JPS61216109A - Thin film magnetic head - Google Patents
Thin film magnetic headInfo
- Publication number
- JPS61216109A JPS61216109A JP5677885A JP5677885A JPS61216109A JP S61216109 A JPS61216109 A JP S61216109A JP 5677885 A JP5677885 A JP 5677885A JP 5677885 A JP5677885 A JP 5677885A JP S61216109 A JPS61216109 A JP S61216109A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- magnetic head
- film
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 30
- 239000010410 layer Substances 0.000 claims abstract description 47
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000011241 protective layer Substances 0.000 claims description 27
- 230000001681 protective effect Effects 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 1
- 239000010432 diamond Substances 0.000 abstract description 15
- 229910003460 diamond Inorganic materials 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 8
- 239000012790 adhesive layer Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 27
- 238000005229 chemical vapour deposition Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910000640 Fe alloy Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910021385 hard carbon Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 Ni and Mn Chemical class 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/40—Protective measures on heads, e.g. against excessive temperature
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/313—Disposition of layers
- G11B5/3133—Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3163—Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
磁気記録密度の向上に伴い、磁気ヘラ1゛のトラック幅
を小さくするために、あるいは多トラツク構成とするた
めに薄膜構造を採用した磁気ヘッドの実用化が進んでい
る。本発明はそれら薄膜磁気ヘッドに関するものである
。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application With the improvement of magnetic recording density, practical use of magnetic heads employing a thin film structure in order to reduce the track width of a magnetic spatula 1 or to create a multi-track configuration. is progressing. The present invention relates to these thin film magnetic heads.
従来の技術 従来の薄膜磁気ヘッドの構成例を以下に説明する。Conventional technology An example of the structure of a conventional thin film magnetic head will be described below.
第2図は記録用薄膜磁気ヘッドの断面を説明する図であ
る[吉良 徹、他:PCM録音用薄膜磁気ヘッド、シャ
ープ技術、 /17;26 (1983)97]。FIG. 2 is a diagram illustrating a cross section of a thin film magnetic head for recording [Toru Kira, et al.: Thin film magnetic head for PCM recording, Sharp Technology, /17;26 (1983) 97].
フェライト等の軟磁性材で、下部コアとなる基板1の上
に、絶縁層2を介して、1層で4タ一ン程度のスパイラ
ル状信号巻線3が形成され、絶縁層4を介して共通バイ
アス線6が積層されている。A spiral signal winding 3 of approximately 4 tans in one layer is formed on a substrate 1, which is made of a soft magnetic material such as ferrite, and serves as a lower core, with an insulating layer 2 interposed therebetween. Common bias lines 6 are stacked.
バイアス線5および信号巻線3は2〜4μm厚のCu膜
が使用され、巻線抵抗を下げるようにしている。A Cu film with a thickness of 2 to 4 μm is used for the bias wire 5 and the signal winding 3 to lower the winding resistance.
バイアス線5の上に、先端ギャップオオを兼ねる絶縁層
6を介して、上部コアとなる磁性層7が形成されている
。磁性層7としては、Ni−Fe合等が用いられる。磁
性層7の上には保護層8として8102等が10〜20
μm被着され、さらに非磁性の保護板10が接着層9に
よって接着されている。保護層8の上面は、磁性層7よ
り下に積層された電磁変換部の凹凸を反映して数ミクロ
ンの凹凸が存在するが、この凹凸を研摩によって平坦化
した後に保護板10を貼りつけている。A magnetic layer 7 serving as an upper core is formed on the bias line 5 via an insulating layer 6 that also serves as a tip gap layer. As the magnetic layer 7, a Ni--Fe alloy or the like is used. On the magnetic layer 7, there are 10 to 20 layers of 8102 etc. as a protective layer 8.
A non-magnetic protective plate 10 is further bonded with an adhesive layer 9. The upper surface of the protective layer 8 has irregularities of several microns reflecting the irregularities of the electromagnetic transducer layer laminated below the magnetic layer 7, but after flattening these irregularities by polishing, the protective plate 10 is attached. There is.
次に、第3図は再生用薄膜磁気ヘッドの断面を1006
〕。Next, FIG. 3 shows a cross section of the thin film magnetic head for reproduction at 1006 mm.
].
基板11d:フェライト笠の軟融イイ1月あるいはガラ
ス等の非磁性材が用いられるが、軟磁性高透磁率イ2の
場合には、磁気抵抗効果素子(以後λ4R素子と称する
)をシールドする効果と感度を高める効果が生じる。こ
こではフェライトを用いた例について説明する。基板1
1の上に、絶縁層12を介してバイアス線13が形成さ
れ、さらに絶縁層14を介してMR素子15が形成され
ている。Substrate 11d: A non-magnetic material such as a soft melting ferrite cap or glass is used, but in the case of soft magnetic high permeability II, it has the effect of shielding the magnetoresistive element (hereinafter referred to as λ4R element). This has the effect of increasing sensitivity. Here, an example using ferrite will be explained. Board 1
1, a bias line 13 is formed with an insulating layer 12 in between, and an MR element 15 is further formed with an insulating layer 14 in between.
MFt素子16はパーマロイの薄膜であり、図にd、示
していないが両端に導電層が接続されている。The MFt element 16 is a permalloy thin film, and conductive layers are connected to both ends (d in the figure), although not shown.
MR素子16の上に、絶縁層16を介して高透磁率月よ
I)なる磁性層17が形成されている。磁性層17の作
用は基板11と同じ<MR素子15のシールドと感度の
向上である。磁性層17の上にば5i02等の保護層1
8が10〜2011mの厚みで形成されている。保護層
18の上面は第1図の例と同様に平坦化され、この上に
非磁性の保護板20が接着層19によって接着されてい
る。A magnetic layer 17 with high magnetic permeability is formed on the MR element 16 with an insulating layer 16 interposed therebetween. The function of the magnetic layer 17 is the same as that of the substrate 11, which is to shield the MR element 15 and improve sensitivity. On the magnetic layer 17 is a protective layer 1 such as 5i02.
8 is formed with a thickness of 10 to 2011 m. The upper surface of the protective layer 18 is flattened as in the example shown in FIG. 1, and a non-magnetic protective plate 20 is adhered thereon by an adhesive layer 19.
発明が解決しようとする問題点
第2図で説明した記録用の薄膜磁気ヘット゛において記
録のだめの磁界の強さは、バイアス線お」:び信号巻線
の巻数と、流れる電流の積に比例するが、薄膜構造のヘ
ッドにおいてd、巻数を多くとることが困難であり、電
流値を大きくせざるを得ない。電流値が大きくなると、
巻線の電気抵抗にもとづくジュール熱が発生することに
なり、磁気テープに記録する場合等においてC2磁気テ
ープの走行を停止し、テープ摺動面21に磁気テープが
接触した状態で記録電流を通じた場合には、発生したジ
ュール熱に」:って磁気テープが損傷を受けることもあ
る。寸だ、磁性層7や基板1の磁気特性も温度土Hによ
って劣化する。しだがって、この発4tりする熱を放散
させ磁気ヘッドの温度上昇を防tl=することが必要で
ある。Problems to be Solved by the Invention In the thin-film magnetic head for recording explained in FIG. However, in a head with a thin film structure, it is difficult to increase the number of turns, and the current value must be increased. As the current value increases,
Joule heat is generated due to the electrical resistance of the winding, so when recording on a magnetic tape, the running of the C2 magnetic tape is stopped and the recording current is passed with the magnetic tape in contact with the tape sliding surface 21. In some cases, the magnetic tape may be damaged by the generated Joule heat. In fact, the magnetic properties of the magnetic layer 7 and the substrate 1 are also deteriorated by the temperature H. Therefore, it is necessary to dissipate this generated heat to prevent the temperature of the magnetic head from rising.
しかし、各絶縁層および保護層8としては、一般に真空
蒸着によるSiOあるいは8102等が用いられ、その
熱伝導率は、0.003 c a l 7cm −Se
c −℃程度てあって、熱の不良導体である。各絶縁層
は薄膜であるため、その悪影響は寸だ軽微であるが、保
護層8は厚みも大きく、これに」:る熱絶縁のために磁
気ヘッドの温度上昇が回避されないといってもよい。However, as each insulating layer and protective layer 8, SiO or 8102 etc. is generally used by vacuum evaporation, and its thermal conductivity is 0.003 cal 7cm -Se
c -°C, and is a poor conductor of heat. Since each insulating layer is a thin film, the adverse effect is very slight, but the protective layer 8 is thick and it can be said that the increase in temperature of the magnetic head cannot be avoided due to the thermal insulation. .
この保護層8を熱伝導率の高い材料、たとえばCu等の
金属にすることが考えられるが、テープ摺動面21にそ
の様な軟質の金属が広い面積にわたって露出するとテー
プ摺動によって金属が塑性流動を生じたりして、磁気ヘ
ッドのギャップがくずれてし1い、正常に機能しなくな
るだめ不適当である。It is conceivable to make this protective layer 8 of a material with high thermal conductivity, for example, a metal such as Cu, but if such a soft metal is exposed over a wide area on the tape sliding surface 21, the metal will become plastic due to tape sliding. This is unsuitable because the flow may cause the gap in the magnetic head to collapse and cause the magnetic head to malfunction.
保g4層8としてセラミックを用いることも考えられる
。七ラミックの熱伝導率は5102に比べて1桁程度大
きいため熱の発生はやや軽減される可能性がある。しか
しセラミックの膜は一般にスパッタリング等の方法で形
成されるだめ成膜速度が低く、膜形成に10時間程度を
要し実用的ではない。It is also conceivable to use ceramic as the g-retaining layer 8. The thermal conductivity of hexalamic is about one order of magnitude higher than that of 5102, so there is a possibility that heat generation may be reduced somewhat. However, ceramic films are generally formed by a method such as sputtering, so the film formation rate is low, and it takes about 10 hours to form the film, making it impractical.
次に第3図に示した再生用の薄膜磁気ヘッドの場合には
次の様な問題点がある。Next, the thin film magnetic head for reproduction shown in FIG. 3 has the following problems.
MR素子から得られる出力電圧は、MR素子に流す電流
の電流密度に比例する。すなわち再生感度を上げようと
すれば、電流を多く流せばよい。The output voltage obtained from the MR element is proportional to the current density of the current flowing through the MR element. In other words, if you want to increase the reproduction sensitivity, you just need to let more current flow.
しかしそうなれば第2図の例の場合と同様に、通電によ
るジュール熱の発生がある。第3図の場合にも各絶縁層
および保護層18の材質は第2図と同様のSiOあるい
はS x 02 であり、放熱は極めて不利である。M
R素子はその温度が上昇すると急激に雑音を発生する特
性を有しており、従来の構成では感度を上げるために電
流を多く流すことが出来ず、やむを得ず低い感度で使用
せざるを得なかった。However, if this happens, Joule heat will be generated due to energization, as in the case of the example shown in FIG. In the case of FIG. 3 as well, the material of each insulating layer and the protective layer 18 is SiO or S x 02 similar to that of FIG. 2, and heat radiation is extremely disadvantageous. M
The R element has the characteristic of rapidly generating noise when its temperature rises, and with conventional configurations, it was not possible to pass a large amount of current to increase sensitivity, and it was unavoidable to use it at a low sensitivity. .
第2図および第3図の場合に共通ずる最大の問題点け、
保護層8および18の熱伝導率が悪いことであり、耐摩
耗性と熱伝導性に優れ、かつ膜形成が容易な保護層が望
丑れていた。The biggest problem common to Figures 2 and 3 is:
The thermal conductivity of the protective layers 8 and 18 is poor, and a protective layer that has excellent wear resistance and thermal conductivity and is easy to form is desired.
問題点を解決するだめの手段
以」−に述べた様なS 10 、 S No 2等の従
来の保護層の問題点を解決する手段として、ダイヤモン
ドを保護膜とすることが考えられる。ダイヤモンドの熱
伝導率は、I型のダイヤモンドが1.3〜2.1ca
l 7cm −′iec ・℃、 l型のダイヤモン
ドが4.4cal/cm 5IIC℃程度であり、金属
を上まわる熱伝導率を有している。またダイヤモンドは
物質中で最高の硬度を示す物質であり、化学的にも極め
て安定であるから薄膜磁気ヘッドの保護層として用いた
場合にも、テープ摺動面に露出しだ保護層がヘッドの耐
摩耗性を劣化させることは無く、むしろ耐摩耗性を向上
させることが可能である。As a means to solve the problems of conventional protective layers such as S 10 and S No. 2 as described in ``Means for Solving the Problems'', it is conceivable to use diamond as a protective film. The thermal conductivity of diamond is 1.3 to 2.1 ca for type I diamond.
l 7 cm -'iec ·°C, L-type diamond has a thermal conductivity of about 4.4 cal/cm 5 IIC °C, which exceeds that of metals. Furthermore, diamond has the highest hardness among substances and is extremely chemically stable, so when it is used as a protective layer for a thin-film magnetic head, the protective layer that is exposed on the tape sliding surface will protect the head. It does not deteriorate the wear resistance, but rather can improve the wear resistance.
ダイヤモンドの薄膜を形成する技術に関しては多くの報
告がなされている。Many reports have been made regarding techniques for forming diamond thin films.
(参考文献)
(1)難波義捷:ダイヤモンド薄膜の低圧合成の研究、
応用機械工学、1984年7月号
(2)松本精一部:ダイヤモンドの低圧合成、現代化学
、1984年9月号
(3)瀬高信雄:ダイヤモンドの低圧合成2日本産業技
術振興協会、技術資料/g 1s s 、 59/6/
20しかしながら、いずれも丑だ研究段階であり、未だ
実用には至っていない。(References) (1) Namba Yoshitsune: Research on low-pressure synthesis of diamond thin films,
Applied Mechanical Engineering, July 1984 issue (2) Seiichi Matsumoto: Low-pressure synthesis of diamonds, Gendai Kagaku, September 1984 issue (3) Nobuo Setaka: Low-pressure synthesis of diamonds 2 Japan Industrial Technology Promotion Association, Technical data/ g 1s s, 59/6/
20 However, all of these are still at the research stage and have not yet been put into practical use.
我々は、ダイヤモンドに近い特性を示す高硬度の炭素膜
を形成する方法を開発した(黒用英雄。We have developed a method to form a highly hard carbon film that exhibits properties close to those of diamond (Black Hero).
他:プラズマ・インジェクションCVD法による高硬度
炭素膜の形成及び評価、昭和60年年度様学会春季大会
学術講演会論文集、IG;422)。et al.: Formation and Evaluation of High Hardness Carbon Films by Plasma Injection CVD Method, Proceedings of the 1985 Spring Conference of the Japan Society of Carbon Diversity, IG; 422).
我々の開発した方法は、メタンガス等の炭化水素ガスを
材料ガスとして、10〜20Paの低圧力でこれをプラ
ズマ化し、プラズマもしくはプラズマ中のイオンを加速
電界によって基板に噴射し、基板を加熱することなく、
最高5000人/分程度の高速で成膜することが可能な
ものであり、我々はプラズマ・インジェクションCVD
法と称している(以下、PI−CVD法と略す)。The method we have developed uses hydrocarbon gas such as methane gas as a material gas, turns it into plasma at a low pressure of 10 to 20 Pa, and injects the plasma or ions in the plasma onto the substrate using an accelerated electric field to heat the substrate. Without,
It is possible to form films at high speeds of up to 5,000 people/minute, and we use plasma injection CVD.
(hereinafter abbreviated as PI-CVD method).
PI−CVD法によって形成した膜は、SP5ないしS
P の電子配置を含む、ダイヤモンドに近い結合状態の
アモルファス状炭素からなっており、ビッカース硬さは
2000〜3000 Kg/ml 、熱伝導率は0 、
6 Ca l 7cm SeC・℃程度である。寸た比
抵抗および屈折率は成膜条件によるが、それぞれ、10
’−10130−cm、2.0〜2.4程度となる。The film formed by the PI-CVD method has SP5 to S
It is made of amorphous carbon in a bonding state similar to that of diamond, including an electron configuration of P, and has a Vickers hardness of 2000 to 3000 Kg/ml, a thermal conductivity of 0,
6 Cal 7cm SeC・℃. Although the specific resistivity and refractive index depend on the film forming conditions, they are each 10
'-10130-cm, approximately 2.0 to 2.4.
膜の成分は、基本的には炭素であるが、水素等の不純物
を若干含むこともある。The film is basically composed of carbon, but may contain some impurities such as hydrogen.
すなわちP l−CVD法による高硬度の炭素を、薄膜
磁気ヘッドの保護層として用いるならば、金属と同程度
の熱伝導率と、セラミックと同程度の硬度と耐摩耗性を
付与することが可能となり、従来例で述べた問題点を解
決することが出来る。In other words, if high-hardness carbon produced by the Pl-CVD method is used as a protective layer for a thin-film magnetic head, it is possible to provide thermal conductivity comparable to metal and hardness and wear resistance comparable to ceramic. Therefore, the problems described in the conventional example can be solved.
作 用
PI−CVD法による高硬度の炭素膜を、薄膜磁気ヘッ
ドの保護層として用いるならば、金属と同程度の熱伝導
率を有することから、通電によって発生するジュール熱
を保護板にすみやかに伝熱することが可能となり、多く
の電流を流すことが可能となり、薄膜磁気ヘッドの記録
特性あるいは再生特性を大いに改善することが可能とな
る。さらに、この保護層はセラミックと同程度の硬度を
10 、
有し、耐摩耗性も同等以上であることから、テープとの
摺動においてもヘッドを保護し、ヘッドの寿命を改善す
ることが出来る。Function: If a high-hardness carbon film produced by the PI-CVD method is used as a protective layer for a thin-film magnetic head, it has a thermal conductivity comparable to that of metal. It becomes possible to conduct heat, and it becomes possible to flow a large amount of current, thereby making it possible to greatly improve the recording characteristics or reproduction characteristics of the thin-film magnetic head. Furthermore, this protective layer has a hardness comparable to that of ceramic (10%) and wear resistance that is at least the same, so it protects the head even when it slides against the tape and improves the life of the head. .
またP l−CVD法によれば、室温での成膜が可能で
あり、パーマロイ等の磁性層を劣化させる危険もない。Further, according to the Pl-CVD method, film formation can be performed at room temperature, and there is no risk of deteriorating the magnetic layer such as permalloy.
さらに成膜速度が高いために、とれを工業的に実施する
ことは容易である。Furthermore, since the film formation rate is high, it is easy to carry out the removal on an industrial scale.
実施例
第1図に本発明の実施例を示す。本発明は記録用の薄膜
磁気ヘッドおよび再生用の薄膜磁気ヘッドはもちろんの
こと、薄膜構造で電磁変換部を構成する磁気ヘッド全般
に適用されるものであるから、電磁変換部の詳細な構成
については省略することとする。Embodiment FIG. 1 shows an embodiment of the present invention. Since the present invention is applicable not only to thin-film magnetic heads for recording and thin-film magnetic heads for reproduction, but also to general magnetic heads in which the electromagnetic transducer is configured with a thin-film structure, the detailed structure of the electromagnetic transducer will be explained below. will be omitted.
基板23の上に、電磁変換部24が形成されている。電
磁変換部24は、導電層、絶縁層、磁性層等を積層した
構造である。導電層の材質としてはAu/Cr 、 C
u 、 A I等が用いられる。絶縁層の材質としては
Sin、SiO2等が用いられるが、ここにPI−CV
D法による高硬度炭素膜を使用することも可能であり、
熱伝導性の良さを発揮出来る。An electromagnetic transducer 24 is formed on the substrate 23. The electromagnetic transducer 24 has a structure in which a conductive layer, an insulating layer, a magnetic layer, etc. are laminated. The material of the conductive layer is Au/Cr, C
u, AI, etc. are used. Sin, SiO2, etc. are used as the material of the insulating layer, but here PI-CV
It is also possible to use a high hardness carbon film made by the D method,
It can demonstrate good thermal conductivity.
しかしP l−CVD法による高硬度炭素膜は化学的に
安定であるため、エツチング等によるパターン形成が困
難となるため、電磁変換部24のような複雑な構成の中
で用いるのは適当でない。However, since the high-hardness carbon film produced by the Pl-CVD method is chemically stable, it is difficult to form a pattern by etching or the like, and therefore it is not suitable for use in a complex structure such as the electromagnetic transducer 24.
磁性層としてはパーマロイ等のNi−Fe系合金が使用
される。電磁変換部24の上面は、通常の構成では磁性
層があられれる。ここでP I −CVD法を適用する
場合の問題点について触れる。この方法は前述の様々特
徴を有しているが、膜の付着力は基板材料との化学的な
結合力が強く依存しており、任意の材料に対して強固な
膜を形成出来るものではない。P l−CVD法によっ
て高硬度の炭素膜を形成することが可能々材質は以下の
通りである。As the magnetic layer, a Ni--Fe alloy such as permalloy is used. In a normal configuration, the upper surface of the electromagnetic transducer 24 is coated with a magnetic layer. Here, we will discuss the problems when applying the PI-CVD method. Although this method has the various features mentioned above, the adhesion of the film strongly depends on the chemical bonding strength with the substrate material, and it is not possible to form a strong film on any material. . The materials that can form a highly hard carbon film by the Pl-CVD method are as follows.
寸ず、St、Ge、Bおよびそれらの化合物とは非常に
強い結合が可能である。次に、Co、Cr、Fe。In fact, very strong bonds are possible with St, Ge, B, and their compounds. Next, Co, Cr, and Fe.
Ni、Mn等の鉄型金属もしくはそれらを主成分とする
合金とも強い結合が可能である。さらに、Ae。Strong bonding is also possible with iron-type metals such as Ni and Mn, or alloys containing these as main components. Furthermore, Ae.
Be、Zr、Hf、V、Nb、Ta、W等の金属もしく
はそれらを主成分とする合金も基板材質として使用でき
る。Metals such as Be, Zr, Hf, V, Nb, Ta, and W, or alloys containing these as main components can also be used as the substrate material.
すなわち、薄膜磁気ヘッドの磁性層としてなく用いられ
る。Ni−Fe系の合金に対して、PI−CVD法で高
硬度の炭素膜を形成することは容易であり、その特徴を
よく発揮した応用例とみることが出来る。That is, it is used not as a magnetic layer of a thin-film magnetic head. It is easy to form a high hardness carbon film on a Ni-Fe based alloy by the PI-CVD method, and this can be seen as an application example that makes good use of its characteristics.
一方、PI−CVD法で高硬度炭素膜を形成することが
困難な材質としてAu、Ag、Cu等があげられる。こ
れらの材質は薄膜磁気ヘッドの導電層として用いられる
ことがあり、この表面にPI−CVD法による高硬度炭
素膜を直接形成することは好ましくないが、表面の一部
に含まれる場合には、他の部分に強く付着した膜に支え
られるため、実用上は問題はない。しかし、さらに確実
に成膜をしようとするならば、P l−CVD法による
成膜を行う前に、その下地として、SiC等をスパッタ
リング等の手段で薄く形成しておくととが有効である。On the other hand, materials with which it is difficult to form a high-hardness carbon film using the PI-CVD method include Au, Ag, Cu, and the like. These materials are sometimes used as conductive layers in thin-film magnetic heads, and although it is not preferable to directly form a high-hardness carbon film on this surface by PI-CVD, if it is included in a part of the surface, There is no problem in practical use because it is supported by a film that is strongly attached to other parts. However, if you want to form a film more reliably, it is effective to form a thin layer of SiC or the like as a base layer by sputtering or other means before forming a film using the Pl-CVD method. .
電磁変換部24の上には、以−1−に述べたように、P
l−CVD法によって形成された高硬度の炭素膜より
なる保護層25が形成されている。保護層26の」二面
は電磁変換部24の凹凸を反映して数ミクロンの凹凸を
有しているが、これをダイヤモンド砥石等による研削加
工、あるいはラッピングによって平坦化し、接着層26
によって保護板27を接着する。接着剤としては低融点
ガラスあるいはエポキシ樹脂等が用いられる。保護層2
5の」−面を平坦化することによって、保護板27との
密着性が良く々す、熱をすみやかに放散させることが出
来る。Above the electromagnetic converter 24, as described in -1-, there is a P
A protective layer 25 made of a highly hard carbon film formed by l-CVD is formed. The two surfaces of the protective layer 26 have irregularities of several microns reflecting the irregularities of the electromagnetic transducer 24, but these are flattened by grinding with a diamond grindstone or lapping, and the adhesive layer 26
The protective plate 27 is adhered by. As the adhesive, low-melting glass, epoxy resin, or the like is used. Protective layer 2
By flattening the negative side of 5, the adhesiveness with the protection plate 27 is improved, and heat can be quickly dissipated.
しかし、保護層25の上面を平坦化しない場合にも、保
護層26の熱伝導性が良好であれば、電磁変換部24で
発生した熱の放散は従来例に比べればすみやかに行われ
るため、必ずしも上面を平坦化する必要はない。However, even when the upper surface of the protective layer 25 is not flattened, if the protective layer 26 has good thermal conductivity, the heat generated in the electromagnetic converter 24 can be dissipated more quickly than in the conventional example. It is not necessary to flatten the top surface.
媒体当接面28は、テープ、ディスク等の記録媒体とス
ムーズに接触するよう表面を平滑に仕上げられるが、保
護層25の炭素はダイヤモンドに14、
比べれば軟質であり、基板23や保護板27と同時に研
摩しても特に問題は々い。The surface of the medium contacting surface 28 is finished to be smooth so as to make smooth contact with recording media such as tapes and disks, but the carbon of the protective layer 25 is soft compared to diamond, and the carbon of the protective layer 25 is soft compared to the substrate 23 and the protective plate 27. There are many problems especially if it is polished at the same time.
発明の効果
本発明によれば、P l−CVD法による高硬度炭素膜
を保護層とすることによって、電磁変換部で発生した熱
をすみやかに放散させることが出来るため、電流を多く
流すことが可能となり、薄膜磁気ヘッドの記録特性ある
いは再生特性を太いに向上しうるものであって、垂直磁
気記録等の今後の高密度記録用磁気ヘッド等にとって極
めて有用である。Effects of the Invention According to the present invention, by using a high-hardness carbon film formed by the Pl-CVD method as a protective layer, the heat generated in the electromagnetic conversion section can be quickly dissipated, so that a large amount of current can be passed. This makes it possible to significantly improve the recording or reproducing characteristics of thin-film magnetic heads, and is extremely useful for future high-density recording magnetic heads such as perpendicular magnetic recording.
第1図は本発明の一実施例における薄膜磁気ヘッドの要
部拡大断面図、第2図は従来例の記録用薄膜磁気ヘッド
の要部拡大断面図、第3図は従来例の再生用薄膜磁気ヘ
ッドの要部拡大断面図である。
1.11.23・・・・・・基板、礼 4. 6. 1
2゜14.16・・・・・・絶縁層、3・・・・・・信
号巻線、5,13・・・・・・バイアス線、7,17・
・・・・磁性層、8.18゜25・・・・保護層、9,
19.26・・・・・接着層、15・・・・・・MR素
子、24・・・・・電磁変換部、10,20゜27・・
・・・・保護板。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
/l光躊A
手続補正書
nt3和60イ1.9刀、31」
’4’!J’ R’I庁長官殿
2発明の名称
薄膜磁気ヘッド
3補正をする者
41件とO)関係 9!1′ 許 出
願 人任 i!Ii 大阪府門真市大字門真
1006番地名 称 (582)松下電器産業株式会社
代表者 山 下 俊 彦
4代理人 〒571
住 所 大阪府門真市大字門真1006番地松下電器
産業株式会社内
6補正の対象
明細書の発明の詳細な説明の欄
6、補IFの内容
(1)明細書第2頁第15行目の「N’1−Fe合」を
rNi−Fe合金」に補正し−fす。
(2)同第9頁第4行目の「2.0〜2.4」を12.
0〜3.0」に補正し1ず。
(3)同第11頁第12行目の「結合力が」を「結合力
に」に補正し丑す。
(4) 同第12頁第4〜5行目の1磁性層としてな
く用いられている。」ヲ「磁性層として多く用いられて
いる」に補正し捷す。FIG. 1 is an enlarged sectional view of a main part of a thin film magnetic head according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a main part of a conventional thin film magnetic head for recording, and FIG. 3 is a conventional thin film magnetic head for reproduction. FIG. 3 is an enlarged cross-sectional view of the main part of the magnetic head. 1.11.23... Board, thanks 4. 6. 1
2゜14.16...Insulating layer, 3...Signal winding, 5,13...Bias wire, 7,17...
...Magnetic layer, 8.18°25...Protective layer, 9,
19.26...adhesive layer, 15...MR element, 24...electromagnetic transducer, 10,20°27...
...Protection board. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 /l Kogan A Procedural amendment nt 3 sum 60 i 1.9 sword, 31” '4'! Mr. J'R'I Agency Director 2 Name of invention Thin film magnetic head 3 Person who corrects 41 cases and O) Relationship 9!1' Permission Application Appointment i! Ii 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Name (582) Matsushita Electric Industrial Co., Ltd. Representative Toshihiko Yamashita 4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Subject to 6 amendments Column 6 of Detailed Description of the Invention of the Specification, Contents of Supplementary IF (1) "N'1-Fe alloy" on page 2, line 15 of the specification is corrected to "rNi-Fe alloy" -f. (2) Change "2.0 to 2.4" in the 4th line of page 9 to 12.
Corrected to 0-3.0". (3) On page 11, line 12, "bonding force" is amended to "bonding force". (4) It is not used as the first magnetic layer on the 4th to 5th lines of page 12. ” was corrected to ``It is often used as a magnetic layer.''
Claims (2)
磁変換部が構成され、この電磁変換部の上に炭素もしく
は炭素を主成分とする保護層が形成され、この保護層の
上に保護板が接着された薄膜磁気ヘッド。(1) An electromagnetic transducer is constructed by laminating a conductive layer, an insulating layer, a magnetic layer, etc. on a substrate, and a protective layer containing carbon or carbon as a main component is formed on the electromagnetic transducer. A thin film magnetic head with a protective plate glued on top.
温、低圧で形成されたダイヤモンド状炭素である特許請
求の範囲第1項記載の薄膜磁気ヘッド。(2) The thin film magnetic head according to claim 1, wherein the protective layer is diamond-like carbon formed at low temperature and low pressure using plasma or ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5677885A JPS61216109A (en) | 1985-03-20 | 1985-03-20 | Thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5677885A JPS61216109A (en) | 1985-03-20 | 1985-03-20 | Thin film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61216109A true JPS61216109A (en) | 1986-09-25 |
Family
ID=13036897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5677885A Pending JPS61216109A (en) | 1985-03-20 | 1985-03-20 | Thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61216109A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018442A1 (en) * | 1993-12-30 | 1995-07-06 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5640292A (en) * | 1996-01-17 | 1997-06-17 | Seagate Technology, Inc. | Diamond-like carbon encapsulation of magnetic heads |
US5644455A (en) * | 1993-12-30 | 1997-07-01 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5658470A (en) * | 1995-12-13 | 1997-08-19 | Seagate Technology, Inc. | Diamond-like carbon for ion milling magnetic material |
US5681426A (en) * | 1995-12-13 | 1997-10-28 | Seagate Technology, Inc. | Diamond-like carbon wet etchant stop for formation of magnetic transducers |
-
1985
- 1985-03-20 JP JP5677885A patent/JPS61216109A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018442A1 (en) * | 1993-12-30 | 1995-07-06 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5644455A (en) * | 1993-12-30 | 1997-07-01 | Seagate Technology, Inc. | Amorphous diamond-like carbon gaps in magnetoresistive heads |
US5658470A (en) * | 1995-12-13 | 1997-08-19 | Seagate Technology, Inc. | Diamond-like carbon for ion milling magnetic material |
US5681426A (en) * | 1995-12-13 | 1997-10-28 | Seagate Technology, Inc. | Diamond-like carbon wet etchant stop for formation of magnetic transducers |
US6215630B1 (en) | 1995-12-13 | 2001-04-10 | Seagate Technology Llc | Diamond-like carbon and oxide bilayer insulator for magnetoresistive transducers |
US5640292A (en) * | 1996-01-17 | 1997-06-17 | Seagate Technology, Inc. | Diamond-like carbon encapsulation of magnetic heads |
US5718949A (en) * | 1996-01-17 | 1998-02-17 | Seagate Technology, Inc. | Diamond-like carbon encapsulation of magnetic heads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5609948A (en) | Laminate containing diamond-like carbon and thin-film magnetic head assembly formed thereon | |
US4935311A (en) | Magnetic multilayered film and magnetic head using the same | |
JPH09212814A (en) | Protective film and magnetic head slider having protective film, as well as magnetic disk device | |
MXPA03011603A (en) | Magnetic multilayered films with reduced magnetostriction. | |
JPS61216109A (en) | Thin film magnetic head | |
JPS61104413A (en) | Thin film magnetic head | |
JPH0344369B2 (en) | ||
JPH0328722B2 (en) | ||
JP2510968B2 (en) | Manufacturing method of thin film magnetic head | |
JPS6028012A (en) | Composite magnetic head | |
JPH0386905A (en) | Magnetic head and production of magnetic head | |
JPS63254709A (en) | Laminated thin magnet film and magnetic head using the same | |
JPS6238518A (en) | Composite magnetic head | |
JPS62293511A (en) | Magnetic recording medium | |
JPH07129924A (en) | Thin-film magnetic head and its production | |
JPS63127408A (en) | Thin film magnetic head | |
JPS59142744A (en) | Magnetic recording medium | |
JPH05242433A (en) | Magnetic head | |
JPH07254118A (en) | Magneto resistance effect head and magnetic recording and reproducing device | |
JPS61144715A (en) | Thin film magnetic head and its production | |
JPS5919220A (en) | Vertical magnetic recording type magnetic head | |
JPH05120628A (en) | Thin-film magnetic head | |
JPH0349131B2 (en) | ||
JPS63112809A (en) | Magnetic head | |
JPH064831A (en) | Thin film magnetic head |