JPS62139755A - Steering force control device for power steering apparatus - Google Patents
Steering force control device for power steering apparatusInfo
- Publication number
- JPS62139755A JPS62139755A JP28222085A JP28222085A JPS62139755A JP S62139755 A JPS62139755 A JP S62139755A JP 28222085 A JP28222085 A JP 28222085A JP 28222085 A JP28222085 A JP 28222085A JP S62139755 A JPS62139755 A JP S62139755A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- reaction force
- steering
- valve
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/06—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
- B62D5/08—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
- B62D5/083—Rotary valves
- B62D5/0835—Rotary valves characterised by means for actively influencing the deflection angle of the valve, e.g. depending on driving parameters
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Steering Mechanism (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は操向ハンドルに加えられる手動操舵トルクに基
づいて作動されポンプからパワーシリンダへの圧油の供
給を制御するサーボ弁と、操舵抵抗を変化させる反力機
構を備えた動力舵取装置に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a servo valve that is operated based on a manual steering torque applied to a steering handle and controls the supply of pressure oil from a pump to a power cylinder, and a steering resistance. The present invention relates to a power steering device equipped with a reaction force mechanism that changes the force.
〈従来の技術〉
一般にこの種の制御装置は、操舵圧を必要とする低速走
行時には反力機構に加える油圧力を低くし、逆に操舵圧
をほとんど必要としない高速時には高くする必要がある
。<Prior Art> In general, in this type of control device, it is necessary to lower the hydraulic pressure applied to the reaction force mechanism when running at low speeds, which requires steering pressure, and to increase it at high speeds, when little steering pressure is required.
従来ではこの反力機構に加える油圧力の制御は、ハンド
ルに作用するマニアルトルクに関係なく車速等の信号に
基づいて電磁圧力制御弁にて制御している。これによる
マニアルトルク−ギヤ発生圧力特性は、第6図に示され
ており、高速走行時の特性は2点鎖線のように低速走行
時の特性に対して平行移動するのみであり、高速走行時
の特性の傾きが変えられない。そのため、反力油圧が高
い状態でハンドルを切り込んでいっても操舵力の変化に
乏しい問題がある。好ましい特性としては第6図の高速
走行時の実線で示すように傾きを大きくした特性とする
ことである。Conventionally, the hydraulic pressure applied to this reaction force mechanism is controlled by an electromagnetic pressure control valve based on signals such as vehicle speed, regardless of the manual torque acting on the steering wheel. The resulting manual torque-gear generated pressure characteristics are shown in Figure 6, and the characteristics during high-speed driving only shift in parallel to the characteristics during low-speed driving, as shown by the two-dot chain line, and the characteristics during high-speed driving are shown in Figure 6. The slope of the characteristic cannot be changed. Therefore, there is a problem in that even if the steering wheel is turned in a state where the reaction oil pressure is high, the steering force does not change much. A preferable characteristic is a characteristic with a large slope as shown by the solid line during high-speed running in FIG.
このような特性を得るために、ポンプとサーボ弁を接続
する通路と反力室に通じる通路との間を絞りを介して連
通させ、高速時においては、ハンドル操舵時におけるポ
ンプ吐出側通路の圧力上昇に伴って反力を増加させるよ
うにした方式が提案されている。この方式によれば、高
速時において第6図に実線で示す特性を得ることができ
る。In order to obtain such characteristics, the passage connecting the pump and servo valve and the passage leading to the reaction force chamber are communicated via a restrictor, and at high speeds, the pressure in the pump discharge side passage when the steering wheel is turned is reduced. A method has been proposed in which the reaction force increases as the vehicle ascends. According to this method, the characteristics shown by the solid line in FIG. 6 can be obtained at high speeds.
〈発明が解決しようとする問題点〉
しかしながら、かかる従来のものでは、ハンドル操作に
伴うポンプ吐出側通路の圧力上昇に対する反力の増加割
合は、サーボ弁例の通路と反力室側の通路を連通ずる絞
りの特性で決まってしまい、理想的な制御特性が得られ
ない問題があった。<Problems to be Solved by the Invention> However, in such conventional valves, the rate of increase in reaction force against the pressure increase in the pump discharge side passage due to handle operation is higher than that in the servo valve example passage and the reaction force chamber side passage. There was a problem in that ideal control characteristics could not be obtained because the characteristics were determined by the characteristics of the communicating shear diaphragm.
く問題点を解決するための手段〉
本発明は、反力機構によって付与する操舵抵抗を電気的
な指令信号に応じて変化させる反力調整装置と、ポンプ
とサーボ弁を連通ずる通路の圧力を検出して検出圧力に
応じた電気信号を出力する圧力検出装置と、この圧力検
出装置の出力の変化に応答して前記反力調整装置に付与
する指令信号の大きさを変化させる制御手段とを設けた
ことを特徴とするものである。Means for Solving the Problems> The present invention provides a reaction force adjustment device that changes the steering resistance applied by a reaction force mechanism in accordance with an electrical command signal, and a pressure adjustment device that changes the pressure in a passage communicating between a pump and a servo valve. A pressure detection device that detects and outputs an electric signal according to the detected pressure, and a control means that changes the magnitude of a command signal given to the reaction force adjustment device in response to a change in the output of the pressure detection device. It is characterized by the fact that it has been provided.
く作用〉
ハンドル操作によりサーボ弁が作動して、ポンプ吐出側
通路の圧力が上昇すると、これが圧力検出装置によって
検出され、制御手段は圧力の増大量に応じて反力調整装
置に付与する指令信号の大きさを変化させ、反力を変化
させる。ポンプ吐出側通路の圧力上昇に対する反力の増
大量の割合は、車速等の走行条件に応じて制御手段の働
きによって最適に設定される。これにより、理想的な制
御特性を得ることができる。When the servo valve is activated by the handle operation and the pressure in the pump discharge side passage increases, this is detected by the pressure detection device, and the control means sends a command signal to the reaction force adjustment device according to the amount of increase in pressure. change the magnitude of and change the reaction force. The ratio of the amount of increase in reaction force to the pressure increase in the pump discharge side passage is optimally set by the control means according to driving conditions such as vehicle speed. Thereby, ideal control characteristics can be obtained.
〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.
第1図において、11は動力操舵装置の本体をなすハウ
ジング本体、12はハウジング本体11に固着されてい
る弁ハウジングである。このハウジング本体11及び弁
ハウジング12内には一対の軸受13,14を介してピ
ニオン軸(出力軸)21が回転自在に軸承されており、
このピニオン軸21にはこれと交差する方向に摺動可能
なラック軸22のラックm 22 aが噛合している。In FIG. 1, reference numeral 11 indicates a housing main body forming the main body of the power steering device, and reference numeral 12 indicates a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 21 is rotatably supported within the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14.
A rack m 22 a of a rack shaft 22 that is slidable in a direction crossing the pinion shaft 21 is meshed with the pinion shaft 21 .
このランク軸22は、図示しないパワーシリンダのピス
トンと連結され、その両端は所要の操舵リンク機構を介
して操向車輪に連結されている。This rank shaft 22 is connected to a piston of a power cylinder (not shown), and both ends thereof are connected to steering wheels via a required steering link mechanism.
弁ハウジング12の穴内には、サーボ弁3oが収納され
ている。サーボ弁30は操舵軸としての入力軸23と一
体的に形成したロータリ弁部材31と、このロータリ弁
部材31の外周に同心的かつ相対回転可能に嵌合したス
リーブ弁部材32を主要構成部材としている。ロークリ
弁部材31は、これと一体の入力軸23に一端を連結し
たトーションバー24を介してピニオン軸21に可撓的
に連結されている。A servo valve 3o is housed in the hole of the valve housing 12. The servo valve 30 has a rotary valve member 31 integrally formed with an input shaft 23 as a steering shaft, and a sleeve valve member 32 fitted to the outer circumference of the rotary valve member 31 concentrically and rotatably relative to each other as main components. There is. The low-return valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24 whose one end is connected to an input shaft 23 integral therewith.
また、ロータリ弁部材31の外周には、周知のように軸
方向に伸びる複数のランド部と溝部とが等間隔にて形成
されており、同様にスリーブ弁部材32の内周にも、そ
の軸方向に延びる複数のランド部と溝部が等間隔にて形
成されている。しかして供給ポート35より供給される
圧力流体は、サーボ弁30が中立状態であればランド部
両側の溝部に均等に流れたのち、連通路37、低圧室3
8及び通路39を介して排出ポート36に流出する。こ
の場合、再分配ポー)40.41は低圧で等しい圧力と
なっているため、パワーシリンダは作動されない。Further, as is well known, a plurality of lands and grooves extending in the axial direction are formed at equal intervals on the outer circumference of the rotary valve member 31, and similarly, on the inner circumference of the sleeve valve member 32, a plurality of lands and grooves extending in the axial direction are formed. A plurality of lands and grooves extending in the direction are formed at equal intervals. Therefore, if the servo valve 30 is in the neutral state, the pressure fluid supplied from the supply port 35 flows evenly into the grooves on both sides of the land portion, and then flows through the communication path 37 and the low pressure chamber 3.
8 and exits via passage 39 to discharge port 36 . In this case, the power cylinders are not activated because the redistribution ports 40, 41 are at low and equal pressure.
しかるにサーボ弁30が中立状態から変位すれば、この
サーボ弁30の分配作用により圧力流体が一方の分配穴
40を介してパワーシリンダに供給され、またパワーシ
リンダから排出された流体は他方の分配ポート41より
連通路37、通路3つ、低圧室38を経て排出ポート3
6に放出されるようになっている。However, when the servo valve 30 is displaced from the neutral state, the distribution action of the servo valve 30 supplies pressure fluid to the power cylinder through one distribution hole 40, and fluid discharged from the power cylinder is supplied to the other distribution port. 41 to the exhaust port 3 via the communication passage 37, three passages, and the low pressure chamber 38.
It is designed to be released on the 6th.
さらに前記弁ハウジング12内には次のような構成の反
力機構が組み込まれている。すなわち、第2図でも示す
ように、ロータリ弁部材31の端部に半径方向に両側に
突起した突起部50が形成されており、この突起部50
と対応するピニオン軸21には突起部50を入力軸23
の軸線回りに数角度旋回可能に遊嵌する嵌合溝51が形
成されている。突起部50の外周面にはテーパ状の係合
溝52が形成されており、またピニオン軸21には係合
溝52と対応する位置においてプランジャ54を半径方
向に摺動可能に挿嵌する挿通穴53が形成されている。Further, a reaction force mechanism having the following configuration is incorporated within the valve housing 12. That is, as shown in FIG. 2, a protrusion 50 that protrudes on both sides in the radial direction is formed at the end of the rotary valve member 31.
The protrusion 50 is attached to the pinion shaft 21 corresponding to the input shaft 23.
A fitting groove 51 is formed into which the fitting groove 51 is loosely fitted so as to be rotatable through several angles around the axis. A tapered engagement groove 52 is formed on the outer circumferential surface of the protrusion 50, and an insertion groove 52 is formed in the pinion shaft 21 at a position corresponding to the engagement groove 52, into which the plunger 54 is slidably inserted in the radial direction. A hole 53 is formed.
このプランジャ54の後部には環状溝55を介して流体
圧が導入される反力室56が形成されており、この反力
室56に導入される流体圧によって前記プランジャ54
を係合溝52に押圧するようになっている。A reaction force chamber 56 into which fluid pressure is introduced through an annular groove 55 is formed at the rear of the plunger 54, and the plunger 54 is caused by the fluid pressure introduced into this reaction force chamber 56.
is pressed against the engagement groove 52.
なお、58は反力制御用の流体を導入するポート、57
は前記ポート58と環状溝55を連通ずる通路である。In addition, 58 is a port for introducing fluid for reaction force control, and 57
is a passage that communicates the port 58 and the annular groove 55.
上記構成の反力機構は、プランジャを半径方向に摺動さ
せるいわゆるラジアル方式であるが、プランジャを軸線
方向に摺動させて反力を作用させる構成のスラス[・方
式でもよい。The reaction force mechanism configured as described above is a so-called radial type in which the plunger is slid in the radial direction, but it may also be a thrust type in which the plunger is slid in the axial direction to apply a reaction force.
60は自動車エンジンによって駆動される供給ポンプを
示し、この供給ポンプ60の吐出ポートは流量制御弁6
1と分流制御弁65を介して前記供給ポート35に接続
されている。流量制御弁61は、供給ポンプ60の吐出
ポートと分流制御弁65とを接続する通路45中に設け
られたメータリングオリフィス62と、このメータリン
グオリフィス62の前後圧に応じて作動されてこの前後
の差圧を常に一定に保持するようにバイパス通路63を
開口制御するバイパス弁64とによって構成され、この
流量制御弁61によって分流制御弁65には一定量の流
体が供給され、余剰流がバイパス通路を介してリザーバ
にバイパスされる。Reference numeral 60 indicates a supply pump driven by an automobile engine, and a discharge port of this supply pump 60 is connected to a flow control valve 6.
1 and the supply port 35 via a branch control valve 65. The flow rate control valve 61 is operated according to a metering orifice 62 provided in a passage 45 that connects the discharge port of the supply pump 60 and the diversion control valve 65, and the pressures before and after this metering orifice 62. A bypass valve 64 controls the opening of the bypass passage 63 so as to keep the differential pressure of It is bypassed to the reservoir via the passage.
分流制御弁65は、前記一定流N Qの作動流体を、固
定絞り66の前後の差圧に応じて作動する制御スプール
65aにより、サーボ弁通路67及び反力制御通路68
へそれぞれ一定流量Q1及びQ2ずつ分配するものであ
る。そして、サーボ弁通路67は前記供給ボート35に
接続され、反力制御通路68はせ前記反力機構用のポー
ト58に接続されている。また、前記導入ポート58に
通じる通路68には反力調整装置を構成する圧力制御弁
70が接続されている。The diversion control valve 65 controls the constant flow NQ of the working fluid to a servo valve passage 67 and a reaction force control passage 68 by a control spool 65a that operates according to the differential pressure before and after the fixed throttle 66.
A constant flow rate Q1 and Q2 are distributed to each of them. The servo valve passage 67 is connected to the supply boat 35, and the reaction force control passage 68 is connected to the port 58 for the reaction force mechanism. Further, a pressure control valve 70 constituting a reaction force adjustment device is connected to a passage 68 communicating with the introduction port 58.
かかる圧力制御弁70は、第3図に示すようにハウジン
グ71に固定された弁本体72と、この弁本体72に取
付けられたソレノイド73と、このソレノイドへの通電
によって変位する可動スプール74と、前記通路68に
連通ずるレリーフ通路75を形成した弁座部材76と、
この弁座部材76のレリーフ通路75を開閉するポール
弁77と、このポール弁77と前記可動スプール74と
の間に介挿されたレリーフ圧設定用のスプリング78及
びバランス用スプリング79とによって構成されている
。可動スプール74は通常スプリング78.79のバラ
ンスによって図の状態に保持され、レリーフ圧設定用の
スプリング78のバネ荷重を最大に設定している。しか
るにソレノイド73による吸引作用によって可動スプー
ル74がバランス用スプリング79に抗して右方向に変
位するに従い、スプリング78のバネ荷重を低下させる
ようになっている。As shown in FIG. 3, the pressure control valve 70 includes a valve body 72 fixed to a housing 71, a solenoid 73 attached to the valve body 72, and a movable spool 74 that is displaced when the solenoid is energized. a valve seat member 76 forming a relief passage 75 communicating with the passage 68;
It is composed of a pawl valve 77 that opens and closes the relief passage 75 of the valve seat member 76, and a relief pressure setting spring 78 and a balance spring 79 inserted between the pawl valve 77 and the movable spool 74. ing. The movable spool 74 is normally held in the state shown in the figure by the balance of springs 78 and 79, and the spring load of the spring 78 for setting the relief pressure is set to the maximum. However, as the movable spool 74 is displaced to the right against the balance spring 79 due to the suction action of the solenoid 73, the spring load of the spring 78 is reduced.
さらに、前記供給ポンプ60と流量制御弁61とを接続
する通路60aは、一対の絞り80.81を直列的に介
在させた分流通路82を介してリザーバに連通され、こ
の一対の絞り80.81の間には、圧力センサー83が
接続されている。Further, the passage 60a connecting the supply pump 60 and the flow rate control valve 61 is communicated with the reservoir via a branch passage 82 in which a pair of throttles 80.81 are interposed in series. A pressure sensor 83 is connected between 81 and 81 .
第1図において100は圧力制御弁70を開閉制御して
反力機構の反力室56に発生する油圧反力を制御する反
力制御装置である。この反力制御装置100は、マイク
ロプロセッサ101と、ROM102と、RAM103
を主要構成とし、このマイクロプロセッサ101はソレ
ノイド駆動回路104を介して前記圧力制御弁70に接
続されている。また、マイクロプロセッサ101には車
速センサ105が接続され、この車速センサ105から
の出力信号により車両の走行速度を検出するようになっ
ているとともに、前記圧力センサ83の出力が接続され
、圧力センサ83の出力によリ、供給ポンプ60の吐出
圧を検出するようになっている。なお、圧力センサ83
の出力はエンジンの回転を制御するエンジン制御回路1
10にも供給されるようになっている。In FIG. 1, 100 is a reaction force control device that controls the opening and closing of the pressure control valve 70 to control the hydraulic reaction force generated in the reaction force chamber 56 of the reaction force mechanism. This reaction force control device 100 includes a microprocessor 101, a ROM 102, and a RAM 103.
This microprocessor 101 is connected to the pressure control valve 70 via a solenoid drive circuit 104. Further, a vehicle speed sensor 105 is connected to the microprocessor 101, and the traveling speed of the vehicle is detected based on an output signal from the vehicle speed sensor 105.The output of the pressure sensor 83 is also connected to the pressure sensor 83. Based on the output of the supply pump 60, the discharge pressure of the supply pump 60 is detected. Note that the pressure sensor 83
The output of is the engine control circuit 1 that controls the rotation of the engine.
10 is also supplied.
前記ROM102には第4図(a)に示すような制御パ
ターンを得るに必要なデータがマツプ化されて記憶され
ている。この制御パターン図は、供給ポンプ60の吐出
圧Pの大きさと付与すべき反力の大きさの関係を示すも
ので、圧力制御弁70に供給する電流の大きさは付与す
べき反力と反比例の関係にある。また、本実施例におい
ては、車両の速度範囲を低、中、高速の3つに分割し、
走行速度に適した制御を行うようになっている。The ROM 102 stores data necessary to obtain a control pattern as shown in FIG. 4(a) in the form of a map. This control pattern diagram shows the relationship between the magnitude of the discharge pressure P of the supply pump 60 and the magnitude of the reaction force to be applied, and the magnitude of the current supplied to the pressure control valve 70 is inversely proportional to the reaction force to be applied. There is a relationship between In addition, in this embodiment, the speed range of the vehicle is divided into three: low, medium, and high speed.
It is designed to perform control appropriate to the driving speed.
すなわち、据切り状態もしくはこれに近い状態となる低
速域では、殆ど反力を付与する必要はなく、また、ハン
ドルに作用するマニアルトルクの増大に応じて反力を増
やす必要もない。このため、吐出圧力Pの増大に関係な
く、電流値が一定の高い値に維持されるようなマツプが
制御パターン■として記憶されている。これに対し、中
速域では、反力を若干増大させるとともに、マニアルト
ルクの増大に応じて徐々に反力を増やすべく、検出圧力
の増加に応じて電流値をなめらかに減少させる制御マツ
プがパターン■として記憶されている。That is, in a low speed range where the vehicle is in a stationary state or a state close to this, there is almost no need to apply a reaction force, and there is no need to increase the reaction force in response to an increase in the manual torque acting on the steering wheel. Therefore, a map in which the current value is maintained at a constant high value regardless of the increase in the discharge pressure P is stored as the control pattern (2). On the other hand, in the medium speed range, the control map uses a control map that slightly increases the reaction force and smoothly decreases the current value as the detected pressure increases, in order to gradually increase the reaction force as the manual torque increases. It is stored as ■.
さらに、高速域では、中速域に比べて反力を全体的に大
きくし、また、ハンドルトルクの増大に対する反力の増
加割合が大きくなるような制御マツプがパターン■とし
て記憶されている。Further, a control map is stored as pattern (2) in which the reaction force is generally larger in the high speed range than in the medium speed range, and the rate of increase in the reaction force with respect to an increase in the steering torque is increased.
また、前記ROM102内には、第5図に示す制御プロ
グラムが記憶され、マイクロプロセッサ101は一定時
間毎にこのプログラムを実行するようになっている。こ
のプログラムを実行すると、車速センサ105の出力と
圧力センサ83の出力を読み込み(200)、速度域に
応じた制御パターンに対応したマツプを選択する(20
1)。そして、この後、選択したマツプに基づき、圧力
センサ83によって検出された供給ポンプ60の吐出圧
に対応する電流値を導出しく202)、これをソレノイ
ド駆動回路104に供給する(203)。Furthermore, a control program shown in FIG. 5 is stored in the ROM 102, and the microprocessor 101 executes this program at regular intervals. When this program is executed, the output of the vehicle speed sensor 105 and the output of the pressure sensor 83 are read (200), and a map corresponding to the control pattern according to the speed range is selected (20).
1). Then, based on the selected map, a current value corresponding to the discharge pressure of the supply pump 60 detected by the pressure sensor 83 is derived (202), and this is supplied to the solenoid drive circuit 104 (203).
次に上記した装置の全体的な動作を説明する。Next, the overall operation of the above device will be explained.
供給ポンプ60より吐出された圧力流体は流量制御弁6
1によって所定流量に制御された後、分流制御弁65に
よって分流され、その一方が動力舵取装置の供給ボート
35に供給される。The pressure fluid discharged from the supply pump 60 flows through the flow control valve 6
1, the flow is controlled to a predetermined flow rate by the flow control valve 65, and one of the flows is supplied to the supply boat 35 of the power steering device.
同時に分流制御弁65から吐出される余剰流は、通路6
8を介して反力室56に供給される。そして、この反力
室56に供給される流体の流体圧は圧力制御弁70によ
って制御される。At the same time, the excess flow discharged from the branch control valve 65 is
8 to the reaction force chamber 56. The fluid pressure of the fluid supplied to this reaction force chamber 56 is controlled by a pressure control valve 70.
一方、反力制御装置100は圧力センサ83の出力と車
速センサ105の出力に応答して前記圧力制御弁70に
制御信号を出力する。すなわち反力制御装置100のマ
イクロプロセッサ101は、前記したように、第5図に
示すプログラムを実行し、車速センサ105の出力に基
づいて車速の領域を判定して車速に応じた制御パターン
を選択する。そして、選択した制御パターンに基づき、
圧力制御弁70に対する電流の供給を制御する。On the other hand, the reaction force control device 100 outputs a control signal to the pressure control valve 70 in response to the output of the pressure sensor 83 and the output of the vehicle speed sensor 105. That is, as described above, the microprocessor 101 of the reaction force control device 100 executes the program shown in FIG. 5, determines the vehicle speed range based on the output of the vehicle speed sensor 105, and selects a control pattern according to the vehicle speed. do. Then, based on the selected control pattern,
Controls the supply of current to the pressure control valve 70.
例えば、車速か低速である場合には、■の制御パターン
が選択されるため、ハンドル操作によってサーボ弁30
が作動され、これに応じてマニアルトルクに応じただけ
、通路60aの圧力が増加し、これによって圧力センサ
83の出力が増加しても、圧力制御弁70に供給される
電流は高い値で一定に維持され、反力が増加することが
ない。For example, when the vehicle speed is low or low, the control pattern (■) is selected, so the servo valve 30 is activated by operating the steering wheel.
is activated, and the pressure in the passage 60a increases according to the manual torque, and even if the output of the pressure sensor 83 increases, the current supplied to the pressure control valve 70 remains at a high value. is maintained, and the reaction force does not increase.
したがってかかる低速域では反力が作用しないスムーズ
な操舵特性になる。Therefore, in such a low speed range, a smooth steering characteristic is achieved in which no reaction force acts.
一方、車速か中速域である場合には、■の制御パターン
が選択されるため、圧力制御弁70に供給される電流が
若干減少され反力が増大される。On the other hand, when the vehicle speed is in the medium speed range, the control pattern (2) is selected, so the current supplied to the pressure control valve 70 is slightly reduced and the reaction force is increased.
また、ハンドル操作に伴う通路60aの圧力の増大に伴
い圧力制御弁70へ供給される電流値も減少されるよう
になり、ハンドルトルクの増大に伴って反力が増大して
適度な操舵感が得られる。Furthermore, as the pressure in the passage 60a increases as the steering wheel is operated, the current value supplied to the pressure control valve 70 also decreases, and as the steering torque increases, the reaction force increases, resulting in an appropriate steering feel. can get.
また、高速域である場合には、■の制御パターンが選ば
れるため、反力が更に増大されるとともに、通路60a
の圧力増加に対する電流の減少量、すなわち、反力の増
加量が増大され、安定感の高い操舵フィーリングを得る
ことができる。In addition, in the case of a high speed range, control pattern (3) is selected, so that the reaction force is further increased and the passage 60a
The amount of decrease in current with respect to the increase in pressure, that is, the amount of increase in reaction force, is increased, and a highly stable steering feeling can be obtained.
以上のように、ハンドルに作用するマニアルトルクの増
大に対する反力の増加特性を車速に応じて自由に変更で
きるため、車速に応じた最適な操舵フィーリングが得ら
れる。As described above, since the increase characteristic of the reaction force against an increase in the manual torque acting on the steering wheel can be freely changed according to the vehicle speed, an optimal steering feeling can be obtained according to the vehicle speed.
なお、供給ポンプ60の吐出圧を絞り80.81に分圧
し、この分圧した圧力を圧力センサー83にて測定して
いるため、耐圧の低い圧力センサを用いることが可能と
なる。Note that since the discharge pressure of the supply pump 60 is divided into throttles 80 and 81 and the divided pressures are measured by the pressure sensor 83, it is possible to use a pressure sensor with low pressure resistance.
なお、ハンドル操作により圧力センサー83の出力が変
化すると、これがエンジン制御装置110によって検出
され、エンジンがアイドル状態の時はアイドルスピード
制御バルブ111の開度を変化させてエンジンのアイド
ルアップを行う。Note that when the output of the pressure sensor 83 changes due to handle operation, this is detected by the engine control device 110, and when the engine is in an idle state, the opening degree of the idle speed control valve 111 is changed to idle up the engine.
〈発明の効果〉
以上述べたように本発明においては、ポンプ装置とサー
ボ弁とを接続する通路の圧力を圧力センサにて検出し、
この圧力センサの出力変化に基づいて反力機構で付与す
る圧力を変化させるように構成したので、ハンドルトル
クの増加に対する反力の増加割合を任意に設定でき、最
適な操舵特性を得゛られる利点がある。<Effects of the Invention> As described above, in the present invention, the pressure in the passage connecting the pump device and the servo valve is detected by a pressure sensor,
Since the pressure applied by the reaction force mechanism is changed based on the change in the output of the pressure sensor, the increase rate of the reaction force with respect to the increase in steering wheel torque can be set arbitrarily, and the advantage is that the optimum steering characteristics can be obtained. There is.
図面は本発明の実施例を示すもので、第1図は本発明の
動力舵取装置の断面図に制御回路図を供回した図、第2
図は第1図のn−n線断面図、第3図は圧力制御弁の要
部断面図、第4図(a)はポンプ吐出圧に対する反力の
変化を示す図、第4図(b)はマニアルトルクに対する
ギヤ発生圧力の変化を示す図、第5図は制御プログラム
を示すフローチャート、第6図は従来の特性と好ましい
特性を示す特性図である。
21・・・ビニオン軸、23・・・入力軸、30・・・
サーボ弁、56・・・反力室、6o・・・供給ポンプ、
61・・・流量制御弁、65・・・分流制御弁、70・
・・圧力制御弁、8o、81・・・絞り、83・・・圧
力センサー、lo。
・・・反力制御装置、105・・・車速センサ。The drawings show embodiments of the present invention, and FIG. 1 is a sectional view of the power steering device of the present invention together with a control circuit diagram, and FIG.
The figure is a cross-sectional view taken along the line nn in Figure 1, Figure 3 is a cross-sectional view of the main part of the pressure control valve, Figure 4 (a) is a diagram showing changes in reaction force against pump discharge pressure, and Figure 4 (b) is a cross-sectional view of the main part of the pressure control valve. ) is a diagram showing changes in gear generation pressure with respect to manual torque, FIG. 5 is a flowchart showing a control program, and FIG. 6 is a characteristic diagram showing conventional characteristics and preferred characteristics. 21... Binion shaft, 23... Input shaft, 30...
Servo valve, 56...reaction force chamber, 6o...supply pump,
61...Flow control valve, 65...Diversion control valve, 70.
...Pressure control valve, 8o, 81...throttle, 83...pressure sensor, lo. ...Reaction force control device, 105...Vehicle speed sensor.
Claims (2)
いて作動されポンプからパワーシリンダへの圧油の供給
を制御するサーボ弁と、操舵抵抗を変化させる反力機構
を備えた動力舵取装置において、前記反力機構によって
付与する操舵抵抗を電気的な指令信号に応じて変化させ
る反力調整装置と、前記ポンプと前記サーボ弁を接続す
る通路の圧力を検出して検出圧力に応じた電気信号を出
力する圧力検出装置と、この圧力検出装置の出力の変化
に応答して前記反力調整装置に付与する指令信号の大き
さを変化させる制御手段とを設けたことを特徴とする動
力舵取装置の操舵力制御装置。(1) In a power steering device equipped with a servo valve that is activated based on manual steering torque applied to a steering handle and controls the supply of pressure oil from a pump to a power cylinder, and a reaction force mechanism that changes steering resistance. , a reaction force adjustment device that changes the steering resistance applied by the reaction force mechanism according to an electrical command signal, and an electric signal that detects pressure in a passage connecting the pump and the servo valve and responds to the detected pressure. A power steering system comprising: a pressure detection device that outputs a pressure detection device; and a control means that changes the magnitude of a command signal given to the reaction force adjustment device in response to a change in the output of the pressure detection device. Steering force control device for the device.
一部をタンク側へ連通させる通路に設けられた一対の絞
り体と、この一対の絞り体の間の通路圧力を検出する圧
力センサとによって構成されることを特徴とする特許請
求の範囲第(1)項記載の動力舵取装置の操舵力制御装
置。(2) The pressure detection device includes a pair of throttle bodies provided in a passage that communicates a portion of oil discharged from the pump to the tank side, and a pressure sensor that detects passage pressure between the pair of throttle bodies. A steering force control device for a power steering device according to claim (1), characterized in that it is constituted by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28222085A JPS62139755A (en) | 1985-12-16 | 1985-12-16 | Steering force control device for power steering apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28222085A JPS62139755A (en) | 1985-12-16 | 1985-12-16 | Steering force control device for power steering apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62139755A true JPS62139755A (en) | 1987-06-23 |
Family
ID=17649622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28222085A Pending JPS62139755A (en) | 1985-12-16 | 1985-12-16 | Steering force control device for power steering apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62139755A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487140A (en) * | 1987-09-25 | 1989-03-31 | Nissan Motor | Production managing system for article |
EP1149755A2 (en) * | 2000-04-25 | 2001-10-31 | Showa Corporation | Hydraulic power steering apparatus for vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52140129A (en) * | 1976-05-15 | 1977-11-22 | Nissan Motor Co Ltd | Steering force control system for power steering device |
JPS5387433A (en) * | 1977-01-07 | 1978-08-01 | Nissan Motor Co Ltd | Apparatus for controlling steering force of power steering system |
-
1985
- 1985-12-16 JP JP28222085A patent/JPS62139755A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52140129A (en) * | 1976-05-15 | 1977-11-22 | Nissan Motor Co Ltd | Steering force control system for power steering device |
JPS5387433A (en) * | 1977-01-07 | 1978-08-01 | Nissan Motor Co Ltd | Apparatus for controlling steering force of power steering system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487140A (en) * | 1987-09-25 | 1989-03-31 | Nissan Motor | Production managing system for article |
EP1149755A2 (en) * | 2000-04-25 | 2001-10-31 | Showa Corporation | Hydraulic power steering apparatus for vehicle |
EP1149755A3 (en) * | 2000-04-25 | 2003-08-20 | Showa Corporation | Hydraulic power steering apparatus for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6041883A (en) | Flow controlling apparatus for power steering systems | |
US4768605A (en) | Apparatus for use in a power steering system | |
US4676334A (en) | Power steering system with hydraulic reaction | |
US3777839A (en) | Hydraulic-power control device for power-assisted steering system | |
JPH0645343B2 (en) | Steering force control device for power steering device | |
JPS62139755A (en) | Steering force control device for power steering apparatus | |
JPH0624959B2 (en) | Steering force control device for power steering device | |
JPH0628378Y2 (en) | Steering force control device for power steering device | |
JPS61155065A (en) | Steering power control unit for power steering device | |
JPH0232543Y2 (en) | ||
JPS60226368A (en) | Steering-force controller for power steering apparatus | |
JPS61275062A (en) | Steerability control device for power steering device | |
JPS638073A (en) | Steering force controlling unit of power steering device | |
JPH036546Y2 (en) | ||
JPS61211166A (en) | Controller for power steering device | |
JPS58152662A (en) | Flow rate controller for power steering | |
JPS6299262A (en) | Steering force control device of power steering device | |
JPH0619420Y2 (en) | Steering force control device for power steering device | |
JPH0619426Y2 (en) | Steering force control device for power steering device | |
JPH0246459Y2 (en) | ||
JP2606718B2 (en) | Variable solenoid throttle valve | |
JPS61218481A (en) | Steering force controller for power steering | |
JPS61155062A (en) | Steering power control unit for power steering device | |
JPS61202976A (en) | Steering force control device of power steering device | |
JPS61155061A (en) | Steering power control unit for power steering device |