[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61177170A - Control circuit of ac/dc converter - Google Patents

Control circuit of ac/dc converter

Info

Publication number
JPS61177170A
JPS61177170A JP1888085A JP1888085A JPS61177170A JP S61177170 A JPS61177170 A JP S61177170A JP 1888085 A JP1888085 A JP 1888085A JP 1888085 A JP1888085 A JP 1888085A JP S61177170 A JPS61177170 A JP S61177170A
Authority
JP
Japan
Prior art keywords
voltage
current
phase
command value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1888085A
Other languages
Japanese (ja)
Inventor
Juichi Irie
寿一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1888085A priority Critical patent/JPS61177170A/en
Publication of JPS61177170A publication Critical patent/JPS61177170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To maintain a DC output voltage constant by obtaining a difference between a command value of a DC voltage and a detected voltage, and a difference between a current command value obtained from the momentary voltage of each phase and a momentary current, and controlling a switching element through a hysteresis comparator. CONSTITUTION:The difference between the DC output voltage Ed and a command value Ed deg. is obtained, multiplies by a multiplier X by the momentary values eR'-eT' of AC voltages of the respective phases to obtain DC command values iR*-iT*. Momentary current iR'-iT' are obtained from a current detector 12. The differences between the values iR*-iT* and the momentary values iR'-iT' are obtained for the phases. This phase signal is input to hysteresis comparators 3-5, and switching element TR1-TR3 and TR4-TR6 are alternately driven through amplifiers 6-8, 9-11. Thus, the power factor of the AC input can be always held 1 to maintain the DC output voltage constant.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は三相PWM(パルス幅変調)変換器を用いた交
流−直流変換器の制御回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a control circuit for an AC-DC converter using a three-phase PWM (Pulse Width Modulation) converter.

一般に交流をダイオードで整流して直流を得る方法は広
く用いられているが、次のような諸問題がある。即ち ■ 交流電源に流れる電流はパルス波(コンデンサイン
プットのとき)、または方形波(チil−クインプット
)となシ、理想的な正弦波とはほど遠く、力率が非常に
悪い。
Generally, the method of rectifying alternating current with a diode to obtain direct current is widely used, but it has the following problems. That is, (1) The current flowing through the AC power source is a pulse wave (when using a capacitor input) or a square wave (when using a square input), which is far from an ideal sine wave and has a very poor power factor.

■ 直流電圧に交流電源周波数またはその整数倍の脈動
があシ、平滑するために大きなチョークコイル、コンデ
ンサのフィルタを必要とする0■ 電力の流れは交流側
から直流側への一方向のみで、直流側に余剰電力が生じ
た場合にも、交流側に電力を回生ずることができない。
■ There is pulsation in the DC voltage at the AC power frequency or an integral multiple thereof, and a large choke coil or capacitor filter is required to smooth it.■ Power flows only in one direction, from the AC side to the DC side. Even if surplus power occurs on the DC side, power cannot be regenerated on the AC side.

そこで上記のような欠点を解消した交流−直流変換器と
して三相PWM変換器がある。この変換器を用いれば他
の特徴として直流側の電圧を自由に変えることができる
が、従来の三相PWM変換器の制御法では交流側の力率
を1に保ったまま直流側の電圧を一定に保つには複雑な
制御系が必要であった。
Therefore, there is a three-phase PWM converter as an AC-DC converter that eliminates the above-mentioned drawbacks. Another feature of this converter is that the voltage on the DC side can be changed freely, but in the conventional three-phase PWM converter control method, the voltage on the DC side can be changed while keeping the power factor on the AC side at 1. A complex control system was required to keep it constant.

〈発明の概要〉 本発明は三相PWM変換器を用いた交流−直流変換器に
おいて、交流側力率と直流側の電圧の制御を容易にする
三相交流−直流変換器の制御法を提供するものである。
<Summary of the Invention> The present invention provides a control method for a three-phase AC-DC converter that facilitates control of AC side power factor and DC side voltage in an AC-DC converter using a three-phase PWM converter. It is something to do.

〈従来の技術〉 第4図は一般的な三相PWM変換器の接続図である。e
R+ e S+ 87は交流電源の三相電圧を示す。
<Prior Art> FIG. 4 is a connection diagram of a general three-phase PWM converter. e
R+ e S+ 87 indicates the three-phase voltage of the AC power supply.

Lはりアクドル、T Rr −T R6はスイッチング
素子、D1〜D6はスイッチング素子の逆並列ダイオー
ド、Cは高周波成分を吸収するコンデンサである。直流
側の電圧はEdである。スイッチング素子T R+ −
T Rsのオン・オフを決める制御信号の発生回路は、
第5図の構成とし、そのときの各都電圧波形は第6図に
示す。
L beam axle, T Rr - T R6 are switching elements, D1 to D6 are anti-parallel diodes of the switching elements, and C is a capacitor that absorbs high frequency components. The voltage on the DC side is Ed. Switching element T R+ −
The control signal generation circuit that determines on/off of T Rs is:
The configuration is shown in FIG. 5, and the voltage waveforms at each point are shown in FIG. 6.

三相信号発生器1は交流電源と同じ周波数で、所定の電
圧と位相を持った正弦波信号VB  r v5*。
The three-phase signal generator 1 generates a sine wave signal VB r v5* having the same frequency as the AC power supply and a predetermined voltage and phase.

vo*を発生する。VR+ V5  、 V7  は交
流−直流変換器の交流側電圧VR+ V5+ V7の指
令値となる。
Generates vo*. VR+V5 and V7 are command values for the AC side voltage VR+V5+V7 of the AC-DC converter.

正弦波信号VR+ V5 + VT は三角波発生器2
の出力eBと各コンパレータ3,4.5で比較、され、
コンパレータ出力は信号の方が大きければ「1」。
Sine wave signal VR+V5+VT is triangular wave generator 2
The output eB of is compared with each comparator 3, 4.5,
The comparator output is "1" if the signal is larger.

信号の方が小さければ「0」となる0正側のスイッチン
グ素子TRr〜TR3は増幅器6,7.8を通した出力
でオンオフ制御されコンパレータ出力が「1」のときに
オンとなり、負側のスイッチング素子T R4〜TR6
には信号が反転増幅器9.10゜11を通じて供給され
るので、コンパレータ出力が「0」のときオンとなる。
If the signal is smaller, the switching elements TRr to TR3 on the positive side are turned on and off by the outputs passed through the amplifiers 6 and 7.8, and are turned on when the comparator output is 1, and the switching elements on the negative side are turned on and off when the comparator output is 1. Switching elements TR4 to TR6
Since the signal is supplied through the inverting amplifier 9.10°11, it is turned on when the comparator output is "0".

したがって、スイッチング素子TR+とTR4、TR2
とTRs 、 TR3とTRsの組は、それぞれ交互に
オンとなり同時にオンまたは同時のオフの状態を作らな
い。接続点R,S。
Therefore, switching elements TR+, TR4, TR2
The pairs of TRs, TR3 and TRs are turned on alternately and do not turn on or off at the same time. Connection points R, S.

Tの電圧瞬時値VR’ + V5’ + V7’はコン
パレータ出力と相似なパルス波形となり、振幅はEdで
パルス周波数は三角波の周波数に等しい。電圧瞬時値V
R’ 、 v5’ 、 、lに係る平均電圧VR+ V
51 V7の振幅と位相は正弦波信号VR+ V5 +
 V7に従う。平均電圧TRI V 5 + VTはパ
ルスのデユーティファクタただしαR: T Rrのデ
ユーティファクタα5 : TR2のデユーティファク
タα7 * T Rsのデユーティ7アクタである。相
電流IRI 1sI ITは各リアクトルLで平滑され
てスイッチングにともなうリップルはイファクタα。、
α8.α、は(1)式に従って平均電圧VR+ v5 
r VTと電圧Edの比で表わされる。
The instantaneous voltage value VR' + V5' + V7' of T has a pulse waveform similar to the comparator output, the amplitude is Ed, and the pulse frequency is equal to the frequency of the triangular wave. Instantaneous voltage value V
Average voltage VR+V related to R', v5', , l
51 The amplitude and phase of V7 are sinusoidal signal VR+ V5 +
Follow V7. The average voltage TRI V 5 + VT is the duty factor of the pulse where αR: duty factor α5 of T Rr : duty factor α7 of TR2 * duty 7 actor of T Rs. The phase current IRI 1sI IT is smoothed by each reactor L, and the ripple caused by switching is an if factor α. ,
α8. α is the average voltage VR + v5 according to equation (1)
r It is expressed as the ratio between VT and voltage Ed.

各素子TR+〜TRaを流れる電流11+12+13は で表わされる。The current 11+12+13 flowing through each element TR+ to TRa is It is expressed as

今、交流電源の各相電圧eR1e5+ 67を、それら
のp−p値が電圧Edより小さいとして、と表わし、各
相電流IRI 15+ 17をとする。平均電圧vR9
vS、vTは交流電源電圧からりアクドルLのインピー
ダンス電圧を差引いたものである。即ち となる。
Now, suppose that each phase voltage eR1e5+ 67 of the AC power supply is expressed as , assuming that their p-p value is smaller than voltage Ed, and each phase current IRI 15+ 17. Average voltage vR9
vS and vT are obtained by subtracting the impedance voltage of the handle L from the AC power supply voltage. That is to say.

ただしRはリアクトルの直列抵抗成分であシ、直流側電
流Idは11〜i3を合計したものである。
However, R is a series resistance component of the reactor, and the DC side current Id is the sum of 11 to i3.

即ち I d ” i + + i 2 + i 3    
   ・・・・・・(6)(2)、 (51+6)式よ
シミ流Idはで表わされ、交流電源の有効電力で決まる
。なおe05ψは力率である。(7)式はwtの関数で
はないので直流側には交流周波数の脈動はない。パルス
周波数の脈動は直流側のコンデンサCで吸収され、周波
数を高くすればコンデンサCは小さなものでよい。
That is, I d ” i + + i 2 + i 3
(6) (2), (51+6) The stain flow Id is expressed by the equation and is determined by the active power of the AC power source. Note that e05ψ is the power factor. Since equation (7) is not a function of wt, there is no alternating current frequency pulsation on the direct current side. Pulse frequency pulsations are absorbed by the capacitor C on the DC side, and if the frequency is increased, the capacitor C only needs to be small.

また、(7)式に直流電源電圧Eoが含まれないので、
Eoはどんな値であっても交流−直流変換器電圧のピー
ク値よシ大きい範囲で動作できる。電圧Edを一定に保
つためには、第4図で電流Idが負荷電原2.とつシ合
うようにIcoBψを調節する。リアクトルLの両端の
電圧ベクトルtとやは第7図の関係にあり、電流ベクト
ルfをトルtは点線上を移動することが必要である。
Also, since the DC power supply voltage Eo is not included in equation (7),
No matter what value Eo has, it can operate in a range larger than the peak value of the AC-DC converter voltage. In order to keep the voltage Ed constant, the current Id in FIG. Adjust IcoBψ to match. The voltage vector t at both ends of the reactor L has the relationship shown in FIG. 7, and it is necessary that the current vector f and the torque t move on the dotted line.

第5図の三相信号発生器1は、具体的には第8図のよう
に構成され、交流電圧eR+ 85+ eTの振幅と位
相を、電圧Edとその指令値Ed O差に従って変化し
、所定のtが得られるように正弦波信号VR+ V5!
 V□ を出力する。
The three-phase signal generator 1 shown in FIG. 5 is specifically configured as shown in FIG. The sinusoidal signal VR+V5!
Outputs V□.

〈発明が解決しようとする問題点〉 ところで実際にEd  −Edに従って位相と振幅を変
化させる回路を構成するのは非常に複雑で、リアクトル
の飽和や温度などで特性が変化したときなど所定の指令
値VR+ VB  + VT  を得るのは困難であっ
た。
<Problems to be solved by the invention> However, actually configuring a circuit that changes the phase and amplitude according to Ed - Ed is extremely complicated, and when the characteristics change due to reactor saturation or temperature, etc. It was difficult to obtain the value VR+VB+VT.

〈発明の目的〉 本発明はこのような点を解消したもので、常に精度よく
力率角0で動作できる交流−直流変換器の制御法を提供
するものである。
<Objective of the Invention> The present invention solves these problems and provides a control method for an AC-DC converter that can always operate accurately at a power factor angle of 0.

〈実施例〉 本発明の交流−直流変換器とその制御回路の1実施例を
第1図に示す。
<Embodiment> FIG. 1 shows an embodiment of the AC-DC converter and its control circuit of the present invention.

主回路(電力の流れる回路)は第4図と同じであるが、
ここでは交流側の電流検出回路12と直流側の電圧検出
回路とが付加されている。
The main circuit (the circuit through which power flows) is the same as in Figure 4, but
Here, a current detection circuit 12 on the AC side and a voltage detection circuit on the DC side are added.

第2図はR相の動作波形を描いている。R相について動
作を説明すると、まず相電圧峠と同相の電圧eR′の振
幅を所定の値にしたR相電流の指令値iR*を得る。指
令値IRと瞬時電流の検出値iR′の差、R* 。
FIG. 2 depicts the R-phase operating waveform. To explain the operation for the R phase, first, a command value iR* of the R phase current is obtained by setting the amplitude of the voltage eR' in the same phase as the phase voltage peak to a predetermined value. The difference between the command value IR and the detected instantaneous current value iR', R*.

ipカヒステリシスコンバレータ3に加えられる。今、
スイッチング素子T RrがオフでTR4がオンである
とすると、リア゛クトルLはスイッチング素子TRd側
の方が低電位であるから、電流iR′は次第に増加し指
令値iR*よシ大きくなり、その差がΔi//2よシ大
きぐなるとコンパレータ出力は「1」になり、スイッチ
ング素子TR+がオンでTR4がオフに変わる。スイッ
チング素子TR4がオフになると電流4′はD!を流れ
るようになり、R点の電位はEdとなってリアクトルL
の電圧は右側の方が高くなるので、電流iR′は減少す
る。電流iR′が指令値iR*よシ減少してその差がΔ
i/2よす大きくなる。と、コンパレータ出力はrOJ
 Kなシ、スイッチング素子TR1がオフ、TR4がオ
ンとなって、この動作を繰返す。Δiの大きさはコンパ
レータ3のヒステリシス幅で決まる。電流iR′は第2
図のように指令値IRを中心にしてΔiの幅の中を脈動
し、その平均値IRは常に指令値iR*に等しい波形と
なる。指令値IRは電圧eRと同相すなわちψ=0であ
るから交流側の力率co5ψは常に1である。
ip is added to the hysteresis converter 3. now,
Assuming that switching element TRr is off and TR4 is on, the reactor L has a lower potential on the switching element TRd side, so the current iR' gradually increases and becomes larger than the command value iR*. When the difference becomes larger than Δi//2, the comparator output becomes "1", switching element TR+ is turned on and TR4 is turned off. When the switching element TR4 is turned off, the current 4' becomes D! The potential at the R point becomes Ed, and the reactor L
Since the voltage on the right side is higher, the current iR' decreases. The current iR' decreases by the command value iR*, and the difference is Δ
It becomes larger by i/2. and the comparator output is rOJ
Then, switching element TR1 is turned off, switching element TR4 is turned on, and this operation is repeated. The magnitude of Δi is determined by the hysteresis width of the comparator 3. The current iR' is the second
As shown in the figure, it pulsates within a width of Δi around the command value IR, and its average value IR always has a waveform equal to the command value iR*. Since the command value IR is in phase with the voltage eR, that is, ψ=0, the power factor co5ψ on the AC side is always 1.

S相、T相についても、動作は上述したR相の場合と同
じである。
The operation of the S phase and T phase is the same as that of the R phase described above.

平均値に関する諸量の関係を表わす(1)〜(7)式は
従来のものとまったく同じであるが、従来の方法ではR
,S、T点の電圧を制御することにより、相電流の波形
を所定の位相および振幅にしようとしたのに対して、本
発明の方法では相電流波形を直接所定のものに制御する
もので、R,S、T点の電圧VR+ VB + V7は
電流が制御された結果として従属的に決ってくるのであ
る。したがってリアクトルLの飽和、温度変化等が起っ
ても電流波形はその指令値に従って正確に制御され、結
果的に電圧VB + VB + V□の波形が変化する
ことになるのみで、交流系には影響しない。
Equations (1) to (7) expressing the relationship between various quantities with respect to the average value are exactly the same as those in the conventional method, but in the conventional method, R
, S, and T points to make the phase current waveform a predetermined phase and amplitude, the method of the present invention does not directly control the phase current waveform to a predetermined one. , R, S, and T points VR+VB+V7 are dependently determined as a result of current control. Therefore, even if saturation of reactor L, temperature change, etc. occur, the current waveform will be accurately controlled according to the command value, and as a result, only the waveform of voltage VB + VB + V□ will change, and the current waveform will not change in the AC system. has no effect.

本発明で交流電源に対して力率を1に保つには、電流指
令値を相電圧と常に同相にすればよく、すなわち従来の
第7図のように指令値を作るために位相角を操作する必
要はまったくない。また、第6図に示した三角波eBは
必要としない。その結果、本発明による制御回路はその
構成が簡単となる。電流指令値IR+15 .17  
の振幅は直流るIが大きくなり、Idが増加してEdを
上昇させる。逆に電圧Edが大きいとIdが減少するよ
うに働き、負荷モータの回生制動のように負荷から電力
が回生される場合などは相電流は相電圧とは逆極性の振
幅となり、電力は直流側から交流側に流れるようになる
In order to maintain the power factor at 1 for an AC power source with the present invention, it is sufficient to always set the current command value to be in phase with the phase voltage. In other words, the phase angle is manipulated to create the command value as in the conventional method shown in Fig. 7. There's no need to do that at all. Further, the triangular wave eB shown in FIG. 6 is not required. As a result, the control circuit according to the present invention has a simple configuration. Current command value IR+15. 17
The amplitude of DC I increases, Id increases, and Ed rises. Conversely, when the voltage Ed is large, Id decreases, and when power is regenerated from the load such as in regenerative braking of a load motor, the phase current has an amplitude with the opposite polarity to the phase voltage, and the power is on the DC side. It starts to flow to the alternating current side.

第3図は第1図における制御回路の変形である。FIG. 3 is a modification of the control circuit in FIG. 1.

まず(4)式より iR+i5+17=O・・・・・・(8)であることを
利用して、第3図では −t7*−一(I Rs−Is*)     ・・・・
・・(9)のようにして電流11の指令値lT を作っ
ている。この方法により掛は算器が1個省略できる。
First, using the fact that iR+i5+17=O...(8) from equation (4), -t7*-1(I Rs-Is*)...
...The command value lT of the current 11 is created as shown in (9). With this method, one calculator can be omitted for multiplication.

次に電圧Edの誤差増幅器を比例形から比例積分形とし
、電圧Edの定常誤差が発生しないようにしている。
Next, the error amplifier for the voltage Ed is changed from a proportional type to a proportional-integral type to prevent a steady error from occurring in the voltage Ed.

〈発明の効果〉 以上のように本発明によれば、交流入力の力率が常に1
で直流忙は電源周波数のリップルを含まず、負荷の大、
小または発電負荷に対しても直流側の電圧を一定値に保
つ交流−直流変換器が容易に実現できる。
<Effects of the Invention> As described above, according to the present invention, the power factor of AC input is always 1.
The DC bus does not include power frequency ripple, and the load is large,
An AC-DC converter that maintains the voltage on the DC side at a constant value even for small or power generation loads can be easily realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の交流−直流変換器とその制御回路の1
実施例の接続図、第2図は第1図に示す制御回路の動作
波形説明図、第3図は本発明の制御回路の変形実施例の
接続図、第4図は従来一般の三相PWM変換器の接続図
、第5図は従来の制電流位相関係図、第8図は三相信号
発生器の構成図である。 3.4.5・・・ヒステリシスコンパレータ、12・・
・電流検出回路、T Rr −T Rs・・・スイッチ
ング素子 代理人 弁理士 福 士 愛 彦(他2名)第1図 φカイト5バL形會2明Cノ] 妾形硬北例−,,?)J府T0鉢q捧地図第3図 三オ目PWM濠1良思f7#F木目囮 第4図 埒’it*、yキ・U町互司工各−アロ、2クロ第5図
Fig. 1 shows one of the AC-DC converter and its control circuit according to the present invention.
A connection diagram of the embodiment, FIG. 2 is an explanatory diagram of operating waveforms of the control circuit shown in FIG. 1, FIG. 3 is a connection diagram of a modified embodiment of the control circuit of the present invention, and FIG. 4 is a conventional general three-phase PWM. A connection diagram of a converter, FIG. 5 is a conventional current control phase relationship diagram, and FIG. 8 is a configuration diagram of a three-phase signal generator. 3.4.5...Hysteresis comparator, 12...
・Current detection circuit, T Rr - T Rs...Switching element agent Patent attorney Aihiko Fukushi (and 2 others) Figure 1 ,? ) J-fu T0 bowl q dedication map 3rd picture PWM moat 1 ryoshi f7 #F wood grain decoy 4th picture 埒'it*, yki, U-cho mutual map each - Aro, 2 black diagram 5

Claims (1)

【特許請求の範囲】[Claims] 1、交流系の相電圧に直流電圧の指令値と検出値との差
またはその積分値を掛け算することにより各相電流の指
令値とし、相電流の指令値と検出値との差が正または負
の一定値に達する毎に相電流を直流側の正端子または負
端子に流すスイッチング手段を有し、直流の負荷が変動
した場合に自動的に交流の相電流の振幅を変化して直流
電圧を一定値に保つようにしたことを特徴とする交流−
直流変換器の制御回路。
1. The command value for each phase current is obtained by multiplying the phase voltage of the AC system by the difference between the command value and the detected value of the DC voltage or its integral value, and if the difference between the command value and the detected value of the phase current is positive or It has a switching means that causes the phase current to flow to the positive or negative terminal on the DC side each time it reaches a certain negative value, and when the DC load fluctuates, it automatically changes the amplitude of the AC phase current to reduce the DC voltage. An alternating current characterized by maintaining a constant value.
DC converter control circuit.
JP1888085A 1985-01-31 1985-01-31 Control circuit of ac/dc converter Pending JPS61177170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1888085A JPS61177170A (en) 1985-01-31 1985-01-31 Control circuit of ac/dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1888085A JPS61177170A (en) 1985-01-31 1985-01-31 Control circuit of ac/dc converter

Publications (1)

Publication Number Publication Date
JPS61177170A true JPS61177170A (en) 1986-08-08

Family

ID=11983863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1888085A Pending JPS61177170A (en) 1985-01-31 1985-01-31 Control circuit of ac/dc converter

Country Status (1)

Country Link
JP (1) JPS61177170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450686U (en) * 1987-09-24 1989-03-29
JPH0191668A (en) * 1987-09-30 1989-04-11 Isao Takahashi Frequency converter
WO1994013057A1 (en) * 1992-11-27 1994-06-09 Living Image Technology Pty. Ltd. Power converter circuit
US6084786A (en) * 1999-01-29 2000-07-04 Hamilton Sundstrand Corporation Converter system with power factor and DC ripple control
JP2007205112A (en) * 2006-02-06 2007-08-16 Giken Kanamono Kk Latch lock
JP2009516994A (en) * 2005-11-21 2009-04-23 アーベーベー・シュバイツ・アーゲー Method for operating a converter circuit and apparatus for performing the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222782A (en) * 1982-06-18 1983-12-24 Hitachi Ltd Controller for pwm converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222782A (en) * 1982-06-18 1983-12-24 Hitachi Ltd Controller for pwm converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450686U (en) * 1987-09-24 1989-03-29
JPH0191668A (en) * 1987-09-30 1989-04-11 Isao Takahashi Frequency converter
WO1994013057A1 (en) * 1992-11-27 1994-06-09 Living Image Technology Pty. Ltd. Power converter circuit
US6084786A (en) * 1999-01-29 2000-07-04 Hamilton Sundstrand Corporation Converter system with power factor and DC ripple control
JP2009516994A (en) * 2005-11-21 2009-04-23 アーベーベー・シュバイツ・アーゲー Method for operating a converter circuit and apparatus for performing the method
JP2007205112A (en) * 2006-02-06 2007-08-16 Giken Kanamono Kk Latch lock

Similar Documents

Publication Publication Date Title
KR940007716B1 (en) Continuous current control type power factor correct circuit
US5471125A (en) AC/DC unity power-factor DC power supply for operating an electric motor
JP3311743B2 (en) Control method of resonant inverter
JP5323426B2 (en) Power converter
JPS61177170A (en) Control circuit of ac/dc converter
JP3050314B1 (en) Power converter
JPH0799782A (en) Flat-topped waveform generator and pulse-width modulator using it
JP3070314B2 (en) Inverter output voltage compensation circuit
JP2735918B2 (en) Positive and negative output power supply
JP6873357B1 (en) Multiphase converter controller
JP2632586B2 (en) Container with lid
JPH0748951B2 (en) Power converter
JPH02261059A (en) Dc voltage pulsation correcting power source device
JPH0646568A (en) Power converter
JPS5819169A (en) Controlling method for pwm control converter
JPH0974763A (en) Power source device
JP2874215B2 (en) Control method of PWM converter
JP3590175B2 (en) PWM converter
JPH10327583A (en) Inverter device
JPH0419796B2 (en)
JP2632587B2 (en) Power supply
JPS63245268A (en) Controlling method for current type pwm converter
JPH0548080B2 (en)
JPH0356093A (en) Induction motor controller
JPH0746072Y2 (en) Inverter output voltage compensation circuit