した
後におよそ950℃以上の高温の熱処理(例えはソース
・ドレイン領域を形成するためヒ素のイオン注入を行な
い、これを活性化するために施す熱処理等)を行なうと
、浮遊ゲートとその下部の薄いゲート絶縁膜との界面状
態が変化してしまい、絶縁膜I!に到るまでにゲート絶
縁膜中に流すことができる電荷量が減少してしまうこと
がわかっている。つまり、トンネル′#Lak流す薄い
ゲート絶縁膜の形成並びにその上部罠位置する浮遊ゲー
トの形成はメモリ作製上できるだけ後コン技術音用いた
ようなプロセスではこの要求に応えることができなかっ
た。
In addition, from the perspective of memory characteristics, as in the conventional method, a floating gate is formed on a diffusion layer via a thin gate insulating film, and then heat treatment is performed at a high temperature of approximately 950°C or higher (for example, forming a source/drain region). Therefore, when arsenic ions are implanted and heat treatment is performed to activate them, the state of the interface between the floating gate and the thin gate insulating film underneath changes, causing the insulating film I! It is known that the amount of charge that can flow into the gate insulating film decreases by the time it reaches . In other words, the formation of a thin gate insulating film that flows through the tunnel and the formation of a floating gate located above it cannot meet these requirements with a process that uses as much post-contact technology as possible in memory fabrication.

本発明の目的は、メモリセル面積を増大させることなく
浮遊ゲート−制御ゲート間のオーバー・ラリプ面積金増
大させ、またトンネル絶縁膜及びその上部の浮遊ゲート
の形成以降に高温の熱処理を行なわずに済むプロセスを
実現でき、高速の書込み・消去が可能でかつ高信頼性が
得られるような高集積密度の不揮発性半導体記憶装置を
提供することにある。
An object of the present invention is to increase the overlap area between the floating gate and the control gate without increasing the memory cell area, and without performing high-temperature heat treatment after forming the tunnel insulating film and the floating gate thereon. The object of the present invention is to provide a nonvolatile semiconductor memory device with high integration density, which can realize a simple process, enable high-speed writing and erasing, and provide high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の不揮発性半導体記憶装置は、浮遊ゲート構造t
−有し、薄い絶縁膜を介し友トンネル電流によって情報
の書込み・消去上行う不揮発性半導体装置において、半
導体基板上に絶縁膜を介して形成された前記浮遊ゲート
となる第1の多結晶シリコン層と、絶縁膜を介して前記
第1の多結晶シリコン層の一部を覆うが如く配置された
第2の多結晶シリコン層と、さらに絶縁膜を介して前記
第2の多結晶シリコン層の一部を覆うが如く配置され前
記第1の多結晶シリコン層と電気的に接続されかつ前記
半導体基板上に前記薄い絶縁膜を介してトンネル電流を
発生すみ領域を有する如く形成された第3の多結晶シリ
コン層とを含んで構成される。
The nonvolatile semiconductor memory device of the present invention has a floating gate structure t
- a first polycrystalline silicon layer forming the floating gate formed on the semiconductor substrate via the insulating film; a second polycrystalline silicon layer disposed so as to partially cover the first polycrystalline silicon layer with an insulating film in between; A third polycrystalline silicon layer is disposed so as to cover the semiconductor substrate, is electrically connected to the first polycrystalline silicon layer, and is formed on the semiconductor substrate so as to have a corner region for generating a tunnel current through the thin insulating film. and a crystalline silicon layer.

〔実施例〕     。〔Example〕 .

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す平面図、第2図ないし
第4図は、それぞれ第1図のH−B/線断面図、C−C
/線断面図、D−D’線断面図である。
FIG. 1 is a plan view showing one embodiment of the present invention, and FIGS. 2 to 4 are sectional views taken along line H-B/C-C in FIG. 1, respectively.
/ line sectional view and DD' line sectional view.

本実施例は、次のようにして形成される。ます、P型半
導体基attの表面に通常のLUCO8法を用いてフィ
ールド酸化膜12t−形成し、メモリトランジスタのチ
ャンネル領域19のゲート酸化膜」4を形成する。次に
、浮遊ゲート」6となるl層目の多結晶シリコン層を形
成、パターニングした後表面を酸化してゲート酸化膜1
7とし、制御ゲート18となる2層目の多結晶シリコン
層を形成、パターニングした後表面を酸化してゲート酸
化m2Lt形成する。このとき、制御ゲート」8は浮遊
ゲート」6t−覆うが如く形成されるが、浮遊ゲート」
6の一部は第4図に示すように制御ゲート18の外にま
で突出させておく。次に、ドレイン領域23、ソース領
域241に形成するため、ヒ素のイオン注入を行ない適
当な熱処理を施した後に、ドレイン領域23上の一部の
酸化膜を除去し、約100X糧度の薄いゲート酸化膜2
5を形成する。さらに浮遊ゲート」6のうち、制御ゲー
ト」8の外Kまで突出した部分にコンタクト孔26を開
孔させ酸化膜を除去してその部分の浮遊ゲート16の表
面を露出させる。しかる後に、3層目の多結晶シリコン
NIt−形成し、薄いゲート酸化膜25の少なくとも一
部と、コンタクト孔26を覆、うようにパターニングす
ることにより補助浮遊グー)22t−形成する。このこ
とによって、補助浮遊ゲート22は浮遊ゲート16と電
気的に導通したものとなシ、浮遊ゲートとして一体化さ
れ、浮遊ゲート−制御ゲート間の容量は制御ゲートの上
下両面を利用して効高良く形成される。
This embodiment is formed as follows. First, a field oxide film 12t- is formed on the surface of the P-type semiconductor substrate att using the usual LUCO8 method, and a gate oxide film 4 for the channel region 19 of the memory transistor is formed. Next, after forming and patterning the l-th polycrystalline silicon layer that will become the floating gate 6, the surface is oxidized to form a gate oxide film 1.
7, and after forming and patterning a second polycrystalline silicon layer that will become the control gate 18, the surface is oxidized to form gate oxidation m2Lt. At this time, the control gate ``8'' is formed to cover the floating gate ``6t'', but the floating gate ``6t'' is formed as if it were covered.
A part of the control gate 6 is made to protrude to the outside of the control gate 18 as shown in FIG. Next, in order to form a drain region 23 and a source region 241, arsenic ions are implanted and an appropriate heat treatment is performed, and then a part of the oxide film on the drain region 23 is removed, and a thin gate with a thickness of approximately 100X is formed. Oxide film 2
form 5. Furthermore, a contact hole 26 is opened in a portion of the floating gate 6 that protrudes to the outside K of the control gate 8, and the oxide film is removed to expose the surface of the floating gate 16 in that portion. Thereafter, a third layer of polycrystalline silicon NIt- is formed and patterned to cover at least a portion of the thin gate oxide film 25 and the contact hole 26, thereby forming an auxiliary floating layer 22t-. As a result, the auxiliary floating gate 22 is electrically connected to the floating gate 16 and integrated as a floating gate, and the capacitance between the floating gate and the control gate is increased by using both the upper and lower surfaces of the control gate. Well formed.

この後は従来のMO8型半導体装置の製造方法と同様に
層間膜を形成し、コンタクト孔の開孔。
After this, an interlayer film is formed and contact holes are opened in the same manner as in the conventional manufacturing method of MO8 type semiconductor devices.

金属配線等を行なうことになる。つまり、薄いゲート酸
化825の形成とそれに引続<am目の多結晶シリコン
層を用いた補助浮遊ゲート22の形成以後は、この補助
浮遊ゲート22とゲート酸化膜25との界面状態に悪影
響を与えるような高温の熱処理を行なわずに済むことに
なる。なお2゜はトンネル電流が流れるトンネル電流領
域である。
Metal wiring etc. will be done. In other words, after the formation of the thin gate oxide 825 and the subsequent formation of the auxiliary floating gate 22 using the <am-th polycrystalline silicon layer, the interface state between the auxiliary floating gate 22 and the gate oxide film 25 may be adversely affected. This eliminates the need for high-temperature heat treatment. Note that 2° is a tunnel current region where a tunnel current flows.

以上の説明から明らかな様に本実施例によれば、浮遊ゲ
ート−制御ゲート間の絶R膜厚を一定とし、かつメモリ
セル面積も一定としたttで、浮遊ゲートと制御ゲート
との間の容量を約2倍にまで高めることができるため、
デバイスの信頼性を何ら損なうことなく容量比の改善が
実現され、情報の書込みΦ消去のスピードの高速化が可
能となる。
As is clear from the above description, according to this embodiment, the absolute R film thickness between the floating gate and the control gate is constant, and the memory cell area is also constant at tt. Capacity can be approximately doubled, so
The capacitance ratio can be improved without any loss in device reliability, and the speed of writing and erasing information can be increased.

またトンネル電流を流す薄い絶縁膜とその上部の補助浮
遊ゲートの形成以後、高温の熱処理を必要としないプロ
セスが実現できるため、書込み・消去の繰返しに対する
メモリの寿命も大幅に改善され、その信頼性を高めるこ
とができる。
Furthermore, after forming the thin insulating film through which the tunnel current flows and the auxiliary floating gate on top, it is possible to realize a process that does not require high-temperature heat treatment, greatly improving the lifespan of memory against repeated programming and erasing, and improving its reliability. can be increased.

、このようなメモリ特性の改善例を第5図および第6図
に示す。第5図は、浮遊ゲート−制御ゲート間の絶縁膜
厚、メモリセルの面積等を同一とし、構造のみ全従来の
ものと比較したものであり、同一の閾値電圧を得るため
の時間はlFf近く改善されていることがわかる。
Examples of such improvements in memory characteristics are shown in FIGS. 5 and 6. Figure 5 compares only the structure with the conventional one, with the insulating film thickness between the floating gate and the control gate, the area of the memory cell, etc. being the same, and the time to obtain the same threshold voltage is approximately 1Ff. You can see that it has been improved.

また第6図は、本発明と同様に制御ゲートの上下両面に
浮遊ゲー)1−形成し、容量比の改善したデバイスのう
ち、トンネル絶縁膜の形成を従来のデバイスのように一
層目の浮遊ゲートの下部に形成し比ものと、本発明に従
い3層目の多結晶シリコン層の補助浮遊ゲートの下部に
形成したものとを用いて、同一の容量化、同一の閾イl
電圧のシフト量で書込み・消去の繰返しを行なった場合
の累積不良ビブトの発生量全比較したものであり、本発
明によって書込み・消去の繰返しに対するメモリの信頼
性が改善されていることがわかる。
Figure 6 also shows a device in which floating gates (1) are formed on both the upper and lower surfaces of the control gate as in the present invention, and the capacitance ratio is improved. The same capacitance and the same threshold voltage can be obtained by using the comparative type formed under the gate and the type formed under the auxiliary floating gate of the third polycrystalline silicon layer according to the present invention.
This is a total comparison of the amount of accumulated defective bits generated when programming and erasing are repeated by changing the amount of voltage shift, and it can be seen that the reliability of the memory against repeated programming and erasing is improved by the present invention.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり1本発明によれば、上記手段
によシ、 ビ) メモリの信頼性上問題となる浮遊ゲート−制御ゲ
ート間の絶縁膜の薄膜化。
As described above in detail, (1) according to the present invention, the above means are used; (2) thinning of the insulating film between the floating gate and the control gate, which is a problem in terms of memory reliability;

1口)高密度集積化の妨げとなる浮遊ゲート−制御ゲー
トのオーバーラヅプ面積の拡大。
1) Expansion of the floating gate-control gate overlap area, which hinders high-density integration.

というような問題点を伴わす(、容量比の改善を行なう
ことが可能となる。またトンネル電流を流す薄い絶縁膜
とその上部の浮遊ゲートとの界面状態に悪影響を与える
高温の熱処理を全て前工程で行なうことにより、メモリ
の信頼性を改善するととができ、これ忙よって高速の書
込み・消去が可能でかつ高信頼性で高集積密度の不揮発
性半導体記憶装置が得られる。           
         −
However, it is possible to improve the capacitance ratio.Also, all high-temperature heat treatments that adversely affect the interface between the thin insulating film through which the tunnel current flows and the floating gate above it must be performed beforehand. By performing this step, it is possible to improve the reliability of the memory, and as a result, a nonvolatile semiconductor memory device that is capable of high-speed writing and erasing, and has high reliability and high integration density can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面図、第2図、第3
図、第4図は第1図のB−B’線断面図。 C−C/線断面図、1)−17’線断面図、第5図、第
6図は本発明の実施例と従来例との特性比較図、第7図
は一従来例を示す平面図、第8図は第7図のA−A’細
断面図でおる。 iI・・・・・・P型半導体基数、」2・・・・・・フ
ィールド酸化膜、14・・・・・・ゲート酸化膜、16
・・・・・・浮遊グー)、17・・・・・・ゲート酸化
膜、18・・・・・・制御ゲート、19・・・・・・チ
ャンネル領域、20・・・・・・トンネル電流領域、2
1・・・・・・ゲート酸化膜、22・・・・・・補助浮
遊ゲート、23・・・・・・ドレイン領域、24・・・
・・・ソース領域、25・・・・・・薄いゲート酸化膜
、26・・・・・・コンタクト孔。 代理人 弁理士  内 原   晋 −ハ茅/[ 第3菌 壬4図 4g(時間)→ 茅5!に −1乙   圓
Figure 1 is a plan view showing one embodiment of the present invention, Figures 2 and 3 are
4 is a sectional view taken along the line BB' in FIG. 1. A cross-sectional view taken along the line C-C/, a cross-sectional view taken along the line 1)-17', FIGS. 5 and 6 are characteristic comparison diagrams between the embodiment of the present invention and a conventional example, and FIG. 7 is a plan view showing a conventional example. , FIG. 8 is a thin cross-sectional view taken along the line AA' in FIG. 7. iI...P-type semiconductor base number, 2...Field oxide film, 14...Gate oxide film, 16
..... floating goo), 17 ..... gate oxide film, 18 ..... control gate, 19 ..... channel region, 20 ..... tunnel current area, 2
1...Gate oxide film, 22...Auxiliary floating gate, 23...Drain region, 24...
. . . Source region, 25 . . . Thin gate oxide film, 26 . . . Contact hole. Agent Patent Attorney Susumu Uchihara - Ha Kaya / [3rd fungi 4 Figure 4g (time) → Kaya 5! Ni-1 Oto En

Claims (1)

【特許請求の範囲】[Claims] 浮遊ゲート構造を有し、薄い絶縁膜を介したトンネル電
流によって電気的に情報の書込み・消去を行う不揮発性
半導体記憶装置において、半導体基板上に絶縁膜を介し
て形成された前記浮遊ゲートとなる第1の多結晶シリコ
ン層と、絶縁膜を介して前記第1の多結晶シリコン層の
一部を覆うが如く配置された第2の多結晶シリコン層と
、さらに絶縁膜を介して前記第2の多結晶シリコン層の
一部を覆うが如く配置され前記第1の多結晶シリコン層
と電気的に接続され、かつ前記半導体基板上に前記薄い
絶縁膜を介してトンネル電流を発生する領域を有する如
く形成された第3の多結晶シリコン層とを含むことを特
徴とする不揮発性半導体記憶装置。
In a nonvolatile semiconductor memory device that has a floating gate structure and electrically writes and erases information by tunneling current through a thin insulating film, the floating gate is formed on a semiconductor substrate with an insulating film interposed therebetween. a first polycrystalline silicon layer, a second polycrystalline silicon layer disposed so as to partially cover the first polycrystalline silicon layer with an insulating film in between, and a second polycrystalline silicon layer with an insulating film in between. a region that is arranged to cover a part of the first polycrystalline silicon layer, is electrically connected to the first polycrystalline silicon layer, and generates a tunnel current on the semiconductor substrate through the thin insulating film. and a third polycrystalline silicon layer formed as described above.
JP60057813A 1985-03-22 1985-03-22 Nonvolatile semiconductor memory device Pending JPS61216482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057813A JPS61216482A (en) 1985-03-22 1985-03-22 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057813A JPS61216482A (en) 1985-03-22 1985-03-22 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS61216482A true JPS61216482A (en) 1986-09-26

Family

ID=13066358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057813A Pending JPS61216482A (en) 1985-03-22 1985-03-22 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61216482A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049975A (en) * 1989-03-14 1991-09-17 Mitsubishi Denki Kabushiki Kaisha Multi-layered interconnection structure for a semiconductor device
US5194925A (en) * 1990-02-22 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Electrically programmable non-volatie semiconductor memory device
US5394360A (en) * 1990-07-06 1995-02-28 Sharp Kabushiki Kaisha Non-volatile large capacity high speed memory with electron injection from a source into a floating gate
US5798548A (en) * 1995-05-18 1998-08-25 Sanyo Electric Co., Ltd. Semiconductor device having multiple control gates
US5859455A (en) * 1992-12-31 1999-01-12 Yu; Shih-Chiang Non-volatile semiconductor memory cell with control gate and floating gate and select gate located above the channel
US5898197A (en) * 1996-06-06 1999-04-27 Sanyo Electric Co., Ltd. Non-volatile semiconductor memory devices
US6111287A (en) * 1994-08-30 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device allowing electrical writing and erasing of information and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049975A (en) * 1989-03-14 1991-09-17 Mitsubishi Denki Kabushiki Kaisha Multi-layered interconnection structure for a semiconductor device
US5194925A (en) * 1990-02-22 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Electrically programmable non-volatie semiconductor memory device
US5378643A (en) * 1990-02-22 1995-01-03 Mitsubishi Denki Kabushiki Kaisha Electrically programmable non-volatile semiconductor memory device and manufacturing method thereof
US5394360A (en) * 1990-07-06 1995-02-28 Sharp Kabushiki Kaisha Non-volatile large capacity high speed memory with electron injection from a source into a floating gate
US5859455A (en) * 1992-12-31 1999-01-12 Yu; Shih-Chiang Non-volatile semiconductor memory cell with control gate and floating gate and select gate located above the channel
US6111287A (en) * 1994-08-30 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device allowing electrical writing and erasing of information and method of manufacturing the same
US6362046B1 (en) 1994-08-30 2002-03-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device allowing electrical writing and erasing of information and method of manufacturing the same
US5798548A (en) * 1995-05-18 1998-08-25 Sanyo Electric Co., Ltd. Semiconductor device having multiple control gates
US5898197A (en) * 1996-06-06 1999-04-27 Sanyo Electric Co., Ltd. Non-volatile semiconductor memory devices

Similar Documents

Publication Publication Date Title
US5300802A (en) Semiconductor integrated circuit device having single-element type non-volatile memory elements
US5338954A (en) Semiconductor memory device having an insulating film and a trap film joined in a channel region
US5098855A (en) Semiconductor device and method of producing the same
US5460989A (en) Electrically erasable and programmable semiconductor memory device with trench memory transistor and manufacturing method of the same
JP2600301B2 (en) Semiconductor memory device and method of manufacturing the same
US4404577A (en) Electrically alterable read only memory cell
US5444279A (en) Floating gate memory device having discontinuous gate oxide thickness over the channel region
JP2003209195A (en) Non-volatile memory element and method for manufacturing the same
KR0144421B1 (en) Manufacturing method of fresh E.P.Rom
US5594688A (en) Nonvolatile semiconductor memory device and method of producing the same
US4918501A (en) Semiconductor device and method of producing the same
US4907197A (en) Non-volatile semiconductor memory device
KR970003845B1 (en) Eeprom flash memory cell, memory device and manufacturing method thereof
US5194924A (en) Semiconductor device of an LDD structure having a floating gate
JPS61181168A (en) Nonvolatile semiconductor memory device
JPS61216482A (en) Nonvolatile semiconductor memory device
US5151761A (en) Nonvolatile semiconductor memory device with isolated gate electrodes
JPH0334578A (en) Nonvolatile semiconductor storage device and manufacture thereof
US5324677A (en) Method of making memory cell and a peripheral circuit
JPH02180079A (en) Semiconductor nonvolatile memory and manufacture thereof
JP2797466B2 (en) Nonvolatile semiconductor memory device
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
KR0135069B1 (en) Method of manufacturing a semiconductor memory device
CN118102730A (en) Novel charge trapping split gate flash memory and manufacturing process thereof
JPS5898977A (en) Non-volatile memory