[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61117553A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS61117553A
JPS61117553A JP59237567A JP23756784A JPS61117553A JP S61117553 A JPS61117553 A JP S61117553A JP 59237567 A JP59237567 A JP 59237567A JP 23756784 A JP23756784 A JP 23756784A JP S61117553 A JPS61117553 A JP S61117553A
Authority
JP
Japan
Prior art keywords
light
mirror
arc
photomask
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237567A
Other languages
Japanese (ja)
Inventor
Tatsumi Hiramoto
立躬 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP59237567A priority Critical patent/JPS61117553A/en
Publication of JPS61117553A publication Critical patent/JPS61117553A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve the utilizing efficiency of light and reduce the fluctuation of luminance, by condensing light radiated from a light source onto a rotary regular polyhedron mirror by means of a condensing reflecting mirror and projecting the optical beam reflected and expanded in the shape of a fan upon spherical mirrors. CONSTITUTION:Light from a light source 1 of a short-arc type mercury-arc lamp is changed to spot-like parallel light through a condensing reflecting mirror 2 having an elliptic cross section and projected upon a rotary regular polyhedron mirror 4 through plane mirrors 8 and an aspherical mirror 3. The polyhedron mirror 4 having a truncated pyramid-like shape is rotated by a motor M at a prescribed speed and light repeatedly scanned in a prescribed angle range in the from of a fan by the rotation of the mirror 4 becomes an arc-like slit of 1-4mm in width while it is repeatedly reflected by plural spherical mirrors 7 and plane mirrors 8. The arc-like light passing through a photomask 9 is repeatedly reflected among a trapezoidal mirror 10, concave mirror 11, and convex mirror 12 and forms a photomask pattern on a wafer 13 which is a body to be irradiated. By simultaneously moving the photomask 9 and wafer 13 in parallel with each other, the whole surface of a previously designated wafer can be exposed to the arc-like light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明のフォトマスクを介して被照射物上を露光する装
置のうち、スキャン方式によって露光を行なう露光装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an exposure device that performs exposure by a scanning method, among devices that expose an object to be irradiated through a photomask.

〔従来の技術〕[Conventional technology]

スキャン方式による露光は種々の分野で利用されている
が、最も広く知られているのけ半導体ウェハーを露光す
る場合である。以下理解を早めるため半導体ウェハーを
例にとって説明する。
Exposure by the scanning method is used in various fields, but the most widely known case is exposure of bare semiconductor wafers. In order to speed up understanding, the explanation will be given below using a semiconductor wafer as an example.

IC製造技術もLSIから超LSIの領域に突入し、リ
ソグラフィ一工程もより高い分解能を要求されるようK
なった。光学系を用いた時の分解能6は、次式で与えら
れる。
IC manufacturing technology has also entered the realm of VLSI from LSI, and higher resolution is required for the lithography process as well.
became. The resolution 6 when using the optical system is given by the following equation.

0.8λ         (1) ε=NA−(μm) ここでλは光の波長(μm)であり、NAは第2図に示
す光学レンズ23の焦点Fにおける屈折角を−とした時 NA=内0(2) Kより与えられる数値であり、開口数と言われる。
0.8λ (1) ε=NA-(μm) Here, λ is the wavelength of light (μm), and NA is the refraction angle at the focal point F of the optical lens 23 shown in FIG. 0(2) This is a numerical value given by K, and is called the numerical aperture.

(1)式かられかるように、分解能8を上げるには開口
数NAを大きくするか、波長λを小さくすればよいが、
NAを大きくすると焦点深度の問題がでてくる。すなわ
ち焦点深度Δは で与えられるので、NAを大きくすると焦点深度が浅く
なり、ウェハー表面の平面度及び凹凸により焦点外れを
おこすし、NAを極端に大きくした光学レンズは設計そ
のものが困難である。
As can be seen from equation (1), in order to increase the resolution 8, it is possible to increase the numerical aperture NA or decrease the wavelength λ.
When the NA is increased, the problem of depth of focus arises. In other words, the depth of focus Δ is given by Δ, so as the NA increases, the depth of focus becomes shallower, causing defocus due to the flatness and unevenness of the wafer surface, and it is difficult to design an optical lens with an extremely large NA.

一方、例えば超高圧水銀ランプによって波長λを365
nm、 254nm、  185nm等と順次紫外領域
にもっていくと、分解能は波長が短かくなるほど上がる
ことになるが、このような紫外線は通常の光学レンズで
は吸収されてしまい、レンズの材質が限られたものとな
ってしまう。
On the other hand, for example, the wavelength λ can be set to 365 by using an ultra-high pressure mercury lamp.
If we move to the ultraviolet region one after another (nm, 254nm, 185nm, etc.), the resolution will increase as the wavelength becomes shorter, but such ultraviolet rays are absorbed by ordinary optical lenses, and the materials of the lenses are limited. It becomes a thing.

以上のような理由から、波長λを短かくしても吸収等の
問題がない反射光学系を用いたスキャン方式による露光
装置がいくつか開発されている。
For the above reasons, several exposure apparatuses have been developed that use a scanning method using a reflective optical system that does not cause problems such as absorption even when the wavelength λ is shortened.

すなわち反射光学系のみで円弧部分のみが、マスク像を
ウェハー上に1対1で投影されることを利用する方式(
USP 3,748,015 A、0ffner)で円
弧型の水銀ランプを用いたものと、ショートアーク型の
水銀ランプを用い、反射光学系でこの光を円弧状にもっ
ていき、前者と同じようにフォトマスクパターンをウェ
ハー上に1対1で投影する方式%式%: 〔発明が解決しようとする問題点〕 しかしながら、前記の従来のスキャン方式による半導体
ウェハーの露光装置においては、円弧状の水銀ランプを
用いる方式の場合、円弧状ランプのアーク長に渉っての
輝度のバラツキやシビアな冷却を必要とする点等に問題
があり、ショートアーク型の水銀ランプを用い、反射光
学系で円弧状に展開させる方式の場合は、光源よりの光
が反射光学系によって捕捉される率が低く、光の利用効
率が極めて悪い等の問題点があった。
In other words, this method utilizes the fact that the mask image is projected one-to-one onto the wafer using only the reflective optical system and only the circular arc portion (
USP 3,748,015 A, 0ffner) uses an arc-shaped mercury lamp and a short-arc type mercury lamp, and uses a reflective optical system to bring this light in an arc shape. [Problem to be solved by the invention] However, in the conventional scanning method semiconductor wafer exposure apparatus described above, an arc-shaped mercury lamp is used. In the case of the method used, there are problems such as variations in brightness over the arc length of the arc-shaped lamp and the need for severe cooling. In the case of the unfolding method, there were problems such as a low rate of capture of light from the light source by the reflective optical system and extremely poor light utilization efficiency.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の露光装置は、光源と、この光源が第1焦点位置
に配置された焦光反射鏡と、この集光反射鏡よりの光を
受ける位置に配置されたスポット状平行光作成用の軸外
し光学系と、このスポット状平行党を受けて所定の角度
範囲内で繰返し扇状に反射させる回転正多面体ミラーと
、この扇状に繰返し反射された光ビームを更に円弧状に
フォトマスク上に反射展開させる複数の球面ミラーとを
含み、前記円弧状の反射光をフォトマスクを介して被照
射物に投射させるとともに、フォトマスクと被照射物と
を同時に移動させることにより、フォトマスクパターン
を予め指定された領域に渉って1対1でスキャン方式に
より投影させることを特徴とする。
The exposure apparatus of the present invention includes a light source, a focusing reflector in which the light source is placed at a first focal position, and a shaft for creating spot-like parallel light placed in a position to receive light from the converging reflector. A removal optical system, a rotating regular polyhedral mirror that receives the spot-like parallel particles and reflects them repeatedly in a fan shape within a predetermined angular range, and a light beam that is repeatedly reflected in the fan shape is further reflected and expanded onto the photomask in an arc shape. The method includes a plurality of spherical mirrors that project the arcuate reflected light onto the irradiated object via the photomask, and simultaneously moves the photomask and the irradiated object to create a photomask pattern that is specified in advance. It is characterized in that it is projected one-on-one across the area by a scanning method.

〔作用〕[Effect]

本発明においては、まず、光源として、円弧型の水銀ラ
ンプではなく、ショートアーク型の水銀ランプを使用で
きるので、円弧状光束跡の全長にわたって輝度のバラク
Φが極めて少なくなる。そして、光源より放出された光
は集光反射鏡によりスポット状平行光作成用の軸外し光
学系を介して回転正多面体ミラーに集光され、この回転
正多面体ミラーにより扇状に反射展開された光ビームが
球面ミラーに投射されるので、光ビームは球面ミラーを
含む光学系に確実に捕捉され、光の利用効率が著しく向
上する。
In the present invention, first, a short-arc type mercury lamp can be used as a light source instead of an arc-shaped mercury lamp, so that the variation Φ in brightness is extremely small over the entire length of the arc-shaped luminous flux trace. The light emitted from the light source is then focused by a condensing reflector onto a rotating regular polyhedral mirror via an off-axis optical system for creating spot-shaped parallel light, and the light is reflected and expanded into a fan shape by this rotating regular polyhedral mirror. Since the beam is projected onto the spherical mirror, the light beam is reliably captured by the optical system including the spherical mirror, and the efficiency of light utilization is significantly improved.

〔実施例〕〔Example〕

本発明を図面を参照しながら詳細に説明する。 The present invention will be explained in detail with reference to the drawings.

本発明の一実施例においては、例えば第1図に示すよう
に、光源1としてショートアーク型の水銀ラングを用い
、断面が楕円をなす集光反射鏡2の焦点位置に前記水銀
ランプのアーク部を位置させる。この集光反射鏡2で反
射された光はスポット状平行光作成用の軸外し光学系に
よりスポット状平行光となる。すなわち、平面鏡8で反
射させた後、焦点を結ぶ位置もしくはその近傍に配置さ
れたスポット状平行ビーム作成用の非球面ミラー6で反
射させ、このスポット状平行ビームを回転正多面体ミラ
ー4に投射する。この回転正多面体ミラー4は、截頭多
角錐状であり、モータMにより所定の速度で回転する。
In one embodiment of the present invention, as shown in FIG. 1, for example, a short arc type mercury rung is used as the light source 1, and the arc portion of the mercury lamp is placed at the focal point of a condensing reflector 2 having an elliptical cross section. position. The light reflected by the condensing reflector 2 is turned into spot-like parallel light by an off-axis optical system for creating spot-like parallel light. That is, after being reflected by a plane mirror 8, it is reflected by an aspherical mirror 6 for creating a spot-shaped parallel beam placed at or near a focal point, and this spot-shaped parallel beam is projected onto a rotating regular polyhedral mirror 4. . This rotating regular polyhedral mirror 4 has a truncated polygonal pyramid shape, and is rotated by a motor M at a predetermined speed.

従って、これに投射されたスポット状平行ビームFi扇
状に繰返し反射展開されるが、多面体ミラー4の鏡面数
を適当に選定することにより、扇状の角度を任意に定め
ることができる。
Therefore, the parallel spot beam Fi projected thereon is repeatedly reflected and expanded in a fan shape, but by appropriately selecting the number of mirror surfaces of the polyhedral mirror 4, the angle of the fan shape can be arbitrarily determined.

多面体ミラー4の回転により扇状に所定の角度の範囲内
にくり返しスキャンさせられた光は、複数の球面ミラー
7と平面鏡8でくり返し反射させるうちに、球面ミラー
7の作用により、約1〜4■幅の円弧状スリットとなり
、フォトマスク9を通過した円弧状り光は台形ミラー1
0.凹面ミラー11、凸面ミラー12、凹面ミラー11
、台形ミラー10と反射がくり返され、被照射体である
ウェハー13上にフォトマスクパターンが結像されるよ
うになっている。この円弧状ビームはフォトマスク9と
ウェハー13を同時に平行移動させることによってフォ
トマスクパターンを予め指定されたウェハー面上の全領
域に渉って1対1でスキャン方式により投影させること
によって露光が行なわれる。
The light, which is repeatedly scanned in a fan-like manner within a predetermined angle range by the rotation of the polyhedral mirror 4, is reflected repeatedly by the plurality of spherical mirrors 7 and plane mirrors 8, and due to the action of the spherical mirror 7, the light is scanned repeatedly within a predetermined angle range. The arc-shaped light passing through the photomask 9 is formed into a circular arc-shaped slit with a width of
0. concave mirror 11, convex mirror 12, concave mirror 11
, and the trapezoidal mirror 10, and the photomask pattern is imaged onto the wafer 13, which is the object to be irradiated. This arcuate beam is exposed by simultaneously moving the photomask 9 and the wafer 13 in parallel and projecting the photomask pattern over the entire area on the wafer surface specified in advance in a one-to-one scanning manner. It will be done.

本発明により行われる露光は、第3図に示すように、ウ
ェハー13の面上に形成される円弧状光束跡31がスリ
ット幅WでAからBK向ってY軸方向にくり返し速度■
でスキャンし、ウェハー13上をX軸方向に速度Vでス
キャンする。したがってウェハー16面上を円弧状光束
跡51が移動する速度Vに比して円弧上をスポットが移
動する速度Vを十分に大きく取らないとウェハー上のレ
ジスト膜に露光ムラが生じることになる。通常露光ムラ
は±5チ以内にする事が要求されており、本発明におい
ては、スポット状のビームが円弧−ヒをくり返しスキャ
ンするとともに、円弧状光束跡31がウェハー13上を
移動するので、ある点をスポット状ビームが何回通過す
るかにより、露光ムラが決まる。例えば第4図に示すよ
うに、スポット状ビームがA、→BいA、−BいA、→
B、と移動し、1回の移動で1スポット分ずれる円弧状
光束跡が移動する速度Vを設定した場合、光束跡が1回
通過するところと2回通過するところがある。すなわち
第4図に示す点pFiA、→BIK移動する時に露光さ
れ、点qFi、A1→B、 K移動する時の円弧の上辺
と人、神馬に移動する時の円弧の下辺で2回露光される
。したがって露光ムラは大きくなり、前記の条件を全く
満足しないことになる。上記例を参考にしてスポットの
ズレが1回の移動で、1/!、1/4・・・・・・、ス
ポット分だけズレ喪場合のある点におけるスポットの通
過回数(露光回数)と露光ムラは以下のようKなる。
In the exposure performed according to the present invention, as shown in FIG. 3, an arcuate light flux trace 31 formed on the surface of the wafer 13 is repeated in the Y-axis direction from A to BK with a slit width W at a speed of
The wafer 13 is scanned at a speed V in the X-axis direction. Therefore, if the speed V at which the spot moves on the arc is not made sufficiently larger than the speed V at which the arcuate light flux trace 51 moves on the surface of the wafer 16, uneven exposure will occur in the resist film on the wafer. Normally, exposure unevenness is required to be within ±5 inches, and in the present invention, as the spot beam repeatedly scans the arc-hi, the arc-shaped light beam trace 31 moves on the wafer 13. Exposure unevenness is determined by how many times the spot beam passes through a certain point. For example, as shown in Fig. 4, the spot beams are A, →B A, -B A, →
B, and when the velocity V at which the arc-shaped light beam trace shifts by one spot per movement is set, there are some places where the light flux trace passes once and places where it passes twice. That is, the point pFi shown in Fig. 4 is exposed when moving from → BIK, and the point qFi is exposed twice at the upper side of the arc when moving from A1 → B, K and at the lower side of the arc when moving to the person and horse. . Therefore, exposure unevenness increases, and the above conditions are not satisfied at all. Referring to the above example, the spot shift is 1/1 with one movement! , 1/4..., the number of times the spot passes (the number of exposures) and the exposure unevenness at a point where the spot may be shifted by the amount of the spot are K as follows.

スポット(QXV   ウニ・・−面−Fの任意の  
露光A。
Spot (QXV sea urchin...-face-F's arbitrary
Exposure A.

点における露光回数 オスポット     2回と3回    3五3チア4
1     4回と5回   20チV6 #    
  6回と7回   14.6チ’/8  #    
 8回と9回   11.1チ’/(o’I    −
10回と11回   91チこれより10−以下の露光
ムラとするためには、円弧状光束跡のズレがスポットの
1回の移動でスポットの幅の1/1o以下とすればよい
ことになる。
Number of exposures at the point Ospot 2 and 3 times 35 3 cheer 4
1 4th and 5th 20chi V6 #
6th and 7th 14.6ch'/8 #
8th and 9th times 11.1chi'/(o'I -
10 times and 11 times 91chi From this, in order to achieve exposure unevenness of 10- or less, the deviation of the arcuate light flux trace should be 1/1o or less of the spot width with one movement of the spot. .

次に、直径が6インチのウェハーの露光に応用した場合
の露光ムラと多面体ミラーの回転速度の関係などについ
て述べる。通常スキャン方式によシウエハーを露光する
場合、1枚のウェハーの露光時間は約10秒、円弧上ス
リットの幅は4Mが用いられるので、本発明においても
この数値を適用することになる。
Next, we will discuss the relationship between exposure unevenness and rotational speed of the polyhedral mirror when applied to exposure of a 6-inch diameter wafer. When exposing a wafer by the normal scanning method, the exposure time for one wafer is about 10 seconds, and the width of the arcuate slit is 4M, so these values are also applied in the present invention.

6インチウェハーは約150m+の直径であるので、円
弧状光束跡のX軸方向の移動速度Vはv=150/10
=15−/seeである。一方スポットの移動する距離
は円弧状光束跡がウニノ・−の円弧の半分を移動すると
考えると、1回の移動で150×π/2−235■とな
る。またスポットけ、前述の様に円弧状光束跡を10回
移動して4■移動すれば露光ムラが10チ以内となるか
ら、1回の移動でのX軸方向の移動距離は’/10 =
 0.4−である。一方前記したように円弧状光束跡の
移動速度Vは15−一であるから、この間にスポットが
移動する回数は15”10.a = 37.5回となる
。従って、多面体ミラー4が例えば40面体であれば、
毎秒1回転すれば露光ムラの問題はない。そして、スポ
ットの移動速度Vd V= 235 x 37.5 ?
 8800■/w:であり、′v/v−600となるの
で、スポットの移動速度を円弧状光束跡の移動速度の約
600程度度にすれば、露光ムラFi10%ということ
になる。
Since a 6-inch wafer has a diameter of approximately 150 m+, the moving speed V of the arcuate light flux trace in the X-axis direction is v = 150/10.
=15-/see. On the other hand, the distance the spot moves is 150×π/2−235× in one movement, assuming that the arc-shaped light beam trace moves half of the arc of Uni-no-. Also, if you move the spot by moving the arcuate light flux trace 10 times and moving it 4 cm as mentioned above, the exposure unevenness will be within 10 inches, so the distance traveled in the X-axis direction in one movement is '/10 =
It is 0.4-. On the other hand, as mentioned above, since the moving speed V of the arcuate light beam trace is 15-1, the number of times the spot moves during this period is 15"10.a = 37.5 times. Therefore, if the polyhedral mirror 4 is If it is a facepiece,
If it rotates once per second, there will be no problem with uneven exposure. And the moving speed of the spot Vd V= 235 x 37.5?
8800 .mu./w: and 'v/v-600. Therefore, if the moving speed of the spot is set to about 600 degrees of the moving speed of the arcuate light beam trace, the exposure unevenness Fi will be 10%.

次に本発明における光の利用効率について言及すれば、
通常露光に必要なエネルギーは約100mJ鷹であるの
で、このエネルギーを得るための水銀ランプの出力は、
電力の′5チが所定波長の光に変換され、光の利用効率
が70%とすると、約150Wの水銀ランプで良い事に
なる。一方前記した従来の水銀ランプの光をそのまま球
面ミラーで展開する方式の場合け2KWの水銀ランプを
必要としており、従来例に比して、し荀以下の電力消費
量で済むので光の利用効率がかなり高い。
Next, referring to the light utilization efficiency in the present invention,
The energy required for normal exposure is approximately 100 mJ, so the output of the mercury lamp to obtain this energy is:
Assuming that 5000 watts of electric power is converted into light of a predetermined wavelength and the light utilization efficiency is 70%, a mercury lamp of approximately 150 W will suffice. On the other hand, in the case of the above-mentioned method in which the light from the conventional mercury lamp is expanded as it is with a spherical mirror, a 2KW mercury lamp is required, and the power consumption is less than that of the conventional method, so the light is used more efficiently. is quite high.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明は、光源より放出された光は
集光反射鏡により回転正多面体ミラーに集光され、この
回転正多面体ミラーにより扇状に反射展開された光ビー
ムが球面ミラーに投射されるので、光源よりの光の利用
効率が極めて高く、輝度のバラツキも少なくすることが
できる。−またスポット状ビームの移動速度Vとウェハ
ー面上を水平にスキャンさせる走査速度Vの比を■/v
〉600に設定することにより、露光ムラも10チ以下
にできるので、露光ムラに関しても問題ない。
As explained above, in the present invention, the light emitted from the light source is focused on a rotating regular polyhedral mirror by a condensing reflector, and the light beam that is reflected and expanded in a fan shape by this rotating regular polyhedral mirror is projected onto a spherical mirror. Therefore, the efficiency of using light from the light source is extremely high, and variations in brightness can be reduced. - Also, the ratio of the moving speed V of the spot beam to the scanning speed V that horizontally scans the wafer surface is ■/v
>600, exposure unevenness can be reduced to 10 inches or less, so there is no problem with exposure unevenness.

なお、本発明は、前述した半導体ウニノ・−の露光装置
に限定されるものではなく、例えば水晶振動子、弾性波
素子等に対する露光にも適用できるものである。
It should be noted that the present invention is not limited to the above-mentioned exposure apparatus for semiconductors, but can also be applied to exposure of crystal resonators, acoustic wave elements, etc., for example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図は光学系NAの
定義の説明図、第3図と第4図はウェハー面上を露光す
る説明図である。
FIG. 1 is a detailed explanatory diagram of the present invention, FIG. 2 is an explanatory diagram of the definition of the optical system NA, and FIGS. 3 and 4 are explanatory diagrams of exposing the wafer surface.

Claims (1)

【特許請求の範囲】[Claims]  光源と、この光源が第1焦点位置に配置された集光反
射鏡と、この集光反射鏡よりの光を受ける位置に配置さ
れたスポット状平行光作成用の軸外し光学系と、このス
ポット状平行光を受けて所定の角度範囲内で繰返し扇状
に反射させる回転正多面体ミラーと、この扇状に繰返し
反射された光ビームを更に円弧状にフォトマスク上に反
射展開させる複数の球面ミラーとを含み、前記円弧状の
反射光をフォトマスクを介して被照射物に投射させると
ともに、フォトマスクと被照射物とを同時に移動させる
ことにより、フォトマスクパターンを予め指定された領
域に渉って1対1でスキャン方式により投影させること
を特徴とする露光装置。
a light source, a condensing reflector in which the light source is placed at a first focal position, an off-axis optical system for creating a spot-like parallel light placed in a position to receive light from the condensing reflector, and this spot. A rotating regular polyhedral mirror that receives parallel light and reflects it repeatedly in a fan shape within a predetermined angular range, and a plurality of spherical mirrors that reflect and expand the light beam that is repeatedly reflected in the fan shape in an arc shape onto a photomask. By projecting the arc-shaped reflected light onto the irradiated object through the photomask and simultaneously moving the photomask and the irradiated object, the photomask pattern is spread over a pre-specified area. An exposure apparatus characterized by projecting images using a one-to-one scanning method.
JP59237567A 1984-11-13 1984-11-13 Exposing device Pending JPS61117553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237567A JPS61117553A (en) 1984-11-13 1984-11-13 Exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237567A JPS61117553A (en) 1984-11-13 1984-11-13 Exposing device

Publications (1)

Publication Number Publication Date
JPS61117553A true JPS61117553A (en) 1986-06-04

Family

ID=17017224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237567A Pending JPS61117553A (en) 1984-11-13 1984-11-13 Exposing device

Country Status (1)

Country Link
JP (1) JPS61117553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138834A1 (en) * 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138834A1 (en) * 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
JP5218049B2 (en) * 2006-05-31 2013-06-26 株式会社ニコン Exposure apparatus and exposure method

Similar Documents

Publication Publication Date Title
JP4329266B2 (en) Illumination apparatus, exposure method and apparatus, and device manufacturing method
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
KR100737645B1 (en) Dual hemispherical collectors
KR20010089153A (en) Diffractive element in extreme-UV lithography condenser
JP3060357B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP2003309057A (en) Projection aligner and device-manufacturing method
US9274434B2 (en) Light modulator and illumination system of a microlithographic projection exposure apparatus
JPH1070058A (en) X-ray stepper, and semiconductor-device manufacturing equipment using the same
JP2003045784A (en) Illumination system, aligner, and device-manufacturing method
JP3605053B2 (en) Illumination optical system, exposure apparatus and device manufacturing method
US5359388A (en) Microlithographic projection system
US7279693B2 (en) Source multiplexing in lithography
JPS5969927A (en) X-ray exposure device
JP2005141158A (en) Illumination optical system and aligner
JPH01114035A (en) Aligner
JPS61117553A (en) Exposing device
JP2004140390A (en) Illumination optical system, exposure device and device manufacturing method
JPH0497201A (en) Production of beam expander and diffraction grating
JPH0666246B2 (en) Illumination optics
JPS61117552A (en) Exposing device
JPS61117554A (en) Exposing device
JP2006019510A (en) Aligner and fabrication process of microdevice
JP3371512B2 (en) Illumination device and exposure device
JPH07135145A (en) Aligner