[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6114166A - Mulite sintered body and manufacture - Google Patents

Mulite sintered body and manufacture

Info

Publication number
JPS6114166A
JPS6114166A JP59132786A JP13278684A JPS6114166A JP S6114166 A JPS6114166 A JP S6114166A JP 59132786 A JP59132786 A JP 59132786A JP 13278684 A JP13278684 A JP 13278684A JP S6114166 A JPS6114166 A JP S6114166A
Authority
JP
Japan
Prior art keywords
sintered body
alumina
mullite
amount
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132786A
Other languages
Japanese (ja)
Other versions
JPH0825790B2 (en
Inventor
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP59132786A priority Critical patent/JPH0825790B2/en
Publication of JPS6114166A publication Critical patent/JPS6114166A/en
Publication of JPH0825790B2 publication Critical patent/JPH0825790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、大規模集積回路(略称LSI)などの半導体
素子を実装するための半導体素子パッケージ用基板およ
び多層配線基板に用いるムライト焼結体およびその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mullite sintered body used for semiconductor element package substrates and multilayer wiring boards for mounting semiconductor elements such as large-scale integrated circuits (abbreviated as LSI), and mullite sintered bodies therefor. Regarding the manufacturing method.

従来技術 従来、LSIなどの半導体素子パッケージ用基板および
多層配線基板にはアルミナが広く用いられている。しか
しながら、半導体素子の大型化にともないアルミナの熱
膨張係数(70〜75X10−’/”C)とシリコンの
熱膨張係数(35X10−’/’C)との間に大きな差
があることにより半導体素子と回路基板との接合部に大
きな熱応力が発生するという問題が生じていた。このた
めに、半導体素子の大きさが制限され、また大型の素子
は基板に直接実装できないという欠点がある。
BACKGROUND OF THE INVENTION Conventionally, alumina has been widely used for semiconductor element package substrates such as LSIs and multilayer wiring substrates. However, as semiconductor devices become larger, there is a large difference between the coefficient of thermal expansion of alumina (70 to 75X10-'/'C) and that of silicon (35X10-'/'C). A problem has arisen in that large thermal stress is generated at the joint between the semiconductor device and the circuit board.This limits the size of the semiconductor device, and also has the disadvantage that large devices cannot be directly mounted on the board.

そこで熱膨張係数が比較的シリコンに近いムライト焼結
体を回路基板に用いることが考えられている。しかしな
がら、ムライトには従来出発原料としてカオリンなどの
粘土鉱物が用いられており、高いα線放射量を示す。α
線放射量の多いムライト焼結体は半導体素子パッケージ
用の基板として、半導体メモリーに誤動作を起こさせる
という大きな欠点がある。特に高密度集積の半導体素子
の場合、少量のa線が素子にあたることにより高い確立
で誤動作を生じるようになる。
Therefore, it has been considered to use a mullite sintered body whose coefficient of thermal expansion is relatively similar to that of silicon for circuit boards. However, mullite has conventionally used clay minerals such as kaolin as a starting material, and exhibits a high amount of α-ray radiation. α
Mullite sintered bodies, which emit a large amount of radiation, have a major drawback when used as substrates for semiconductor device packages, such as causing malfunctions in semiconductor memories. Particularly in the case of highly densely integrated semiconductor devices, there is a high possibility that malfunctions will occur due to a small amount of A-rays hitting the device.

発明が解決しようとする問題点 本発明者は上記の現状に鑑み鋭意研究の結゛果、出発原
料として、カオリンなどの粘土鉱物を用い)ことなく、
出発原料として人工的に合成されたアルミナ(A Iz
201)およびシリカ(S io 、)粉末を用い、こ
の適当な組成量に対して少なくとも酸化マンガン(M 
no 2)およびチタニア(TiO2)を含む焼結助剤
の適当量を添加し、これを一度で焼成することにより、
熱膨張係数がシリコンに近い緻密なムライト焼結体が得
られ、かっこのムライト焼結体はα線放射量が着しく低
いことを知見し−た。
Problems to be Solved by the Invention In view of the above-mentioned current situation, the inventor of the present invention has conducted extensive research and has found a solution without using clay minerals such as kaolin as a starting material.
Artificially synthesized alumina (A Iz
201) and silica (S io ) powder, at least manganese oxide (M
By adding an appropriate amount of a sintering aid containing No. 2) and titania (TiO2) and firing it at once,
A dense mullite sintered body with a coefficient of thermal expansion close to that of silicon was obtained, and it was discovered that the parenthesized mullite sintered body had a significantly low amount of α-ray radiation.

発明の目的 本発明は熱膨張係数がシリコンに近く、緻密質であって
、かつα線放射量が0 、2 dph/ 0m2以下の
ムライト焼結体およびその製造方法を提供することを目
的とする。
Purpose of the Invention The object of the present invention is to provide a mullite sintered body having a coefficient of thermal expansion close to that of silicon, being dense, and having an α-ray radiation amount of 0.2 dph/0 m2 or less, and a method for manufacturing the same. .

問題点を解決するための手段 本発明によれば人工的に合成されたアルミナ (Aj2
20*)オJ:ヒシ17 カ(SiO2)ノ合量が90
.0〜97.0重量%と、焼結助剤3.0〜10.0重
量%とを含み、この焼結助剤は、少なくとも酸化マンガ
ン(MnO2)およびチタニア(T io 2)を含む
ムライト焼結体が提供される。
According to the present invention, artificially synthesized alumina (Aj2
20*) OJ: Caltrops 17 Ka (SiO2) total amount is 90
.. 0 to 97.0% by weight and 3.0 to 10.0% by weight of a sintering aid, the sintering aid being a mullite sinter containing at least manganese oxide (MnO2) and titania (Tio2). A body is provided.

好ましい実施例では前記アルミナ(A J2203)と
シリカ(SiO2)との重量比が60:40乃至75:
25の範囲であるムライト焼結体が提供される。
In a preferred embodiment, the weight ratio of the alumina (A J2203) and silica (SiO2) is 60:40 to 75:
A mullite sintered body having a range of 25 is provided.

本発明においては熱膨張係数がシリコンに近く緻密質で
あって、かつα線放射量が0 、2 dph/ 0m2
以下のムライト焼結体が提供される。なお焼結助t・ 剤として前記2種以外にクロミア(Cr20 、)、酸
   ゛化鉄(F ezo 3)または酸化コバル)(
Coo)がら選ばれる1種以、上を含めてそれらの合量
が 3.0〜10.0 重量%となるようにしてもよい
In the present invention, the thermal expansion coefficient is close to that of silicon, and the material is dense, and the α-ray radiation amount is 0.2 dph/0 m2.
The following mullite sintered bodies are provided. In addition to the above two types of sintering aids, chromia (Cr20), iron oxide (Fezo 3) or cobal oxide) (
The total amount including the above may be 3.0 to 10.0% by weight.

また、本発明においては出発原料としてカオリンなどの
粘土鉱物を用いることなく人工的に合成されたアルミナ
(Al2O’s)およびシ’)力(8102)粉末に、
少なくとも酸化マンガン(M1102)およびチタニア
(TiO2)を含む焼結助剤を添加し、これを仮焼など
の前処理を行なうことなく一度で焼成するようにしたム
ライト焼結体の製造方法が提供される。焼結助剤として
、前記2種以外にクロミア(Cr20s)、酸化鉄(F
e20’、)または酸化コハル)(Coo)から選ばれ
る1種以上を添加するようにしてもよい。
In addition, in the present invention, artificially synthesized alumina (Al2O's) and Si') powder (8102) without using clay minerals such as kaolin as starting materials,
A method for producing a mullite sintered body is provided, in which a sintering aid containing at least manganese oxide (M1102) and titania (TiO2) is added, and the sintered body is fired at one time without pretreatment such as calcination. Ru. In addition to the above two types, chromia (Cr20s) and iron oxide (F
One or more selected from e20', ) or cohar oxide (Coo) may be added.

以下本発明を詳述する。第1図に一般に市販さ□れてい
るムライト焼結体のα線放射量を回路基板用のアルミナ
焼成体と比較して示す。この図より明らかなように、ム
ライトは回路基板用のアルミナに比べ非常に高いα線放
射量を示していることが理解される。
The present invention will be explained in detail below. Figure 1 shows the amount of α-ray radiation of a commonly commercially available mullite sintered body in comparison with that of an alumina sintered body for circuit boards. As is clear from this figure, it is understood that mullite exhibits a much higher amount of α-ray radiation than alumina for circuit boards.

第2図は一般的にムライト焼結体を製造するために用い
られる出発原料のα線放射量を表わしたもので、カオリ
ンなどの粘土鉱物が高いα線放射量を示していることが
理解される。これは粘土鉱物、特に堆積性の粘土鉱物中
にはその生成過程において多くのウラン、トリウムが吸
着されているためである。これに比べ従来より回路基板
用に使用されてい−るアルミナ(AIzzogおよびシ
リカ(SiO2)粉体は非常に低いα線放射量を示して
いる6 これらの事実より、粘土鉱物を用いることなく
、ムライトの緻密な焼結体を得ることを目的に研究をす
すめ有効な焼結助剤を見出した。ナルミナ(A J22
0 s)とシリカ(S io 2)のみではムライトを
焼結させ□ることできず、焼結助剤として少なくとも酸
化マンガン(MnO2)およびチタニア(TiO□)を
含む焼結助剤を合量が3.0〜10.0重量%になるよ
うに添加することにより、比較的低い焼成温度で緻密な
ムライト焼結体が得られる。これはこれらの酸化物をア
ルミナ(Ag2Oコ)およびシリカ(SiO2)に添加
することにより、アルミナ(Al2OJ)の融点が下が
9、ムライトの生成および焼結が比較的低温で行なわれ
るためであると思われる。したがってこの焼結助剤の添
加量が3゜0重量%未満では緻密な焼結体が得られない
。また、この添加量が10.0 重量%を超えると焼結
体中のムライト結晶の含有量が減少し、結晶粒界に多量
の液相が゛生じ抗折強度が劣化する。
Figure 2 shows the amount of alpha ray radiation of the starting materials generally used to produce sintered mullite, and it is understood that clay minerals such as kaolin exhibit a high amount of alpha ray radiation. Ru. This is because clay minerals, especially sedimentary clay minerals, adsorb a large amount of uranium and thorium during their formation process. In comparison, alumina (AIzzog) and silica (SiO2) powders conventionally used for circuit boards show extremely low α-ray radiation.6 Based on these facts, it is possible to produce mullite without using clay minerals. With the aim of obtaining a dense sintered body, we conducted research and discovered an effective sintering aid.Narumina (A J22
Mullite cannot be sintered with only 0 s) and silica (S io 2), and the total amount of sintering aids containing at least manganese oxide (MnO2) and titania (TiO2) must be increased. By adding 3.0 to 10.0% by weight, a dense mullite sintered body can be obtained at a relatively low firing temperature. This is because by adding these oxides to alumina (Ag2O) and silica (SiO2), the melting point of alumina (Al2OJ) is lower than 9, and the generation and sintering of mullite are performed at a relatively low temperature. I think that the. Therefore, if the amount of this sintering aid added is less than 3.0% by weight, a dense sintered body cannot be obtained. Further, if the amount added exceeds 10.0% by weight, the content of mullite crystals in the sintered body decreases, and a large amount of liquid phase is generated at the grain boundaries, deteriorating the flexural strength.

次に、アルミナ(A i 203)とシリカ(S io
 2)との比率を順次変えた場合の熱膨張係数を調べた
ところ、アルミナが増加するに従い熱膨張係数が大きく
なることが分った。これはアルミナの増加にともないム
ライトが生成する反応に際してアルミナが過剰となり、
このアルミナの結晶がムライト焼結体中に残存するため
である。したがって、シリコンに近い熱膨張係数を有す
るムライト焼結体を得るためにはアルミナ対シリカの比
率が75/25以下でなければならない、、、1.た、
アルミナのシリカに対する割合が減少すると焼結性が悪
くなり、緻密な焼結体が得られず、このためアルミナと
シリカの比率は60/40以上でなければなら・ない。
Next, alumina (A i 203) and silica (S io
When the coefficient of thermal expansion was examined when the ratio of 2) was successively changed, it was found that the coefficient of thermal expansion increases as the alumina content increases. This is because as alumina increases, alumina becomes excessive during the reaction that produces mullite.
This is because the alumina crystals remain in the mullite sintered body. Therefore, in order to obtain a mullite sintered body with a coefficient of thermal expansion close to that of silicon, the ratio of alumina to silica must be 75/25 or less.1. Ta,
If the ratio of alumina to silica decreases, sinterability deteriorates and a dense sintered body cannot be obtained. Therefore, the ratio of alumina to silica must be 60/40 or more.

実施例 平均粒径2μmの市販の低ソーダアルミナ、平均粒径1
;5μ川の硅石粉と、試薬1級の少なくとも酸化マンガ
ン(Mn02’)およびチタニア(Ti02)を含むそ
の他クロミア(Cr 2.03 )、酸化鉄(Fez0
3)または酸化コバル)(Coo)から選ばれる2種以
上を原料とする焼結助剤とを使用し、焼結体が$1表に
示す試料1〜7,10〜17の組成範囲を有するように
秤量し、これをアルミナ製の混合ポット中に入れ、アル
ミナボールと共にメタノール中で48時間混合粉砕した
。得られたスラリーを電気乾燥器で70℃を10時間保
って乾燥し、5重量%のパラフィンワックスを四塩化炭
素に溶解して加え、乾燥後40メツシユを通した。この
粉末をit/am2の圧力で成形し、1450℃〜16
50℃の範囲の温度で3時間大気中で焼成し、第1表に
示す試料1〜7,10〜17を得た。
Example Commercially available low soda alumina with an average particle size of 2 μm, average particle size 1
; 5μ river silica powder and other reagents containing at least manganese oxide (Mn02') and titania (Ti02) of reagent grade 1, chromia (Cr 2.03 ), iron oxide (Fez0
3) or cobal oxide) (Coo), and the sintered body has a composition range of samples 1 to 7 and 10 to 17 shown in the $1 table. This was placed in an alumina mixing pot, and mixed and ground together with alumina balls in methanol for 48 hours. The obtained slurry was dried in an electric dryer by keeping it at 70°C for 10 hours, 5% by weight of paraffin wax dissolved in carbon tetrachloride was added, and after drying, it was passed through 40 meshes. This powder was molded at a pressure of 1450°C to 16°C.
The samples 1 to 7 and 10 to 17 shown in Table 1 were obtained by firing in the air at a temperature in the range of 50° C. for 3 hours.

一方、試料8および9については上記原料に加えて市販
のカオリン(粉砕品)を全量の10重量%   べおよ
び30重量%を添加したものとを出発原料として用いた
。カオリンの分析値よりアルミナ (Ai!zOs)お
よびシリカ(SiO□)の含有量を算出し、これに市販
の低ソーダアルミナおよび硅石粉を加えて、必要なアル
ミナとシリカ比率にあわせた。
On the other hand, for Samples 8 and 9, in addition to the above raw materials, commercially available kaolin (pulverized product) was added in an amount of 10% by weight and 30% by weight of the total amount, and these were used as starting materials. The contents of alumina (Ai!zOs) and silica (SiO□) were calculated from the analytical values of kaolin, and commercially available low soda alumina and silica powder were added to match the required alumina and silica ratio.

これに前記と同様の焼結助剤を加えたものをアルミナポ
ット中で粉砕・混合した。得られたスラリーを電気乾燥
器で乾燥し、5重量%のバフフィンワックスを四塩化炭
素に溶解して加え、乾燥後40メツシユを通した。この
粉末をit/e論2の圧力で成形し、1450℃〜16
00℃の範囲の温度で3時間大気中で焼成し、第1表に
示す試料8お上り9を得た。
The same sintering aid as above was added to this and the mixture was ground and mixed in an alumina pot. The obtained slurry was dried in an electric dryer, 5% by weight of buffine wax dissolved in carbon tetrachloride was added, and after drying, it was passed through 40 meshes. This powder was molded at a pressure of IT/E theory 2 and 1450℃~16
The sample 8 was baked in the air for 3 hours at a temperature in the range of 00°C to obtain the sample 8 and the finished product 9 shown in Table 1.

得られた試料1〜17について吸水率をアルキメデス法
により、熱膨張係数を横型押し棒式熱膨張係数測定機に
より、またaカウント (a線放射量)を〃スフ0−比
例計数管方式によるall検出機により測定した。これ
らの結果を第1表に示した。尚試料1〜9のものは全量
A J2203: S io 2=70:30  の組
成比である。
For the obtained samples 1 to 17, the water absorption rate was measured by the Archimedes method, the thermal expansion coefficient was measured by a horizontal push rod type thermal expansion coefficient measuring machine, and the a-count (a-line radiation amount) was measured by the Sufu 0-proportional counter method. Measured with a detector. These results are shown in Table 1. Note that the total composition ratio of Samples 1 to 9 was A J2203: S io 2 = 70:30.

(以下余白) 第1表から理解されるように、焼結助剤の添加量が3.
0重量%未満の試料1お」:び2のものは充分に緻密化
した焼結体が得られず、焼結助剤の添加量が10重重量
を超える試料7のものは充分な強度が得られなかった。
(Left below) As can be seen from Table 1, the amount of sintering aid added is 3.
Samples 1, 2 and 2 with less than 0% by weight did not yield sufficiently densified sintered bodies, while sample 7 with more than 10% of sintering aid added did not have sufficient strength. I couldn't get it.

また出発原料にカオリンを10重短形添加した試料8.
30重量%添加した試料9のものは(l fJ’yント
(α線放射量)が0゜2 dph/ am2を超えて昔
しく増大していることが理解さ゛れる。さらにアルミナ
(Aj2.03)とシリカ(S102)との重量比が6
0/40未満の試料10のも、のは充分にa密化した焼
結体が得られず、重量比が75725を超える祉料−1
4および15のものは熱膨張係数が54,3 X 10
−’/’C以上と天外くなり過ぎシリコンの熱膨張係数
(35X 10−’/”C)からその差が大きくなる。
Sample 8. In addition, kaolin was added in a 10-fold rectangular form to the starting material.
It can be seen that sample 9 with 30% addition of alumina (l fJ'ynt (amount of α-ray radiation) has increased over 0°2 dph/am2. Furthermore, alumina (Aj2.03 ) and silica (S102) weight ratio is 6
For sample 10 with a weight ratio of less than 0/40, a sufficiently a-densified sintered body could not be obtained, and the weight ratio of sample 10 exceeded 75725.
4 and 15 have a thermal expansion coefficient of 54.3 x 10
-'/'C or more is too extreme and the difference becomes large due to the coefficient of thermal expansion of silicon (35×10-'/'C).

これに対し本発明の範囲内である試料3〜6.11〜1
3.16および17は何れも熱膨張係数が48.9 X
 10−’/’C以下とシリコンの熱膨張係数との差が
小さくなりかつ緻密なムライト焼結体であり、αカウン
ト(α線放射量)も0.08dpi+/Cm2以下と充
分な値を示17ていることが理解される。
In contrast, samples 3-6 and 11-1 are within the scope of the present invention.
3.16 and 17 both have a coefficient of thermal expansion of 48.9
It is a dense mullite sintered body with a small difference between the thermal expansion coefficient of 10-'/'C or less and that of silicon, and the α count (α-ray radiation amount) also shows a sufficient value of 0.08 dpi+/Cm2 or less. 17 is understood.

【図面の簡単な説明】[Brief explanation of the drawing]

tlS1図は一般に市販されているムライト焼結体のα
線放射量を回路基板用のアルミナ焼結体と比較したグラ
フ、第2図は一般的にムライト焼結体を製造するために
用いられる出発原料のα線放射量を示すグラフである。
The tlS1 diagram shows α of a commercially available mullite sintered body.
A graph comparing the amount of radiation with an alumina sintered body for circuit boards, and FIG. 2 is a graph showing the amount of α-ray radiation of a starting material generally used for producing a mullite sintered body.

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ(Al_2O_3)およびシリカ(Si
O_2)の合量が90.0〜97.0重量%と、焼結助
剤3.0〜10.0重量%とを含み、この焼結助剤は、
少なくとも酸化マンガン(MnO_2)およびチタニア
(TiO_2)を含むことを特徴とするムライト焼結体
(1) Alumina (Al_2O_3) and silica (Si
The total amount of O_2) is 90.0 to 97.0% by weight, and the sintering aid is 3.0 to 10.0% by weight, and this sintering aid is
A mullite sintered body characterized by containing at least manganese oxide (MnO_2) and titania (TiO_2).
(2)前記アルミナ(Al_2O_3)とシリカ(Si
O_2)との重量比が60:40乃至75:25の範囲
であることを特徴とする特許請求の範囲第1項記載のム
ライト焼結体。
(2) The alumina (Al_2O_3) and silica (Si
The mullite sintered body according to claim 1, wherein the weight ratio of the mullite sintered body to O_2) is in the range of 60:40 to 75:25.
(3)前記焼結体のα線放射量が0.2dph/cm^
2以下であることを特徴とする特許請求の範囲第1項記
載のムライト焼結体。
(3) The α-ray radiation amount of the sintered body is 0.2 dph/cm^
2. The mullite sintered body according to claim 1, wherein the mullite sintered body is 2 or less.
(4)出発原料として人工的に合成されたアルミナ(A
l_2O_3)およびシリカ(SiO_2)粉末に、少
なくとも酸化マンガン(MnO_2)およびチタニア(
TiO_2)を含む焼結助剤を添加して焼成するように
したことを特徴とするムライト焼結体の製造方法。
(4) Artificially synthesized alumina (A
l_2O_3) and silica (SiO_2) powder, at least manganese oxide (MnO_2) and titania (
A method for producing a mullite sintered body, characterized in that sintering is performed by adding a sintering aid containing TiO_2).
JP59132786A 1984-06-27 1984-06-27 Mullite sintered body for semiconductor device package and manufacturing method thereof Expired - Fee Related JPH0825790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132786A JPH0825790B2 (en) 1984-06-27 1984-06-27 Mullite sintered body for semiconductor device package and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132786A JPH0825790B2 (en) 1984-06-27 1984-06-27 Mullite sintered body for semiconductor device package and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6114166A true JPS6114166A (en) 1986-01-22
JPH0825790B2 JPH0825790B2 (en) 1996-03-13

Family

ID=15089508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132786A Expired - Fee Related JPH0825790B2 (en) 1984-06-27 1984-06-27 Mullite sintered body for semiconductor device package and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0825790B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159254A (en) * 1986-12-23 1988-07-02 株式会社ニッカト− Manufacture of mullite base electric insulating material
JPH0283255A (en) * 1988-09-21 1990-03-23 Hitachi Ltd Multi-layer circuit board using mullite-based ceramic material and semiconductor module
WO2002009171A1 (en) * 2000-07-25 2002-01-31 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
EP1990829A2 (en) * 2002-07-29 2008-11-12 FUJIFILM Corporation Solid-state imaging device and method of manufacturing the same
WO2012043658A1 (en) * 2010-09-28 2012-04-05 京セラ株式会社 Mullite sintered object and circuit board using the same, and probe card
JP2012137345A (en) * 2010-12-25 2012-07-19 Kyocera Corp Ceramic wiring board for probe card, and probe card using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673665A (en) * 1979-11-14 1981-06-18 Ngk Spark Plug Co Low expansion high strength ceramic composition
JPS57191228A (en) * 1981-05-19 1982-11-25 Nippon Light Metal Co Ltd Production of alumina of low alpha-raw dose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673665A (en) * 1979-11-14 1981-06-18 Ngk Spark Plug Co Low expansion high strength ceramic composition
JPS57191228A (en) * 1981-05-19 1982-11-25 Nippon Light Metal Co Ltd Production of alumina of low alpha-raw dose

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159254A (en) * 1986-12-23 1988-07-02 株式会社ニッカト− Manufacture of mullite base electric insulating material
JPH0283255A (en) * 1988-09-21 1990-03-23 Hitachi Ltd Multi-layer circuit board using mullite-based ceramic material and semiconductor module
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
WO2002009171A1 (en) * 2000-07-25 2002-01-31 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
US6815646B2 (en) 2000-07-25 2004-11-09 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
EP1990829A2 (en) * 2002-07-29 2008-11-12 FUJIFILM Corporation Solid-state imaging device and method of manufacturing the same
WO2012043658A1 (en) * 2010-09-28 2012-04-05 京セラ株式会社 Mullite sintered object and circuit board using the same, and probe card
KR101316658B1 (en) * 2010-09-28 2013-10-10 쿄세라 코포레이션 Mullite-based sintered body, circuit board using same and probe card
US8735309B2 (en) 2010-09-28 2014-05-27 Kyocera Corporation Mullite-based sintered body, circuit board using same and probe card
JP5575231B2 (en) * 2010-09-28 2014-08-20 京セラ株式会社 Mullite sintered body, wiring board using the same, and probe card
JP2012137345A (en) * 2010-12-25 2012-07-19 Kyocera Corp Ceramic wiring board for probe card, and probe card using the same

Also Published As

Publication number Publication date
JPH0825790B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
CN1052096C (en) Cadmium-free and lead-free thick film paste composition
EP0697725B1 (en) Ceramic composition for circuit substrat and its fabrication
US4272500A (en) Process for forming mullite
CN1033019C (en) Chemically stabilized cristobalite
JPS6114166A (en) Mulite sintered body and manufacture
JP3761289B2 (en) Dielectric material, manufacturing method thereof, circuit board using the same, and multilayer circuit board
JPS62131415A (en) Dielectric porcelain compound
JP2947558B2 (en) Ceramic insulating material and method of manufacturing the same
JPS62157604A (en) Dielectric porcelain compound
JPS6156184B2 (en)
JP3735228B2 (en) Method for producing soft magnetic ferrite powder and method for producing multilayer chip inductor
CN104370525B (en) A kind of preparation method of manganese cobalt copper system non-linear negative temperature coefficient thick-film electronic slurry
JP7206156B2 (en) Alumina sintered body and wiring board
JPS58165301A (en) Glass frit composition for thick film resistor
JPS6144759A (en) Substrate of dielectric ceramic material and manufacture
JP2990088B2 (en) Manganese-containing composite oxide and method for producing composite perovskite compound composition using the composite oxide
JP2626478B2 (en) Method for producing capacitor material for low-temperature fired substrate
JPS58204871A (en) Ceramic composition
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JPS62157605A (en) Dielectric porcelain compound
JP3341782B2 (en) Ceramic substrate and method of manufacturing the same
JPH08175864A (en) Production of low-temperature sintered anorthite-gehlenite ceramic
JPH02302362A (en) Low-temperature sintering ceramic having low dielectric constant
JPH04160054A (en) Production of ceramics of low dielectric constant which can be sintered at low temperature
JP3008548B2 (en) Low temperature firing ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees