[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61184173A - Steering force controller for power steering device - Google Patents

Steering force controller for power steering device

Info

Publication number
JPS61184173A
JPS61184173A JP21709984A JP21709984A JPS61184173A JP S61184173 A JPS61184173 A JP S61184173A JP 21709984 A JP21709984 A JP 21709984A JP 21709984 A JP21709984 A JP 21709984A JP S61184173 A JPS61184173 A JP S61184173A
Authority
JP
Japan
Prior art keywords
solenoid
flow rate
solenoid valve
valve
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21709984A
Other languages
Japanese (ja)
Inventor
Kyoichi Nakamura
中村 京市
Osamu Watanabe
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP21709984A priority Critical patent/JPS61184173A/en
Publication of JPS61184173A publication Critical patent/JPS61184173A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE:To obtain a fail-safe function by constructing a solenoid valve which controle the flow rate of the delivery of a pump and a solenoid valve which controls connection between both end chambers of a power cylinder in such a way that their controlled aribles vary with the same characteristics, in the captioned device having said solenoid valves. CONSTITUTION:A power steering device 10 makes feeding/discharging control of pressure fluid for a power cylinder 16 by rotating a steering handle 19 to make rotating control of a servo valve 14, thereby, transmitting steering torque which is increased by means of the power cylinder 15, to steering wheels. This power steering device 10 is fed with pressure fluid from an engine-driven pump 22. In this system, each of solenoid valves V1,V2 are constructed in such a way that, as a current applied to the first solenoid valve V1 which is attached to the pump 22 and controls the flow rate of its delivery and the solenoid valve V2 which is attached to the power cylinder 15 and controls connection between both of its end chambers, varies from zero to the maximum, the controlled variables of both of the solenoid valves V1,V2 can be varied with the same characteristics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電磁弁を制御する制御回路が異常作動したと
きハンドルが異常に重くなったり、また軽くなるのを防
止して常に安全側に制御する動力舵取装置の操舵力制御
装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention prevents the handle from becoming abnormally heavy or light when the control circuit that controls the solenoid valve operates abnormally, thereby always keeping the handle on the safe side. The present invention relates to a steering force control device for a power steering device to be controlled.

〈従来の技術〉 従来の動力舵取装置の操舵力制御装置は、ポンプよりサ
ーボバルブを介してパワーシリダに通じる一路内に、ソ
レノイドに印加される電流値に応じて前記ポンプの吐出
量を制御する第1電磁弁と、ソレノイドに印加される電
流値に応じて前記パワーシリンダの両端室を連通制御る
す第2電磁弁とを装介挿し、この第1.第2電磁弁を制
御回路から出力される各種入力信号に応じた制御信号に
よって制御する構成となっている。
<Prior Art> A steering force control device of a conventional power steering device controls the discharge amount of the pump according to the current value applied to a solenoid in a path leading from the pump to the power cylinder via a servo valve. A first solenoid valve and a second solenoid valve that controls communication between both end chambers of the power cylinder according to the current value applied to the solenoid are inserted. The second electromagnetic valve is configured to be controlled by control signals corresponding to various input signals output from the control circuit.

例えば、ハンドル中立時には、第1電磁弁の開度を小さ
くしてポンプ吐出流量を低下させ、これによってハンド
ル操作を重くし、また車速か早くなるに従い、第2電磁
弁の開度を次第に大きくしてバイパス流量を増?これに
よってハンドル操作を重くさせたりしている。
For example, when the steering wheel is in the neutral position, the opening degree of the first solenoid valve is reduced to reduce the pump discharge flow rate, making the steering wheel operation heavier, and as the vehicle speed increases, the opening degree of the second solenoid valve is gradually increased. Increase the bypass flow rate? This makes it difficult to operate the steering wheel.

〈発明が解決しようとする問題点〉 しかしながらかかる従来の操舵力制御装置においては、
第1電磁弁の特性をソレノイドへの印加電流の増加に伴
いポンプ吐出流量を減少させる特性に設定し、また第2
電磁弁の特性をソレノイドへの印加電流の増加に伴いバ
イパス流量を増大させるように設定している。このため
第1.第2電磁弁を制御する制御装置が故障して各電磁
弁のソレノイドへの印加電流が零となった場合、バイパ
ス流量が減少すると同時にポンプ吐出流量が増大してハ
ンドルが極端に軽くなり、またその反対に2つの弁のソ
レノイドへの印加電流が最大値まで増大するとバイパス
流量が増加すると同時にポンプ吐出流量が減少してハン
ドルが極端に重くなり、ドライバに不安感を与える。
<Problems to be solved by the invention> However, in such conventional steering force control devices,
The characteristics of the first solenoid valve are set to such that the pump discharge flow rate decreases as the current applied to the solenoid increases, and the second
The characteristics of the solenoid valve are set so that the bypass flow rate increases as the current applied to the solenoid increases. For this reason, the first. If the control device that controls the second solenoid valve fails and the current applied to the solenoid of each solenoid valve becomes zero, the bypass flow rate decreases and at the same time the pump discharge flow rate increases, causing the handle to become extremely light. On the other hand, when the current applied to the solenoids of the two valves increases to its maximum value, the bypass flow rate increases and at the same time the pump discharge flow rate decreases, making the handle extremely heavy, giving the driver a sense of anxiety.

本発明は従来のかかる不具合を解消するためになされた
ものであり、第1.第2電磁弁のソレノイドに対する印
加電流が零から最大値へ変化するに従い、この第1.第
2電磁弁にて制御されるポンプ吐出量ならびにバイパス
流量を共に同じ特性で変化するように前記第1.第2電
磁弁を構成したことを特徴とするものである。
The present invention has been made in order to eliminate such problems in the conventional art. As the current applied to the solenoid of the second solenoid valve changes from zero to the maximum value, this first solenoid valve changes from zero to the maximum value. The first solenoid valve is configured such that the pump discharge amount and the bypass flow rate controlled by the second solenoid valve are both changed with the same characteristics. The present invention is characterized in that a second solenoid valve is configured.

〈作用〉 本発明は、上記構成を備えているため、制御回路が故障
して両方のソレノイドへの印加電流が零になった場合、
バイパス流量とポンプ吐出流量の一方が増加すると、同
時に他方も増加するためハンドルが極端に重くなること
がなく、また制御回路の故障によって両方のソレノイド
の印加電流が最大値まで増大した場合にも、バイパス流
量あるいはポンプ吐出流量の一方が減少すると同時に他
方も減少するため、ハンドルが極端に軽くなるのを防止
できる。
<Operation> Since the present invention has the above configuration, when the control circuit fails and the current applied to both solenoids becomes zero,
When one of the bypass flow rate and pump discharge flow rate increases, the other increases at the same time, so the handle does not become extremely heavy, and even if the applied current to both solenoids increases to the maximum value due to a failure in the control circuit, When one of the bypass flow rate and the pump discharge flow rate decreases, the other also decreases, so it is possible to prevent the handle from becoming extremely light.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図において10は動力舵取装置で、サーボバルブ1
4と、パワーシリンダ15より構成されている。このサ
ーボバルブ14はハンドル軸17を介して操向ハンドル
19と連結され、またパワーシリンダ15は囲路の操縦
リンク機構を介して操向車輪に連結されている。従って
この操向ハンドル19に手動操舵トルクを付与してサー
ボバルブ14を回転制御することでパワーシリンダ15
に圧力流体が給排制御され、このパワーシリンダ15に
よって増大された操舵トルクが操向車輪に伝達されるよ
うになっている。
In Fig. 1, 10 is a power steering device, and servo valve 1
4 and a power cylinder 15. The servo valve 14 is connected to a steering handle 19 via a handle shaft 17, and the power cylinder 15 is connected to steering wheels via a steering linkage of the enclosure. Therefore, by applying manual steering torque to the steering handle 19 and controlling the rotation of the servo valve 14, the power cylinder 15
Pressure fluid is supplied and discharged under control, and the increased steering torque is transmitted to the steered wheels by the power cylinder 15.

前記動力舵取装置10にはポンプ22が接続されている
。このポンプ22はベルト駆動系を介して自動車エンジ
ンと接続され、このポンプ22のポンプ作用で前記動力
舵取装置10に圧力流体を供給するようになっている。
A pump 22 is connected to the power steering device 10. This pump 22 is connected to the automobile engine via a belt drive system, and the pumping action of this pump 22 supplies pressurized fluid to the power steering device 10.

前記ポンプ22には第2図に示す流量制御弁40ならび
に第1電磁弁V1が設けられている。この流量制御弁4
0はポンプ22の吐出孔12から送出ポート43へ流れ
る圧力流体を制御する絞り45と、この絞り45の前後
圧によって摺動してバイパス孔44を開閉して前記サー
ボバルブ14へ供給する供給流量を制御するスプール弁
部材46とからなる。
The pump 22 is provided with a flow control valve 40 and a first electromagnetic valve V1 shown in FIG. This flow control valve 4
0 is a throttle 45 that controls the pressure fluid flowing from the discharge hole 12 of the pump 22 to the delivery port 43, and a supply flow rate supplied to the servo valve 14 by sliding and opening and closing the bypass hole 44 by the back and forth pressure of this throttle 45. The spool valve member 46 controls the spool valve member 46.

第1電磁弁■1はソレノイド49と、このソレノイド4
9への通電によって変位する可動スプール50と、この
可動スプール50と一体結合され前記絞り45の開度を
調整する弁軸51を備えて、いる。可動スプール50は
通常スプリング53によって弁軸51とともに第2図左
方向に押圧され、絞り55の開度を全閉状態にしている
。しかるにソレノイド49へ電流値iAを印加して可動
スプール50をスプリング53の撥力に抗して右方向に
変位させるに従い、弁軸51は絞り45に接近増 してその開度を減大させポンプ吐出量流量QAを制御す
るようになっている。この電流値iAとポンプ吐出流量
QAとの関係は第5図に示すようにソレノイド49へ通
電する電流値が増大されるに従い送出ポート43からサ
ーボバルブ14への供給流量が増大されることになる。
The first solenoid valve ■1 has a solenoid 49 and a solenoid 4.
The valve shaft 51 includes a movable spool 50 that is displaced by energization to the movable spool 50, and a valve shaft 51 that is integrally connected to the movable spool 50 and adjusts the opening degree of the throttle 45. The movable spool 50 is normally pressed to the left in FIG. 2 together with the valve shaft 51 by a spring 53, so that the opening of the throttle 55 is fully closed. However, as a current value iA is applied to the solenoid 49 and the movable spool 50 is displaced to the right against the repulsive force of the spring 53, the valve shaft 51 approaches the throttle 45 and its opening degree decreases, thereby pumping the discharge fluid. The flow rate QA is controlled. The relationship between this current value iA and the pump discharge flow rate QA is as shown in FIG. 5. As the current value energized to the solenoid 49 increases, the flow rate supplied from the delivery port 43 to the servo valve 14 increases. .

また前記パワーシリンダ15には第3図に示す第2電磁
弁v2が取付けられている。この第2電磁弁■2はパワ
ーシリンダ15の一方の室に供給される圧力流体の一部
をパワーシリンダ15の他方の室にバイパスすることで
前記ポンプ22のポンプ圧を制御するもので、バルブ本
体24と、このバルブ本体24の内孔25内に摺動可能
に嵌挿されたスプール26と、ソレノイド27とを備え
ている。前記スプール26はスプリング28のバイアス
により通常下降端に保持され、パワーシリンダ15の左
室に通じる通路30と右室に通じる通路31の連通を遮
断している。
Further, a second solenoid valve v2 shown in FIG. 3 is attached to the power cylinder 15. This second solenoid valve 2 controls the pump pressure of the pump 22 by bypassing a part of the pressure fluid supplied to one chamber of the power cylinder 15 to the other chamber of the power cylinder 15. The valve body 24 includes a main body 24, a spool 26 slidably inserted into an inner hole 25 of the valve main body 24, and a solenoid 27. The spool 26 is normally held at the lower end by the bias of the spring 28, and the passage 30 communicating with the left chamber of the power cylinder 15 and the passage 31 communicating with the right chamber are blocked from communicating with each other.

しかしてソレノイド27に通電される電流値iBに応じ
てスプール26に吸引力が付与されると、スプール26
はスプリング28に抗して上方向に変位され、前記通路
30.31間はバイパス用スリット34を介して互いに
連通されるようになっている。この電流値iBとバイパ
ス流量QBとの関係は第6図に示すようにソレノイド2
7へ通・電する電流値iBが増大されるに従い、スリッ
ト34を通過するバイパス流量QBを増加する関係にな
る。
When an attractive force is applied to the spool 26 according to the current value iB energized to the solenoid 27, the spool 26
is displaced upwardly against the spring 28, and the passages 30, 31 are communicated with each other via a bypass slit 34. The relationship between this current value iB and the bypass flow rate QB is as shown in FIG.
The relationship is such that as the current value iB flowing through the slit 7 is increased, the bypass flow rate QB passing through the slit 34 is increased.

第4図において54は制御装置である。この制御装置5
4はマイクロプロセッサ55と、ROM60と、RAM
61とを主要構成要素とし、このマイクロプロセッサ5
5には出力部57ならびにソレノイド駆動回路58.5
9が接続され、前記第1.第2電磁弁Vl、V2のソレ
ノイド49゜27に印加される電流を制御するようにな
っている。またマイクロプロセッサ55には入力部56
を介−して操舵角センサ69ならびに車速センサ74が
接続されている。
In FIG. 4, 54 is a control device. This control device 5
4 is a microprocessor 55, ROM 60, and RAM
61 as the main component, this microprocessor 5
5 includes an output section 57 and a solenoid drive circuit 58.5.
9 are connected, and the first. The current applied to the solenoids 49°27 of the second electromagnetic valves Vl and V2 is controlled. The microprocessor 55 also has an input section 56.
A steering angle sensor 69 and a vehicle speed sensor 74 are connected via.

一方前記ROM63には、前記第1.第2電磁弁Vl、
V2のソレノイド49.27に印加する印加電流の制御
パターンが特性マツプとして記憶されている。この制御
パターンとしては第7図。
On the other hand, the ROM 63 contains the first. second solenoid valve Vl,
A control pattern of the applied current applied to the V2 solenoid 49.27 is stored as a characteristic map. FIG. 7 shows this control pattern.

第8図に示すように特性マツプAとBが用意され、それ
ぞれ特性マツプAはサーボバルブ14に供給する流量を
制御する電磁弁■1のソレノイド駆動用に用いられ、ま
た特性マツプBはパワーシリンダ15の両端室をバイパ
ス制御する電磁弁v2のソレノイド駆動用に用いられる
As shown in FIG. 8, characteristic maps A and B are prepared. Characteristic map A is used to drive the solenoid of solenoid valve ■1 that controls the flow rate supplied to servo valve 14, and characteristic map B is used for driving the solenoid of solenoid valve ■1 that controls the flow rate supplied to servo valve 14. It is used to drive the solenoid of the solenoid valve v2 that bypass-controls both end chambers of the valve 15.

その特性は、特性マツプAでは、ハンドル中立時には電
流値iAO値が小さく、またハンドルを操舵するに従い
電流値iAが次第に大きくなるように設置されている。
In characteristic map A, the current value iAO is small when the steering wheel is in the neutral position, and the current value iA gradually increases as the steering wheel is steered.

また特性マツプBでは、低速時には電流値iBの値が小
さく、また高速走行時には電流値iBが大きくなるよう
に設定されている。
Further, in characteristic map B, the current value iB is set to be small when the vehicle is running at low speeds, and to be large when the vehicle is running at high speeds.

次にかかる操舵力制御装置の制御動作を説明する。Next, the control operation of the steering force control device will be explained.

車の走行状態において操舵角センサ69にて検出された
時々刻々変化する操舵角信号θならびに車速センサ74
にて検出された車速信号Vは入力部56を介してRAM
61に記憶される。
Steering angle signal θ that changes moment by moment detected by steering angle sensor 69 and vehicle speed sensor 74 while the car is running.
The vehicle speed signal V detected at
61.

一方マイクロプロセソサ61は割込信号が入力されると
同時にプログラムに基づき処理動作を実行する。先ず、
マイクロセッサ61はRAM61に記憶された操舵角信
号θならびに車速信号Vを読込み、特性マツプA、Bか
らその時の入力条件に応じた電流値iA、iBを設定し
、この設定値に基づき第1.第2電磁弁V1.V2のソ
レノイド49.27に電流が印加される。
On the other hand, the microprocessor 61 executes processing operations based on the program at the same time as the interrupt signal is input. First of all,
The microprocessor 61 reads the steering angle signal θ and the vehicle speed signal V stored in the RAM 61, sets the current values iA and iB according to the input conditions at that time from the characteristic maps A and B, and based on these set values, the first. Second solenoid valve V1. Current is applied to solenoid 49.27 of V2.

かかる特性マツプAは、ハンドル中立時に電流値iAが
小さくなるように設定されているため、ハンドル中立時
には第1電磁弁v1の開度が小さくなり、その結果ポン
プ吐出流量が減少し、中立時にハンドルは重くなる。
This characteristic map A is set so that the current value iA is small when the steering wheel is in the neutral position, so when the steering wheel is in the neutral position, the opening degree of the first solenoid valve v1 is small, and as a result, the pump discharge flow rate is reduced, and the steering wheel is in the neutral position. becomes heavy.

また特性マツプBは、高速走行になるに従い電流値iB
か大きくなるように設定されているため、高速走行時に
は第2電磁弁v2の開度が大きくなり、その結果バイパ
ス流量が増大してパワーシリンダが弱められ、それだけ
高速走行時にハンドルが重くなり、高速安定性を増すこ
とができる。
In addition, characteristic map B shows the current value iB as the vehicle travels at high speed.
Since the opening of the second solenoid valve v2 increases when driving at high speeds, the bypass flow increases and the power cylinder is weakened, which makes the steering wheel heavier when driving at high speeds. Stability can be increased.

このように第1.第2電磁弁48.20のソレノイド、
49.27に対する印加電流はマイクロプロ需ツサ55
からの制御信号によってその時のハンドル操舵角θなら
びに車速Vに応じた電流値iA、iBに設定され、それ
によって車の走行状態に応じた操舵力制御がなされる。
In this way, the first. Solenoid of the second solenoid valve 48.20,
The applied current for 49.27 is 55
The current values iA and iB are set according to the current steering wheel angle θ and the vehicle speed V according to the control signal from the controller, thereby controlling the steering force according to the running state of the vehicle.

しか条にこのマイクロプロセッサ55を含む制御装置5
4が故障した場合、前記第1.第2電磁弁Vl、V2に
印加される電流の電流値iA、iBは零あるいは最大値
まで変化するが、本発明では、ソレノイド49.27に
印加すべき電流値iA、iBの変化に対するポンプ吐出
流量QAならびにバイパス流量QBの特性を第1電磁弁
■1と、第2電磁弁■2とで同一特性に設定しているた
め、ハンドルが極端に重くなったり、また軽くなったり
することはない。
However, the control device 5 including this microprocessor 55
4 is out of order, the above-mentioned 1. Although the current values iA and iB of the currents applied to the second solenoid valves Vl and V2 change to zero or the maximum value, in the present invention, the pump discharge in response to changes in the current values iA and iB to be applied to the solenoids 49.27 The characteristics of the flow rate QA and bypass flow rate QB are set to be the same for the first solenoid valve ■1 and the second solenoid valve ■2, so the handle will not become extremely heavy or light. .

すなわち、各ソレノイド49.27への印加電流が零に
なった場合、第1電磁弁■1の開度は最小となってポン
プ吐出流量QAが減少するが、それと同時に第2電磁弁
■の開度も最小となって、バイパス流量Qaを減少させ
るため、両方の電磁弁Vl、V2の作用が相互に補完し
合ってパワーシリンダ15への供給流量が一定量確保さ
れ、その結果ハンドルが極端に重くなることがなく、適
度な重さに設定されるので、ドライバーに不安感を与え
ない。
That is, when the applied current to each solenoid 49.27 becomes zero, the opening degree of the first solenoid valve ■1 becomes the minimum and the pump discharge flow rate QA decreases, but at the same time, the opening degree of the second solenoid valve ■1 decreases. In order to reduce the bypass flow rate Qa by reducing the bypass flow rate Qa, the actions of both solenoid valves Vl and V2 complement each other to ensure a constant amount of flow rate supplied to the power cylinder 15, and as a result, the steering wheel becomes extremely It does not become heavy and is set at a moderate weight, so it does not make the driver feel anxious.

また各ソレノイド49.27への印加電流が最大値まで
上昇した場合、第1電磁弁VlO開度は最大となってポ
ンプ吐出流量QAが急増するが、これと同時に第2電磁
弁v2の開度も最大となってバイパス流量QAが増加す
るため、両方の電磁弁Vl、V2か相互に補完し合って
パワーシリンダ15への供給流量が異常に増加すること
がな(、その結果ハンドルが極端に軽くなるのを防止で
き、適度な重さに設定されるので、ドライバに不安感を
与える心配がない。
Further, when the applied current to each solenoid 49.27 rises to the maximum value, the opening degree of the first solenoid valve VlO becomes the maximum and the pump discharge flow rate QA rapidly increases, but at the same time, the opening degree of the second solenoid valve V2 increases. also reaches its maximum and the bypass flow rate QA increases, so that both solenoid valves Vl and V2 complement each other and the flow rate supplied to the power cylinder 15 does not increase abnormally (as a result, the handlebars do not move excessively). Since it prevents the vehicle from becoming too light and the weight is set at an appropriate level, there is no need to worry about giving the driver a sense of anxiety.

〈発明の効果〉 以上述べたように本発明は、前記第1.第2電磁弁のソ
レノイドに対する印加電流が零から最大値へ変化するに
従い、この第1.第2電磁弁にて制御されるポンプ吐出
量ならびにバイパス流量を共に同じ特性で変化するよう
に前記第1.第2電磁弁を構成したので、制御回路が故
障して第1゜第2電磁弁のソレノイドへの印加電流が零
あるいは最大値に変化しても、この両方の電磁弁が相互
に補完し合ってパワーシリンダへ供給される流体の急増
あるいは急減を防止することができ、ハンドルを常に安
全側に導くいわゆるフェイルセーフ機能をもたせること
ができ、ハンドルが極端に重くなったり、また軽くなっ
たりするのを防止することができる利点を有する。
<Effects of the Invention> As described above, the present invention provides the above-mentioned first effect. As the current applied to the solenoid of the second solenoid valve changes from zero to the maximum value, this first solenoid valve changes from zero to the maximum value. The first solenoid valve is configured such that the pump discharge amount and the bypass flow rate controlled by the second solenoid valve are both changed with the same characteristics. Since the second solenoid valve is configured, even if the control circuit fails and the current applied to the solenoids of the first and second solenoid valves changes to zero or the maximum value, both solenoid valves will complement each other. It is possible to prevent the fluid supplied to the power cylinder from suddenly increasing or decreasing rapidly, and it has a so-called fail-safe function that always guides the handle to the safe side, and prevents the handle from becoming extremely heavy or light. It has the advantage of being able to prevent

なお、上記実施例では、印加電流iAの増加に応じてポ
ンプ吐出流量Q^が増大するように第1電磁弁V1を構
成し、同時に印加電流iBの増加に応じてバイパス流量
QBが増大するように第2電磁弁■2を構成しているか
、このに限定されるものではなく、印加電流iAの増加
に応じてポンプ吐出流量QAを減少させるように第1電
磁弁V1を構成し、同時に印加電磁iBの増加に応じて
バイパス流IQsを減少させるように第2電磁弁v2を
構成しても前記実施例と同等の効果を達成することがで
きる。
In the above embodiment, the first electromagnetic valve V1 is configured so that the pump discharge flow rate Q^ increases as the applied current iA increases, and at the same time, the bypass flow rate QB increases as the applied current iB increases. The second solenoid valve V1 is configured to reduce the pump discharge flow rate QA in accordance with an increase in the applied current iA, and the first solenoid valve V1 is configured to reduce the pump discharge flow rate QA in accordance with an increase in the applied current iA, and is not limited to this. Even if the second solenoid valve v2 is configured to reduce the bypass flow IQs in accordance with the increase in the solenoid iB, it is possible to achieve the same effect as in the embodiment described above.

また、上記実施例では、サーボバルブ14への供給流量
を制御する第1電磁弁v1を操舵角信号θで制御し、パ
ワーシリンダ15の両端室をバイパス制御する第2電磁
弁v2を車速Vによって制御しているが、これに限定さ
れるものではなく、第1電磁弁v1を車速Vで制御し、
第2電磁弁V2を操舵角θで制御するようにしてもよい
In the above embodiment, the first solenoid valve v1 that controls the flow rate supplied to the servo valve 14 is controlled by the steering angle signal θ, and the second solenoid valve v2 that bypass-controls both end chambers of the power cylinder 15 is controlled by the vehicle speed V. Although the control is not limited to this, the first solenoid valve v1 is controlled by the vehicle speed V,
The second electromagnetic valve V2 may be controlled by the steering angle θ.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は動力舵取
装置を示す図、第2図はポンプ吐出流量を制御する第2
電磁弁を示す断面図、第3図はパワーシリンダの両端室
を連通制御する第2電磁弁を示す断面図、第4図は制御
装置を示すブロック図、第5図および第6図はソレノイ
ドの印加電流に対するポンプ吐出流量ならびにバイパス
流量の変化を示すグラフ、第7図および第8図は第1゜
第2電磁弁のソレノイドへの印加電流を図形化して示す
グラフである。 vl・・・第1電磁弁、v2・・・第2電磁弁、14・
・・サーボバルブ、15・・・パワーシリンダ、22・
・・ポンプ、54・・・制御装置。
The drawings show an embodiment of the present invention, and FIG. 1 shows a power steering device, and FIG. 2 shows a second embodiment of the invention.
3 is a sectional view showing a second solenoid valve that controls communication between both end chambers of the power cylinder, FIG. 4 is a block diagram showing the control device, and FIGS. 5 and 6 are diagrams of the solenoid. Graphs showing changes in pump discharge flow rate and bypass flow rate with respect to applied current, FIGS. 7 and 8 are graphs graphically showing applied currents to the solenoids of the first and second solenoid valves. vl...first solenoid valve, v2...second solenoid valve, 14.
...Servo valve, 15...Power cylinder, 22.
... Pump, 54... Control device.

Claims (1)

【特許請求の範囲】[Claims] (1)ポンプよりサーボバルブを介してパワーシリンダ
に通じる油路内にソレノイドに印加される電流値に応じ
て開閉制御され前記ポンプの吐出流量を制御する第1電
磁弁と、ソレノイドに印加される電流値に応じて開閉制
御され前記パワーシリンダの両端室に連通制御する第2
電磁弁を介挿し、この第1、第2電磁弁を制御装置から
の制御信号によって制御する動力舵取装置の操舵力制御
装置を制御装置において、前記第1、第2電磁弁のソレ
ノイドに対する印加電流が零から最大値へ変化するに従
い、この第1、第2電磁弁にて制御されるポンプ吐出量
ならびにバイパス流量を共に同じ特性で変化するように
前記第1、第2電磁弁を構成したことを特徴とする動力
舵取装置の操舵力制御装置。
(1) A first electromagnetic valve that controls opening and closing according to the current value applied to a solenoid in an oil path leading from the pump to the power cylinder via a servo valve to control the discharge flow rate of the pump; a second valve that is controlled to open and close according to the current value and communicated with both end chambers of the power cylinder;
A steering force control device of a power steering device in which a solenoid valve is inserted and the first and second solenoid valves are controlled by a control signal from a control device is provided in the control device, and an application to the solenoids of the first and second solenoid valves is provided. The first and second solenoid valves are configured so that as the current changes from zero to a maximum value, the pump discharge amount and the bypass flow rate controlled by the first and second solenoid valves both change with the same characteristics. A steering force control device for a power steering device, characterized in that:
JP21709984A 1984-10-15 1984-10-15 Steering force controller for power steering device Pending JPS61184173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21709984A JPS61184173A (en) 1984-10-15 1984-10-15 Steering force controller for power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21709984A JPS61184173A (en) 1984-10-15 1984-10-15 Steering force controller for power steering device

Publications (1)

Publication Number Publication Date
JPS61184173A true JPS61184173A (en) 1986-08-16

Family

ID=16698826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21709984A Pending JPS61184173A (en) 1984-10-15 1984-10-15 Steering force controller for power steering device

Country Status (1)

Country Link
JP (1) JPS61184173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175909A (en) * 2004-12-21 2006-07-06 Jtekt Corp Valve drive control device for power steering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175909A (en) * 2004-12-21 2006-07-06 Jtekt Corp Valve drive control device for power steering
JP4600657B2 (en) * 2004-12-21 2010-12-15 株式会社ジェイテクト Power steering valve drive controller

Similar Documents

Publication Publication Date Title
US4557342A (en) Hydraulic apparatus
JPS5822760A (en) Steering force controller for power steering
JPS6167664A (en) Steering force controller for power steering system
JPH0316305B2 (en)
JPS60255576A (en) Controller for steering force of power steering gear
JPH0262430B2 (en)
JP2503574B2 (en) Vehicle power steering device
JP4500604B2 (en) Power steering device
JPS61184173A (en) Steering force controller for power steering device
JPH0243672B2 (en)
JPS61257365A (en) Steering force control device in power steering device
JPS6076471A (en) Control device for power steering unit
JPH0118460Y2 (en)
JP2606718B2 (en) Variable solenoid throttle valve
JPH0246459Y2 (en)
JPS647106Y2 (en)
JP2717563B2 (en) Speed-sensitive power steering system
JPH0136691Y2 (en)
JPH0737235B2 (en) Power steering device
JPS62139755A (en) Steering force control device for power steering apparatus
JPS59143767A (en) Power steering device
JP2608423B2 (en) Speed-sensitive power steering device
JPH0619426Y2 (en) Steering force control device for power steering device
JPH0147346B2 (en)
JPS61211166A (en) Controller for power steering device