[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63254709A - Laminated thin magnet film and magnetic head using the same - Google Patents

Laminated thin magnet film and magnetic head using the same

Info

Publication number
JPS63254709A
JPS63254709A JP8880687A JP8880687A JPS63254709A JP S63254709 A JPS63254709 A JP S63254709A JP 8880687 A JP8880687 A JP 8880687A JP 8880687 A JP8880687 A JP 8880687A JP S63254709 A JPS63254709 A JP S63254709A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
laminated
film
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8880687A
Other languages
Japanese (ja)
Other versions
JP2690893B2 (en
Inventor
Ryoichi Nakatani
亮一 中谷
Toshio Kobayashi
俊雄 小林
Moichi Otomo
茂一 大友
Takayuki Kumasaka
登行 熊坂
Noritoshi Saitou
斉藤 法利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62088806A priority Critical patent/JP2690893B2/en
Priority to US07/181,051 priority patent/US4935311A/en
Publication of JPS63254709A publication Critical patent/JPS63254709A/en
Application granted granted Critical
Publication of JP2690893B2 publication Critical patent/JP2690893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a laminated thin magnetic film having low coercive force, high permeability and high saturation magnetic flux density by laminating a thin Fe film and a thin alloy film which contains as a main ingredient Fe through a nonmagnetic metal in a laminated structure. CONSTITUTION:A thin Fe film and a thin alloy film which contains as a main ingredient Fe are laminated through a nonmagnetic metal in a laminated structure. Its saturation magnetic flux density is reduced by the influence of its lamination, but the saturation magnetic flux density is higher than that of the case that SiO2, or Al2O3, etc., is interposed therebetween. When the thickness per one layer of the nonmagnetic metal is less than 10A or 100Angstrom or larger, its coercive force is increased larger than that of a laminated thin magnetic film of 10-100Angstrom . Accordingly, the thickness per one layer of the nonmagnetic metal is preferably 10-100Angstrom . Thus, the laminated thin magnetic film having low corecive force and high permeability is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高飽和磁束密度、高透磁率を有する積層磁性薄
膜に関し、特に磁気ディスク装置、VTRなどに用いる
磁気ヘットおよび磁気ヘッドのコア材料に適した積層磁
性薄膜に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a laminated magnetic thin film having high saturation magnetic flux density and high magnetic permeability, and particularly to magnetic heads used in magnetic disk drives, VTRs, etc., and core materials of magnetic heads. Concerning suitable laminated magnetic thin films.

〔従来の技術〕[Conventional technology]

磁気ヘッドの記録時における磁気飽和を防ぐために、磁
気ヘッド材料は高飽和磁束密度を有することが必要であ
る。またヘッドの再生効率の面から低保磁力、高透磁率
の特性を有することも必要である。
In order to prevent magnetic saturation during recording with a magnetic head, the magnetic head material needs to have a high saturation magnetic flux density. In addition, from the viewpoint of playback efficiency of the head, it is also necessary to have characteristics of low coercive force and high magnetic permeability.

高飽和磁束密度を有する磁性材料を得るため、Feを主
成分とする合金の開発が進められている。
In order to obtain magnetic materials with high saturation magnetic flux density, alloys containing Fe as a main component are being developed.

しかしこれらの合金の中で飽和磁束密度が1.8層以上
の材料の多くは保磁力が大きく、磁気ヘッド材料として
は不充分である。そこで特開昭52−112797に論
じられているように。
However, among these alloys, many of the materials with a saturation magnetic flux density of 1.8 layers or more have a large coercive force and are insufficient as magnetic head materials. As discussed in JP-A-52-112797.

低保磁力、高透磁率の特性を得るために、磁性薄膜を5
in2を介して積層構造とすることが行なわれてきた。
In order to obtain the characteristics of low coercive force and high magnetic permeability, the magnetic thin film is
A laminated structure has been implemented via in2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、Feを主成分とする合金薄膜を5in2.AQ
20.等の非磁性酸化物を介して積層構造としても、F
e系合金の組成によっては、保磁力が充分に小さくなら
ないという問題があった。またS 102 g A Q
 203等の酸化物は多孔質であり、そのためこれらの
酸化物の直上に蒸着したFe系合金も空孔などの欠陥を
多く含み、飽和磁束密度が大幅に低下するという問題も
あった。
However, a 5in2. AQ
20. F
Depending on the composition of the e-based alloy, there was a problem in that the coercive force could not become sufficiently small. Also S 102 g A Q
Oxides such as 203 are porous, and therefore the Fe-based alloy deposited directly on these oxides also contains many defects such as pores, resulting in a problem that the saturation magnetic flux density is significantly reduced.

本発明の目的は、上述の従来技術の欠点を解消し、低保
磁力、高透磁率ならびに高飽和磁束密度を有する積層磁
性薄膜およびこれを用いた高密度磁気記録用の磁気ヘッ
ドを提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a laminated magnetic thin film having low coercive force, high magnetic permeability, and high saturation magnetic flux density, and a magnetic head for high-density magnetic recording using the same. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はFe薄膜およびFeを主成分とする合金薄
膜に他の組成の薄膜を介して積層構造とした磁性薄膜に
ついて鋭意研究を重ねた結果、上記他の組成の薄膜によ
る積層磁性薄膜の磁気特性の変化を明らかにし、本発明
を完成するに至った。
The present inventors have conducted intensive research on magnetic thin films in which a Fe thin film and an alloy thin film mainly composed of Fe are laminated with thin films of other compositions. The changes in magnetic properties were clarified and the present invention was completed.

すなわち、Fe薄膜およびFeを主成分とする合金薄膜
に非磁性金属を介して積層構造とすることにより、低保
磁力、高透磁率の磁気特性が得られる。また積層化の影
響により飽和磁束密度は低下するが、5i02.AQ 
203等を介した場合よりも飽和磁束密度は高い。
That is, by creating a laminated structure of an Fe thin film and an alloy thin film mainly composed of Fe with a nonmagnetic metal interposed therebetween, magnetic properties of low coercive force and high magnetic permeability can be obtained. Also, the saturation magnetic flux density decreases due to the effect of lamination, but 5i02. AQ
The saturation magnetic flux density is higher than that through 203 or the like.

また上記非磁性金属の1層当りの厚さを10人未満ある
いは100人より大きくすると、10〜100人とした
積層磁性薄膜と比較して保磁力が大きくなる。従って非
磁性金属の1層当りの厚さは10〜100人が好ましい
Furthermore, if the thickness of each layer of the non-magnetic metal is less than 10 layers or greater than 100 layers, the coercive force will be increased compared to a laminated magnetic thin film with 10 to 100 layers. Therefore, the thickness of each layer of nonmagnetic metal is preferably 10 to 100 layers.

さらに積層構造の1周期の厚さによっても積層磁性薄膜
の磁気特性は変化する。この1周期の厚さを1000人
より大きくすると積層化の効果が小さい、また100人
未満とすると非磁性金属の種類によっては積層磁性薄膜
の内部応力が大きくなり、膜が基板よりはがれるという
問題が生ずる。
Furthermore, the magnetic properties of the laminated magnetic thin film vary depending on the thickness of one period of the laminated structure. If the thickness of one cycle is larger than 1,000 layers, the effect of lamination will be small, and if it is less than 100 layers, the internal stress of the laminated magnetic thin film will become large depending on the type of non-magnetic metal, causing the problem that the film will peel off from the substrate. arise.

従って積層構造の1周期の厚さは100〜1000λと
範囲とすることが好ましい。
Therefore, the thickness of one period of the laminated structure is preferably in the range of 100 to 1000λ.

さらに、上記積層磁性薄膜のFeあるいはFeを主成分
とする合金薄膜にCを1〜20at%添加することによ
りさらに低保磁力、高透磁率を有する積層磁性薄膜が得
られる。
Furthermore, by adding 1 to 20 at % of C to the Fe or Fe-based alloy thin film of the laminated magnetic thin film, a laminated magnetic thin film having even lower coercive force and higher magnetic permeability can be obtained.

またさらに本発明の積層磁性薄膜を磁気ヘッドの磁気回
路に用いることにより、記録特性の優れた磁気ヘッドを
得ることができる。
Furthermore, by using the laminated magnetic thin film of the present invention in a magnetic circuit of a magnetic head, a magnetic head with excellent recording characteristics can be obtained.

〔作用〕[Effect]

上述のようにFe薄膜あるいはFeを主成分とする合金
薄膜に非磁性合金を介して積層構造とすることにより低
保磁力、高透磁率ならびに高飽和磁束密度を有する積層
磁性薄膜が得られる。また上記非磁性金属の一層当りの
厚さを10〜100人とすることにより、さらに優れた
軟磁気特性が得られる。また、積層構造の1周期の厚さ
を100〜1000λとすると、基板との密着性の良い
、また軟磁特性の優れた積層磁性薄膜が得られる。さら
に、上記のFeあるいはFeを主成分とする合金にCを
1〜20at%添加することにより、さらに優れた軟磁
気特性が得られる。
As described above, a laminated magnetic thin film having low coercive force, high magnetic permeability, and high saturation magnetic flux density can be obtained by forming a laminated structure on an Fe thin film or an alloy thin film containing Fe as a main component with a nonmagnetic alloy interposed therebetween. Further, by setting the thickness of each layer of the non-magnetic metal to 10 to 100 layers, even better soft magnetic properties can be obtained. Further, when the thickness of one period of the laminated structure is 100 to 1000λ, a laminated magnetic thin film with good adhesion to the substrate and excellent soft magnetic properties can be obtained. Furthermore, even better soft magnetic properties can be obtained by adding 1 to 20 at % of C to the Fe or Fe-based alloy.

また本発明の積層磁性薄膜を磁気ヘッドの磁気回路に用
いることにより、記録特性の優れた磁気ヘッドを得るこ
とができる。
Further, by using the laminated magnetic thin film of the present invention in a magnetic circuit of a magnetic head, a magnetic head with excellent recording characteristics can be obtained.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図表を参照しながらさ
らに具体的に説明する。
An example of the present invention will be described below in more detail with reference to figures and tables.

[実施例1] 積層磁性薄膜の作製にはデュアル・イオンビーム・スパ
ッタリング装置を用いた。スパッタリングは以下の条件
で行った。
[Example 1] A dual ion beam sputtering device was used to fabricate a laminated magnetic thin film. Sputtering was performed under the following conditions.

イオンガス・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・Ar装置内Arガス圧力・・・・・
・・・・・・・・・・・・・・・・2.5X10−2P
a蒸着用イオンガン加速電圧・・・・・・・・・・・・
・・・1200V蒸着用イオンガンイオン電流・・・・
・・・・・・・・・120mAターゲット電流・・・・
・・・・・・・・・・・・・・・・・・・・・70mA
基板照射用イオンガン加速電圧・・・・・・・・・・・
200v基板照射用イオンガンイオン電流・・・・・・
・・・40mAターゲット・基板間距離・・・・・・・
・・・・・・・・・・127mm本実験に用いたデュア
ル・イオンビーム・スパッタリング装置は、スパッタリ
ング中にターゲットホルダーを回転することにより、積
層膜を作製することができる。
Ion gas・・・・・・・・・・・・・・・・・・
......Ar gas pressure in Ar device...
・・・・・・・・・・・・・・・2.5X10-2P
a Ion gun acceleration voltage for evaporation・・・・・・・・・・・・
...1200V ion gun ion current for deposition...
......120mA target current...
・・・・・・・・・・・・・・・・・・70mA
Ion gun acceleration voltage for substrate irradiation...
200v ion gun ion current for substrate irradiation...
...40mA target-to-board distance...
127 mm The dual ion beam sputtering apparatus used in this experiment can produce a laminated film by rotating the target holder during sputtering.

このようにして作製した積層磁性薄膜の断面図を第1図
に示す。本実施例では主磁性膜11としてFe薄膜、中
間層12として種々の非磁性合金ならびに従来例のS 
io 2 y A Q 203基板13としてコーニン
グ社製7059ガラス基板を用いた。また主磁性膜11
の暦数を10層、1層当りの膜厚を450人、中間層1
2の膜厚を50人。
A cross-sectional view of the laminated magnetic thin film produced in this manner is shown in FIG. In this embodiment, the main magnetic film 11 is made of Fe thin film, the intermediate layer 12 is made of various non-magnetic alloys, and the conventional S
As the io 2 y A Q 203 substrate 13, a 7059 glass substrate manufactured by Corning was used. In addition, the main magnetic film 11
The number of calendars is 10 layers, the film thickness per layer is 450 people, and the middle layer is 1.
2 film thickness for 50 people.

積層磁性薄膜の総膜厚を約5000人一定とした。The total thickness of the laminated magnetic thin film was kept constant for about 5000 people.

本発明の積層磁性薄膜の中間層12の材料と磁化困難方
向の保磁力、飽和磁束密度との関係を第1表に示す、ま
た同表には中間層なし、すなわちFe単層膜の特性も示
しである。
Table 1 shows the relationship between the material of the intermediate layer 12 of the laminated magnetic thin film of the present invention, the coercive force in the direction of hard magnetization, and the saturation magnetic flux density. This is an indication.

第1表 第1表に示すごと<、Fe薄膜を非磁性金属を介して1
0層膜とすると、保磁力が減少し、100e以下となる
。これらの保磁力は中間層として5i02.Al220
3を用いた場合よりも小さい。
Table 1 As shown in Table 1, Fe thin film is applied via non-magnetic metal.
If it is a 0-layer film, the coercive force decreases to 100e or less. These coercive forces are 5i02. Al220
This is smaller than when using 3.

また中間層として5i02.AQ20gを用いた積層磁
性薄膜は飽和磁束密度が大幅に低下し、1.8T以下と
なっている。これはこれらの酸化物が多孔質であり、そ
のためこれらの直上に蒸着したFe薄膜も空孔などの欠
陥を多く含むためと考えられる。これに対して非磁性金
属を中間層として用いると、飽和磁束密度は比較的高く
、1.9T程度となる。これはFeと非磁性金属の界面
のエネルギーが低く、Fe薄膜と非磁性金属が密着し、
欠陥を生じないためと考えられる。
In addition, 5i02. The saturation magnetic flux density of the laminated magnetic thin film using AQ20g is significantly lowered to 1.8T or less. This is considered to be because these oxides are porous, and therefore the Fe thin film deposited directly on them also contains many defects such as vacancies. On the other hand, when a non-magnetic metal is used as the intermediate layer, the saturation magnetic flux density is relatively high, about 1.9T. This is because the energy at the interface between Fe and non-magnetic metal is low, and the Fe thin film and non-magnetic metal are in close contact.
This is thought to be to prevent defects from occurring.

以上述べたように、Fe薄膜を非磁性金属を介して積層
構造とすることにより、低保磁力の特性が得られる。ま
た第1表以外の非磁性金属を中間層として用いても積層
化の効果により保磁力が減少する。
As described above, by creating a laminated structure of Fe thin films with nonmagnetic metal interposed therebetween, a characteristic of low coercive force can be obtained. Furthermore, even if a nonmagnetic metal other than those listed in Table 1 is used as an intermediate layer, the coercive force is reduced due to the effect of lamination.

さらに本発明の積層磁性薄膜に対し、熱処理を行うとさ
らに保磁力を低減させることができる。
Furthermore, if the laminated magnetic thin film of the present invention is subjected to heat treatment, the coercive force can be further reduced.

−例を挙げると1例えば中間層としてCrを用いた積層
磁性薄膜に対し300℃、1時間の熱処理を行うことに
より、保磁力2.00e、5 M Hzでの比透磁率9
00の特性を得た。
- To give an example: 1 For example, by heat-treating a laminated magnetic thin film using Cr as an intermediate layer at 300°C for 1 hour, the coercive force is 2.00e and the relative permeability at 5 MHz is 9.
00 characteristics were obtained.

[実施例2] 実施例1と同様の方法でFe−12at%St。[Example 2] Fe-12at%St in the same manner as in Example 1.

Fe−1,5at%Ni、  Fe−2,Oat%v、
Fe1.7at%Cr、Fe−1,3at%Pt合金を
Cuを介して10層膜とした。主磁性膜と磁化困難方向
の保磁力との関係を第2表に示す。また同表には中間層
なしの単層膜の保磁力も示しである。
Fe-1,5at%Ni, Fe-2,Oat%v,
A 10-layer film was made of Fe1.7 at% Cr and Fe-1,3 at% Pt alloy with Cu interposed therebetween. Table 2 shows the relationship between the main magnetic film and the coercive force in the direction of difficult magnetization. The same table also shows the coercive force of a single layer film without an intermediate layer.

第2表 第2表に示すごとく、Fe系合金を非磁性金属であるC
uを介して多層化することにより保磁力が減少する。ま
た主磁性膜の材料を第2表以外のFe系合金としても、
Cu中間層を用いた積層化の効果により保磁力が減少す
る。さらに中間層材料としてCu以外の非磁性金属を用
いても積層化の効果は変わらない。
Table 2 As shown in Table 2, Fe-based alloys are
Coercive force is reduced by multilayering via u. Also, if the material of the main magnetic film is an Fe-based alloy other than those in Table 2,
The coercive force is reduced due to the effect of lamination using the Cu intermediate layer. Furthermore, even if a non-magnetic metal other than Cu is used as the intermediate layer material, the lamination effect remains the same.

また本発明の積層磁性薄膜を熱処理することによって保
磁力をさらに低減することが可能である。
Furthermore, the coercive force can be further reduced by heat-treating the laminated magnetic thin film of the present invention.

例えば、Fe−12at%Si合金とCu中間層を用い
た積層磁性薄膜に対し300℃、1時間の熱処理を行う
と保磁力0.70e、5MHzでの比透磁率1800の
特性が得られた。
For example, when a laminated magnetic thin film using a Fe-12at%Si alloy and a Cu intermediate layer was heat-treated at 300° C. for 1 hour, a coercive force of 0.70e and a relative magnetic permeability of 1800 at 5MHz were obtained.

[実施例3] 実施例1と同じスパッタリング条件でFeをNb中間層
を介して積層化した磁性膜を作製した。
[Example 3] A magnetic film was produced by laminating Fe with an Nb intermediate layer interposed therebetween under the same sputtering conditions as in Example 1.

層数は10層とし、Nb中間層の1層当りの膜厚を変化
した。第2図にNb中間層膜厚と磁化困難方向の保磁力
との関係を示す。同図においてNb中間層膜厚が0人の
場合は、中間層を介さないFe単層膜の結果を示す。同
図保磁力の中間層膜厚依存性21のようにNb中間層の
膜厚が10〜100人の範囲で比較的保磁力が小さい。
The number of layers was 10, and the thickness of each Nb intermediate layer was varied. FIG. 2 shows the relationship between the thickness of the Nb intermediate layer and the coercive force in the direction of difficult magnetization. In the figure, when the thickness of the Nb intermediate layer is 0, the results are shown for a Fe single layer film without an intermediate layer. As shown in FIG. 21, where the coercive force depends on the thickness of the intermediate layer, the coercive force is relatively small when the thickness of the Nb intermediate layer is in the range of 10 to 100 mm.

Nb中間層が5λの時、単層膜とほぼ同じ保磁力を示す
When the Nb intermediate layer has a thickness of 5λ, it exhibits almost the same coercive force as a single layer film.

これは5人の厚さではNb中間層が一様に生成しておら
ず、島状となっているためと考えられる。
This is considered to be because the Nb intermediate layer is not formed uniformly when the thickness is 5, and the Nb intermediate layer is formed in an island shape.

またNb中間層が150Å以上となった時も保磁力が大
きい、これは中間層をはさんだ2層のFe膜の磁気的相
互作用が断ち切られているためと思われる。
The coercive force is also large when the thickness of the Nb intermediate layer is 150 Å or more. This is thought to be because the magnetic interaction between the two Fe films sandwiching the intermediate layer is cut off.

また、主磁性膜としてFeを主成分とする種々の合金、
中間層としてNb以外の種々の非磁性金層を用いても、
中間層膜厚と保磁力との関係は第2図と同様の傾向を示
した。
In addition, various alloys containing Fe as a main component as the main magnetic film,
Even if various non-magnetic gold layers other than Nb are used as the intermediate layer,
The relationship between the intermediate layer thickness and coercive force showed the same tendency as shown in FIG. 2.

上述の結果より、中間層としての非磁性金属1層当りの
膜厚は10〜100人が好ましいことがわかった。
From the above results, it was found that the thickness of each nonmagnetic metal layer as an intermediate layer is preferably 10 to 100 layers.

[実施例4コ 実施例1と同じスパッタリング条件で Fe−1,5at%Ni合金を主磁性膜とし、Cuを中
間層として用いた積層磁性膜を作製した。
[Example 4] Under the same sputtering conditions as in Example 1, a laminated magnetic film was produced using Fe-1, 5 at% Ni alloy as the main magnetic film and Cu as the intermediate layer.

Cu中間層は一層当り50A、積層磁性薄膜の総膜厚は
約5000人一定とした。実験結果を第3図に示す、同
図において層数が1層の場合は中間層を介さない単層膜
を示す。
The Cu intermediate layer was kept constant at 50 A per layer, and the total thickness of the laminated magnetic thin film was kept constant at about 5,000 layers. The experimental results are shown in FIG. 3. In the figure, when the number of layers is one, it indicates a single layer film without an intermediate layer.

同図の保磁力の暦数依存性31に示すように、層数が増
すに従い、保磁力が減少する。暦数が5以上で保磁力が
80e以下となる。また層数が50より多くなると、膜
が基板より剥離した。これは微細な積層化により膜の内
部応力が高くなったためである。
As shown in the calendar number dependence 31 of the coercive force in the figure, the coercive force decreases as the number of layers increases. When the calendar number is 5 or more, the coercive force is 80e or less. Further, when the number of layers exceeded 50, the film peeled off from the substrate. This is because the internal stress of the film increases due to the fine layering.

上述の結果より、主磁性膜の暦数は5〜50層が好まし
く、これを積層構造の周期に換算すると100〜100
0人の範囲となる。また、積層磁性薄膜の総膜厚を10
00〜20000λと変化した場合にも、積層構造の一
周期の厚さを100〜100OAの範囲とすることによ
り優れた軟磁気特性が得られることがわかった。
From the above results, it is preferable that the main magnetic film has 5 to 50 layers, and when converted to the period of the laminated structure, it is 100 to 100.
The range is 0 people. In addition, the total film thickness of the laminated magnetic thin film was 10
It has been found that excellent soft magnetic properties can be obtained by setting the thickness of one period of the laminated structure in the range of 100 to 100 OA even when the thickness changes from 00 to 20,000 λ.

また主磁性膜としてF e −N i系合金以外の種々
のFe系合金、中間層としてCu以外の種々の非磁性合
金を用いても、保磁力の積層周期依存性は上述の結果と
ほぼ同様であった。
Furthermore, even if various Fe-based alloys other than Fe-Ni-based alloys are used as the main magnetic film and various non-magnetic alloys other than Cu are used as the intermediate layer, the dependence of the coercive force on the stacking period is almost the same as the above result. Met.

[実施例5] 実施例1と同様のスパッタリング条件でFe−V−C系
合金薄膜を主磁性膜とし、Nbを中間層として用いた積
層磁性薄膜を作製した。総膜厚は5000人、中間層膜
厚は50λ、層数は10層とした。またFe系合金のV
濃度を2at%一定とし、C濃度を0〜30aし%の範
囲で変化した。磁化困難方向の保磁力とC濃度との関係
を第4図に示す、同図に示すようにCをlat%未満添
加しても保磁力はほとんど変化しない、これに対しCを
lat%以上添加すると保磁力は大幅に減少する。
[Example 5] A laminated magnetic thin film using an Fe-VC alloy thin film as the main magnetic film and Nb as an intermediate layer was produced under the same sputtering conditions as in Example 1. The total thickness was 5000, the intermediate layer thickness was 50λ, and the number of layers was 10. Also, V in Fe-based alloys
The concentration was kept constant at 2 at%, and the C concentration was varied in the range of 0 to 30 at%. Figure 4 shows the relationship between the coercive force in the direction of difficult magnetization and the C concentration.As shown in the figure, the coercive force hardly changes when less than lat% of C is added.On the other hand, when C is added at lat% or more The coercive force then decreases significantly.

しかしCを20e七%より多く添加すると膜が基板より
剥離した。これはCがFeに侵入型で固溶するため、C
の量が多いと内部応力が大きくなるためと考えられる。
However, when more than 20e7% of C was added, the film peeled off from the substrate. This is because C is interstitial and forms a solid solution in Fe.
This is thought to be because the internal stress increases when the amount of .

上述の結果よりFe−V系合金薄膜をNb薄膜を介して
積層化した磁性膜において、F e −V系合金にCを
1〜20at%添加すると、さらに小さい保磁力が得ら
れることがわかった。またC添加により比透磁率も高く
なった。
From the above results, it was found that in a magnetic film in which a Fe-V alloy thin film is laminated via a Nb thin film, an even smaller coercive force can be obtained by adding 1 to 20 at% of C to the Fe-V alloy. . Furthermore, the relative magnetic permeability also increased due to the addition of C.

また主磁性膜がFe、あるいはFe−V基以外のFs系
合金でも上述のC添加により軟磁気特性が向上する。ま
たこの場合の中間層はNb以外の非磁性金属でもよい。
Further, even if the main magnetic film is made of Fe or an Fs-based alloy other than Fe-V based, the soft magnetic properties are improved by the above-mentioned addition of C. Further, the intermediate layer in this case may be made of a nonmagnetic metal other than Nb.

[実施例6] 本発明のFe  1.5aし%Ni−5,5at%C合
金薄膜をCrを介して5層積層した磁性薄膜(膜厚0.
2μm)ないし従来の実用材料であるパーマロイ(N 
t −19,8at、%Fe)合金薄膜(膜厚0.2μ
m)を用いて第5図に示す構造の重置磁気記録用単磁極
型磁気ヘッド71を作製した。
[Example 6] A magnetic thin film (thickness 0.5%) was prepared by laminating five Fe 1.5a%Ni-5,5at%C alloy thin films of the present invention with Cr interposed therebetween.
2 μm) or Permalloy (N
t -19,8at, %Fe) alloy thin film (thickness 0.2μ
A single-pole type magnetic head 71 for overlapping magnetic recording having the structure shown in FIG. 5 was manufactured using the same method.

この磁気ヘッド71の作製工程を以下に述べる。The manufacturing process of this magnetic head 71 will be described below.

第5図(、)に示すMn−Znフェライト61および高
融点ガラス62からなる基板63を用い。
A substrate 63 made of Mn-Zn ferrite 61 and high melting point glass 62 shown in FIG. 5(,) was used.

その表面にに第5図(b)に示すように上記磁性薄膜6
4をイオンビームスパッタリング法で作製した。さらに
この上に接着用pb系ガラス膜をイオンビームスパッタ
リング法により形成し、第5図(、)に示す基板63を
重ね合わせて450℃で30分間加熱し、上記pb系ガ
ラス膜を溶融固着させ、第5図(c)に示す主磁極ブロ
ック65を作製した。そして第5図(d)に示すMn−
Znフェライト66および高融点ガラス67からなる補
助コアブロック68を用意し、接合面70に上記と同様
の接着用pb系ガラス膜を形成した後、主磁極ブロック
65を補助コアブロック68の接合面によって挟み、4
50℃で30分間加熱することにより、上記pb系ガラ
ス膜を溶融固着させて接合ブロック69を作製した。次
に第5図(d)に示す2点鎖線部を切断し、第5図(e
)に示す垂直磁気記録用単磁極型ヘッド71を得た。
On the surface thereof, as shown in FIG. 5(b), the magnetic thin film 6 is formed.
No. 4 was fabricated by an ion beam sputtering method. Furthermore, a PB-based glass film for adhesion is formed on this by ion beam sputtering method, and the substrate 63 shown in FIG. A main pole block 65 shown in FIG. 5(c) was manufactured. And Mn− shown in FIG. 5(d)
After preparing an auxiliary core block 68 made of Zn ferrite 66 and high melting point glass 67 and forming a PB-based glass film for adhesion similar to the above on the joint surface 70, the main pole block 65 is attached to the joint surface of the auxiliary core block 68. Pincer, 4
By heating at 50° C. for 30 minutes, the PB-based glass film was melted and fixed, thereby producing a bonded block 69. Next, cut the two-dot chain line shown in FIG. 5(d), and
) A single-pole head 71 for perpendicular magnetic recording was obtained.

上述の工程によって作製した本発明の積層磁性薄膜を用
いたヘッドおよびパーマロイ薄膜を用いたヘッドの記録
特性をGo−Cr垂直磁気記録媒体を用いて測定した。
The recording characteristics of the head using the laminated magnetic thin film of the present invention and the head using the permalloy thin film produced by the above steps were measured using a Go-Cr perpendicular magnetic recording medium.

再生ヘッドにはパーマロイ薄膜を有するヘッドを用いた
。その結果1本発明の積層磁性薄膜を用いたヘッドは、
従来の実用材料であるパーマロイ合金薄膜を用いたヘッ
ドと比較して約5dB高い出力を示した。このように本
発明の積層磁性薄膜を用いた磁気ヘッドは優れた記録特
性を有することが明らかとなった。
A head having a permalloy thin film was used as the reproducing head. As a result, a head using the laminated magnetic thin film of the present invention has the following results:
It exhibited approximately 5 dB higher output than a head using a permalloy alloy thin film, which is a conventional practical material. As described above, it has been revealed that the magnetic head using the laminated magnetic thin film of the present invention has excellent recording characteristics.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごと<、Fe薄膜あるいはFeを主
成分とする合金薄膜を非磁性金属を介して作製した本発
明の積層磁性薄膜は低保磁力、高透磁率、高飽和磁束密
度の特性を有する。また上記非磁性金属の1層当りの厚
さを10〜100人とすると軟磁気特性が向上する。ま
た積層構造の1周期の厚さを100〜1000人とする
と軟磁気特性が向上する。またさらに、上記Fe薄膜あ
るいはFeを主成分とする合金薄膜にCを1〜20aし
%添加することにより、さらに軟磁気特性が向上する。
As explained in detail above, the laminated magnetic thin film of the present invention, which is made of Fe thin film or Fe-based alloy thin film via non-magnetic metal, has the characteristics of low coercive force, high magnetic permeability, and high saturation magnetic flux density. have Further, if the thickness of each layer of the non-magnetic metal is 10 to 100, the soft magnetic properties will be improved. Moreover, if the thickness of one period of the laminated structure is 100 to 1000, the soft magnetic properties will be improved. Furthermore, by adding 1 to 20% of C to the Fe thin film or alloy thin film mainly composed of Fe, the soft magnetic properties are further improved.

また上記積層磁性薄膜を磁気ヘッドの磁気回路に用いた
本発明の磁気ヘッドは優れた記録特性を有する。
Further, the magnetic head of the present invention in which the above laminated magnetic thin film is used in the magnetic circuit of the magnetic head has excellent recording characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の積層磁性薄膜の断面図、第2図は本発
明の実施例3におけるFe薄膜をNb薄膜を介して積層
化を行った磁性膜の保磁力とNb膜厚との関係を示すグ
ラフ、第3図は本発明の実施例4におけるF e −N
 i系合金をCuを介して積層化を行った磁性膜の保磁
力と暦数との関係を示すグラフ、第4図は本発明の実施
例5におけるFe−V−C系合金をNb薄膜を介して積
層化を行った磁性膜の保磁力とC濃度との関係を示すグ
ラフ、第5図は本発明の実施例6における垂直磁気記録
用単磁極型磁気ヘッドの作製工程を示す斜視図である。 5、符号の説明 11・・・主磁性膜、12・・・中間層、13・・・基
板、21・・・保磁力の中間層膜厚依存性、31・・・
保磁力の暦数依存性、41・・・保磁力のC濃度依存性
、61.66−Mn−Znフェライト、 62.67・・・高融点ガラス、63・・・基板、64
・・・磁性薄膜、65・・・主磁極ブロック、68・・
・補助コアブロック、69・・・接合ブロック、70・
・・接合面、71・・・垂直磁気記録用単磁極型磁気ヘ
ッド。 、lF / )fJ A〆b 才rlJA爬屹し情に (X)/la CtL(at 〆)
Figure 1 is a cross-sectional view of the laminated magnetic thin film of the present invention, and Figure 2 is the relationship between coercive force and Nb film thickness of a magnetic film in which Fe thin films are laminated via Nb thin films in Example 3 of the present invention. FIG. 3 is a graph showing F e −N in Example 4 of the present invention.
A graph showing the relationship between the coercive force and the calendar number of a magnetic film in which an i-based alloy is laminated via Cu, and FIG. FIG. 5 is a graph showing the relationship between the coercive force and the C concentration of the magnetic film laminated through the film, and FIG. be. 5. Explanation of symbols 11... Main magnetic film, 12... Intermediate layer, 13... Substrate, 21... Intermediate layer thickness dependence of coercive force, 31...
Calendar number dependence of coercive force, 41... C concentration dependence of coercive force, 61.66-Mn-Zn ferrite, 62.67... High melting point glass, 63... Substrate, 64
...Magnetic thin film, 65...Main magnetic pole block, 68...
・Auxiliary core block, 69...Joint block, 70・
...Joint surface, 71...Single magnetic pole type magnetic head for perpendicular magnetic recording. ,lF/)fJ A〆b sai rlJA retardant emotion (X)/la CtL(at 〆)

Claims (5)

【特許請求の範囲】[Claims] 1.Fe薄膜あるいはFeを主成分とする合金薄膜に非
磁性金属を介して積層構造としたことを特徴とする積層
磁性薄膜。
1. A laminated magnetic thin film characterized in that it has a laminated structure with a Fe thin film or an alloy thin film mainly composed of Fe with a nonmagnetic metal interposed therebetween.
2.上記非磁性金属の1層当りの厚さが、10〜100
Åであることを特徴とする特許請求の範囲第1項記載の
積層磁性薄膜。
2. The thickness of each layer of the non-magnetic metal is 10 to 100.
2. The laminated magnetic thin film according to claim 1, wherein the laminated magnetic thin film is Å.
3.積層構造の1周期の厚さが100〜1000Åの範
囲であることを特徴とする特許請求の範囲第1項又は第
2項に記載の積層磁性薄膜。
3. 3. The laminated magnetic thin film according to claim 1 or 2, wherein the thickness of one period of the laminated structure is in the range of 100 to 1000 Å.
4.Feを主成分とする合金薄膜がCを1〜20原子%
含むことを特徴とする特許請求の範囲第1項ないし第3
項のいずれかに記載の積層磁性薄膜。
4. The alloy thin film mainly composed of Fe contains 1 to 20 atomic% of C.
Claims 1 to 3 are characterized in that they include
2. The laminated magnetic thin film according to any one of the above.
5.磁性薄膜を磁気回路の少なくとも一部に用いる磁気
ヘッドにおいて、上記磁性薄膜は、Fe薄膜あるいはF
eを主成分とする合金薄膜に非磁性金属を介して積層構
造とした磁性薄膜であることを特徴とする積層磁性薄膜
を用いた磁気ヘッド。
5. In a magnetic head that uses a magnetic thin film in at least a part of the magnetic circuit, the magnetic thin film is an Fe thin film or an F
1. A magnetic head using a laminated magnetic thin film, characterized in that the magnetic thin film has a laminated structure on an alloy thin film whose main component is e, with a non-magnetic metal interposed therebetween.
JP62088806A 1987-04-13 1987-04-13 Laminated magnetic thin film and magnetic head using the same Expired - Lifetime JP2690893B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62088806A JP2690893B2 (en) 1987-04-13 1987-04-13 Laminated magnetic thin film and magnetic head using the same
US07/181,051 US4935311A (en) 1987-04-13 1988-04-13 Magnetic multilayered film and magnetic head using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088806A JP2690893B2 (en) 1987-04-13 1987-04-13 Laminated magnetic thin film and magnetic head using the same

Publications (2)

Publication Number Publication Date
JPS63254709A true JPS63254709A (en) 1988-10-21
JP2690893B2 JP2690893B2 (en) 1997-12-17

Family

ID=13953126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088806A Expired - Lifetime JP2690893B2 (en) 1987-04-13 1987-04-13 Laminated magnetic thin film and magnetic head using the same

Country Status (1)

Country Link
JP (1) JP2690893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199203A (en) * 1987-10-13 1989-04-18 Sony Corp Soft magnetic laminated layer film
JPH02179909A (en) * 1988-12-29 1990-07-12 Nec Home Electron Ltd Magnetic material film for magnetic head
JPH04214205A (en) * 1990-12-12 1992-08-05 Fuji Electric Co Ltd Thin-film magnetic head and its production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG91343A1 (en) 2000-07-19 2002-09-17 Toshiba Kk Perpendicular magnetic recording medium and magnetic recording apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179509A (en) * 1985-02-04 1986-08-12 Victor Co Of Japan Ltd Magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179509A (en) * 1985-02-04 1986-08-12 Victor Co Of Japan Ltd Magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199203A (en) * 1987-10-13 1989-04-18 Sony Corp Soft magnetic laminated layer film
JPH02179909A (en) * 1988-12-29 1990-07-12 Nec Home Electron Ltd Magnetic material film for magnetic head
JPH04214205A (en) * 1990-12-12 1992-08-05 Fuji Electric Co Ltd Thin-film magnetic head and its production

Also Published As

Publication number Publication date
JP2690893B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US4935311A (en) Magnetic multilayered film and magnetic head using the same
JPS63254709A (en) Laminated thin magnet film and magnetic head using the same
JP2780588B2 (en) Stacked magnetic head core
JPH0329104A (en) Thin-film magnetic head
JP2568592B2 (en) Laminated magnetic thin film and magnetic head using the same
JPS6236283B2 (en)
JPS63293802A (en) Laminated magnetic thin film and magnetic head using the same
JP2675062B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JP2551008B2 (en) Soft magnetic thin film
JP2605681B2 (en) Thin film magnetic head
JP3211295B2 (en) Stacked magnetic head
JPH0554166B2 (en)
JP2995784B2 (en) Magnetic head
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
JP2790159B2 (en) Thin-film magnetic head
JPH02154405A (en) Multilayer magnetic film and magnetic head using same
JPH02295104A (en) Ferromagnetic thin film and magnetic head using same
JP2002123906A (en) Thin film magnetic head
JPS6275918A (en) Thin film magnetic head
JPH0765316A (en) Magnetic head
JPH03278409A (en) Laminated thin soft magnetic film
JPH01146312A (en) Soft magnetic thin film
JPH0290505A (en) Ferromagnetic film and magnetic head using same