[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3264224B2 - Illumination apparatus and projection exposure apparatus using the same - Google Patents

Illumination apparatus and projection exposure apparatus using the same

Info

Publication number
JP3264224B2
JP3264224B2 JP22194897A JP22194897A JP3264224B2 JP 3264224 B2 JP3264224 B2 JP 3264224B2 JP 22194897 A JP22194897 A JP 22194897A JP 22194897 A JP22194897 A JP 22194897A JP 3264224 B2 JP3264224 B2 JP 3264224B2
Authority
JP
Japan
Prior art keywords
light
integrator
optical system
optical
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22194897A
Other languages
Japanese (ja)
Other versions
JPH1154426A (en
Inventor
聡 溝内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22194897A priority Critical patent/JP3264224B2/en
Priority to US09/127,953 priority patent/US6259512B1/en
Publication of JPH1154426A publication Critical patent/JPH1154426A/en
Application granted granted Critical
Publication of JP3264224B2 publication Critical patent/JP3264224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は照明装置及びそれを
用いた投影露光装置及びデバイスの製造方法に関し、具
体的には半導体素子等のデバイスの製造装置において、
レチクル面上のパターンを適切に照明し、高い解像力が
容易に得られるようにした例えばステップアンドリピー
ト方式やステップアンドスキャン方式の投影露光装置に
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination apparatus, a projection exposure apparatus using the same, and a method of manufacturing a device.
The present invention is suitable for, for example, a step-and-repeat type or step-and-scan type projection exposure apparatus capable of appropriately illuminating a pattern on a reticle surface and easily obtaining a high resolution.

【0002】[0002]

【従来の技術】一般に半導体素子等のデバイス製造用の
露光装置に使用される照明装置には、高解像力化を図る
ためにマスク面(レチクル面)における照度ムラの除去
が強く要求されている。この要求と、集光効率の向上を
図った照明装置が、本出願人は例えば特開平1-000913号
公報において提案している。
2. Description of the Related Art In general, an illuminating device used for an exposure apparatus for manufacturing a device such as a semiconductor device is strongly required to remove illuminance unevenness on a mask surface (reticle surface) in order to increase a resolution. The present applicant has proposed this demand and an illuminating device for improving the light-collecting efficiency, for example, in Japanese Patent Application Laid-Open No. 1-000913.

【0003】図34は同公報で提案している照明装置の
要部概略図である。
FIG. 34 is a schematic view of a main part of a lighting device proposed in the publication.

【0004】図中1は光源で、超高圧水銀ランプ等から
なっている。2は集光手段で楕円ミラー等からなり、該
楕円ミラー2の第1焦点付近に光源1が配置されてい
る。3は光束混合手段で所定形状のオプティカルパイプ
より成り、該オプティカルパイプ3の入射面3aは楕円
ミラー2の第2焦点付近配置されている。4は集光レン
ズ、5は多光束発生手段であるハエの目であり、集光レ
ンズ4はオプティカルパイプ3の出射端3bとハエの目
5の入射面5aとが略共役関係となるように設定してい
る。またその際出射端3bを入射面5aに所望の倍率で
結像するよう集光レンズ4の光学諸定数を定めている。
In FIG. 1, reference numeral 1 denotes a light source, which comprises an ultra-high pressure mercury lamp or the like. Reference numeral 2 denotes a condensing means, which is formed of an elliptical mirror or the like. Reference numeral 3 denotes a light beam mixing means, which is formed of an optical pipe having a predetermined shape, and the incident surface 3a of the optical pipe 3 is arranged near the second focal point of the elliptical mirror 2. Reference numeral 4 denotes a condensing lens, and reference numeral 5 denotes a fly's eye, which is a multi-beam generating means. The condensing lens 4 has a substantially conjugate relationship between the exit end 3b of the optical pipe 3 and the incident surface 5a of the fly's eye 5. You have set. At this time, optical constants of the condenser lens 4 are determined so that the exit end 3b is imaged at a desired magnification on the incident surface 5a.

【0005】6は照射手段でコンデンサーレンズを含む
構成からなり、ハエの目5の出射面5bからの光束を用
いてマスクやレチクル面等が設定される被照射面7を照
射している。
Reference numeral 6 denotes an irradiating means which includes a condenser lens and irradiates an irradiated surface 7 on which a mask, a reticle surface and the like are set by using a light beam from an emission surface 5b of the fly's eye 5.

【0006】その際ハエの目5を構成している素子レン
ズの集光点(後側焦点)を集光手段6の前側焦点に略一
致させ、被照射面7と集光手段6の後側焦点と略一致さ
せるケーラー照明系を構成している。
At this time, the focal point (rear focal point) of the element lens constituting the fly's eye 5 is made substantially coincident with the front focal point of the condenser means 6, and the irradiation surface 7 and the rear side of the condenser means 6 are It constitutes a Koehler illumination system that almost matches the focal point.

【0007】光束混合手段3であるオプティカルパイプ
は内側面による多重反射を利用して、1つの光束から多
数の虚または実の集光点を形成するものであり、その原
理を図35〜37に示す。
The optical pipe as the light beam mixing means 3 forms multiple imaginary or real light condensing points from one light beam by using multiple reflection by the inner surface. The principle thereof is shown in FIGS. Show.

【0008】例えばオプティカルパイプを図37に示す
様な正方形断面を有する中空で、内面反射をする部材で
構成されているとする。
For example, it is assumed that the optical pipe is hollow and has a square cross section as shown in FIG.

【0009】図35はオプティカルパイプ3の入射面3
01aの前側に光源像S0を持つ集光光束により虚の集
光点が形成される様子を光軸に沿った断面で表したもの
である。
FIG. 35 shows the incident surface 3 of the optical pipe 3.
A state where an imaginary light-converging point is formed by a light-converged light beam having the light source image S0 in front of 01a is represented by a cross section along the optical axis.

【0010】光源像S0から入射する光束のうち、上方
側面301c、下方側面301dで一度も反射されない
光束は、そのまま射出面301bから出射していく。
[0010] Of the light beams incident from the light source image S0, the light beams that have not been reflected at all by the upper side surface 301c and the lower side surface 301d exit from the exit surface 301b as they are.

【0011】上方側面301cでのみ1回反射される光
束は、上方側面301cに関して集光点S0と共役な虚
の集光点S1から供給されるように出射し、また下方側
面301dでのみ1回反射される光束は、下方側面30
1dに関して集光点S0と共役な虚の集光点S−1 か
ら供給されるように出射する。
The light beam reflected once only on the upper side surface 301c is emitted so as to be supplied from the imaginary light condensing point S1 conjugate with the light condensing point S0 with respect to the upper side surface 301c, and once only on the lower side surface 301d. The reflected luminous flux is directed to the lower side surface 30.
The light is emitted so as to be supplied from an imaginary converging point S-1 conjugate to the converging point S0 with respect to 1d.

【0012】以下同様にして、下方側面301dで反射
した後、上方側面301cで反射される光束は集光点S
0から供給されるように出射し、上方側面301cで反
射した後、下方側面301dで反射される光束は集光点
S2から供給されるように出射する。
Similarly, after the light is reflected by the lower side surface 301d, the light beam reflected by the upper side surface 301c is condensed at the condensing point S.
After being emitted so as to be supplied from 0 and reflected by the upper side surface 301c, the light beam reflected by the lower side surface 301d is emitted so as to be supplied from the focal point S2.

【0013】従ってこのオプティカルパイプに入射する
光源像S0を持つ光束は、側面での1回又は複数回の反
射によって実質的に多数の光源像から供給されているよ
うに出射する。
Therefore, the light beam having the light source image S0 incident on the optical pipe is emitted as if it were supplied from substantially many light source images by one or a plurality of reflections on the side surface.

【0014】この結果、各側面での反射により出射面か
ら見た集光点の様子は、図36のように格子状に分布し
た多数の集光点からの光束によって出射面301bが照
明されるようになり、これら多数の虚集光点の形成され
る面S に実質的な面光源が形成されている。
As a result, the state of the converging point as viewed from the outgoing surface due to the reflection on each side surface is such that the outgoing surface 301b is illuminated by the luminous fluxes from a number of converging points distributed in a lattice as shown in FIG. As a result, a substantial surface light source is formed on the surface S 1 where these multiple virtual light converging points are formed.

【0015】よってオプティカルパイプ3の出射端30
1bは略均一な照度分布を得ることができる。
Therefore, the emission end 30 of the optical pipe 3
1b can obtain a substantially uniform illuminance distribution.

【0016】その均一の度合いはオプティカルパイプ3
内での光束の反射回数によって定まるが、ここでは詳細
な説明は省く。
The degree of uniformity is determined by the optical pipe 3
It is determined by the number of reflections of the luminous flux inside, but detailed description is omitted here.

【0017】ハエの目5は複数の微小レンズのアレイよ
りなり、その出射面5bは2次光源面を形成している。
The fly's eye 5 is composed of an array of a plurality of microlenses, and its exit surface 5b forms a secondary light source surface.

【0018】既に説明したように、オプティカルパイプ
3の出射面301bとハエの目5の入射面5aは略共役
に結ばれており、オプティカルパイプ3の出射面301
bで既に略均一な照度分布を形成しているが、それをハ
エの目5に入射させ、照射手段6でケーラー照明で被照
射面7を照射することにより、さらに均一な照度分布を
被照射面上で達成している。
As described above, the exit surface 301b of the optical pipe 3 and the entrance surface 5a of the fly's eye 5 are substantially conjugated to each other.
b, a substantially uniform illuminance distribution has already been formed, but it is incident on the fly's eye 5 and the illuminating means 6 illuminates the illuminated surface 7 with Koehler illumination, thereby providing a more uniform illuminance distribution. Achieved on the surface.

【0019】ところで最近の半導体素子の集積度の向上
に伴ない、投影露光装置の要求される解像力も年々高ま
りつつある。解像力を向上させるため、光源の短波長化
か、位相シフト法の採用、変形照明法の採用等の種々の
方法が研究開発されており、特に変形照明法は従来装置
に対し大幅な変更を加える必要がなく、かつ従来のマス
クパターンの変更が必要ないという利点を有している。
With the recent improvement in the degree of integration of semiconductor devices, the required resolving power of a projection exposure apparatus is increasing year by year. In order to improve the resolution, various methods such as shortening the wavelength of the light source, adopting the phase shift method, adopting the modified illumination method, etc. have been researched and developed. In particular, the modified illumination method significantly changes the conventional device. There is an advantage that there is no need and there is no need to change the conventional mask pattern.

【0020】変形照明法の代表的な例としては、照明光
学系の、投影光学系の瞳と略共役な面において光束が通
過する際に光束の通過位置が光軸から離間した4箇所に
制限される、所謂4重極照明と称させる方法と、前記の
照明光学系の面において光束の通過位置が光軸と同心の
輪帯状に制限される、所謂輪対照明と称される方法の2
つが特に一般的である。
As a typical example of the modified illumination method, when a light beam passes through a plane of the illumination optical system that is substantially conjugate with the pupil of the projection optical system, the position of the light beam is limited to four positions separated from the optical axis. The so-called quadrupole illumination, and the so-called ring-pair illumination, in which the light beam passing position on the surface of the illumination optical system is limited to an annular shape concentric with the optical axis.
One is particularly common.

【0021】4重極照明は特に縦横の線から成るパター
ンについて、解像力の向上及び焦点深度の増大の効果が
顕著であるが、斜め方向の線からなるパターンについて
はむしろ変形照明をしない通常照明よりも悪化する欠点
がある。
The quadrupole illumination has a remarkable effect of improving the resolving power and the depth of focus particularly for a pattern composed of vertical and horizontal lines, but a pattern composed of diagonal lines is more effective than a normal illumination which does not perform modified illumination. Also has the drawback of worsening.

【0022】一方輪帯照明は、解像力の向上および焦点
深度増大の効果は4重極よりも顕著ではないが、パター
ンの方向に依存しない特徴を有している。
On the other hand, the annular illumination has a feature that the effect of improving the resolving power and the depth of focus is less remarkable than the quadrupole, but does not depend on the direction of the pattern.

【0023】変形照明法を利用した照明装置として特開
平5-251308号公報では、光源手段とインテグレータとの
間に平行光を輪帯状光束に変換する輪帯状光束変換手段
を設けて、被照明面を均一に傾斜照明している。
Japanese Unexamined Patent Publication No. Hei 5-251308 discloses an illumination device utilizing the modified illumination method, in which an annular light beam converting means for converting parallel light into an annular light beam is provided between a light source means and an integrator to provide an illumination target surface. The illumination is uniformly inclined.

【0024】特開平5-283317号公報や特開平6-204114号
公報では楕円鏡とオプティカルインテグレータとの間に
入射光束を所定方向に偏向させる挿脱可能な光学素子を
配置して、オプティカルインテグレータの入射面の光強
度分布を変えて、被照射面を照明している。
In JP-A-5-283317 and JP-A-6-204114, an insertable / removable optical element for deflecting an incident light beam in a predetermined direction is arranged between an elliptical mirror and an optical integrator. The illuminated surface is illuminated by changing the light intensity distribution on the incident surface.

【0025】[0025]

【発明が解決しようとする課題】本発明は前述した照明
装置を改良し、通常照明法と変形照明法の切り替えが容
易で、かつ高い照明効率で被照射面を均一に照明するこ
とができ、高集積度のデバイスを容易に製造することが
できる照明装置及びそれを用いた投影露光装置、デバイ
スの製造方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention is an improvement of the above-mentioned lighting device, which makes it possible to easily switch between the normal lighting method and the modified lighting method and to uniformly illuminate the illuminated surface with high lighting efficiency. It is an object of the present invention to provide an illumination device capable of easily manufacturing a highly integrated device, a projection exposure apparatus using the same, and a device manufacturing method.

【0026】[0026]

【課題を解決するための手段】請求項1の発明の照明装
置は光源からの光を集光する第1の集光光学系と、該光
学系からの光の少なくとも一部を内面で反射して光出射
面に強度分布が均一な面光源を形成する内面反射型の第
1インテグレータと、入射光の波面を分割して多数の光
束光を形成する波面分割型の第2インテグレータと、前
記面光源を前記第2インテグレータの光入射面又はその
近傍に結像する、結像倍率が可変な結像光学系と、前記
多数の光束を被照明面上で互いに重ね合わせる第2の集
光光学系と、前記第2インテグレータの光入射面での光
量分布を調整するために前記第1インテグレータと前記
結像光光学系の間に設ける光束調整手段と、前記結像光
学系の結像倍率が変化しても前記光入射面へ入射する光
の開き角を一定又はほぼ一定に維持する手段と、を有す
ることを特徴としている。請求項2の発明は請求項1の
発明において前記第1インテグレータは角柱状又は角錐
状のガラス棒、若しくは3枚以上の平面鏡を各々の反射
面が対面するように組み合わせたカレイドスコープ(万
華鏡)を備えることを特徴としている。請求項3の発明
は請求項1又は2の発明において前記第2インテグレー
タはフライアイレンズ又は光ファイバー束を備えること
を特徴としている。請求項4の発明は請求項1から3の
いずれか1項の発明において前記結像光学系は互いに結
像倍率が異なる複数の光学系を有し、該複数の光学系の
一つが前記第1、第2インテグレータの間に選択的に供
給されることを特徴としている。請求項5の発明は請求
項1から3のいずれか1項の発明において前記結像光学
系は像面位置を一定に維持しつつ焦点距離が変化するよ
うに変位する複数の移動レンズを備えることを特徴とし
ている。請求項6の発明は請求項1から5のいずれか1
項の発明において前記第1の集光光学系が、前記光源か
らの光が光軸と直交する方向又はほぼ直交する方向に偏
心しても前記第1インテグレータへ入射する際の発散角
または収斂角を一定に維持するための光学部材を備える
ことを特徴としている。
According to a first aspect of the present invention, there is provided an illumination apparatus, comprising: a first condensing optical system for condensing light from a light source; and an inner surface for reflecting at least a part of the light from the optical system. A first integrator of an internal reflection type for forming a surface light source having a uniform intensity distribution on a light exit surface; a second integrator of a wavefront division type for dividing a wavefront of incident light to form a large number of light beams; An imaging optical system having a variable imaging magnification for imaging a light source on the light incident surface of the second integrator or in the vicinity thereof, and a second condensing optical system for superimposing the plurality of light beams on the illuminated surface When a light flux adjusting means provided between said imaging optical system and the first integrator in order to adjust the light intensity distribution at the light incidence plane of the second integrator, the imaging optical
Light incident on the light incident surface even when the imaging magnification of the scientific system changes
And means for maintaining the opening angle at a constant or almost constant . According to a second aspect of the present invention, in the first aspect of the present invention, the first integrator is a kaleidoscope (kaleidoscope) in which a prismatic or pyramid-shaped glass rod or three or more plane mirrors are combined so that respective reflecting surfaces face each other. It is characterized by having. According to a third aspect of the present invention, in the first or second aspect, the second integrator includes a fly-eye lens or an optical fiber bundle. According to a fourth aspect of the present invention, in the first aspect of the present invention, the imaging optical system includes a plurality of optical systems having different imaging magnifications from each other, and one of the plurality of optical systems is the first optical system. , And the second integrator. According to a fifth aspect of the present invention, in the first aspect of the present invention, the imaging optical system includes a plurality of moving lenses that are displaced so as to change the focal length while maintaining a constant image plane position. It is characterized by. The invention according to claim 6 is any one of claims 1 to 5.
In the first aspect of the present invention, the first condensing optical system sets a divergence angle or a convergence angle when the light from the light source enters the first integrator even when the light from the light source is decentered in a direction orthogonal to or substantially orthogonal to the optical axis. It is characterized by having an optical member for keeping it constant.

【0027】請求項7の発明の照明装置は入射光の波面
を分割して複数の光源を形成する波面分割型の第1イン
テグレータと、入射光の少なくとも一部を内面で反射し
て光出射面に強度分布が均一な面光源を形成する内面反
射型の第2インテグレータと、入射光の波面を分割して
多数の光束を形成する波面分割型の第3インテグレータ
と、光源からの光を前記第1インテグレータに入射させ
る光学系と、前記第1インテグレータが形成した前記複
数の光源を前記第2インテグレータの光入射面の近傍に
結像する第1結像光学系と、第2インテグレータが形成
する前記面光源を前記第3インテグレータの光入射面又
はその近傍に結像する、結像倍率が可変な第2結像光学
系と、前記第3インテグレータが形成した前記多数の光
束を被照明面上で互いに重ね合わせる集光光学系と、前
記第3のインテグレータの光入射面での光量分布を調整
するために前記第2インテグレータと前記第2結像光光
学系の間に設ける光束調整手段と、を有することを特徴
としている。請求項8の発明は請求項7の発明において
前記第2インテグレータは角柱状又は角錐状のガラス
棒、若しくは3枚以上の平面鏡を各々の反射面が対面す
るように組み合わせたカレイドスコープ(万華鏡)を備
えることを特徴としている。請求項9の発明は7又は8
の発明において前記第3インテグレータはフライアイレ
ンズ又は光ファイバー束を備えることを特徴としてい
る。請求項10の発明は請求項7から9のいずれか1項
の発明において前記結像光学系は互いに結像倍率が異な
る複数の光学系を有し、該複数の光学系の一つが前記第
2、第3インテグレータの間に選択的に供給されること
を特徴としている。請求項11の発明は請求項7から9
のいずれか1項の発明において前記結像光学系は像面位
置を一定に維持しつつ焦点距離が変化するように変位す
る複数の移動レンズを備えることを特徴としている。
The illuminating device according to the present invention has a wavefront splitting type first integrator for splitting a wavefront of incident light to form a plurality of light sources, and a light emitting surface for reflecting at least a part of the incident light on an inner surface. A second integrator of an internal reflection type that forms a surface light source having a uniform intensity distribution, a third integrator of a wavefront division type that divides a wavefront of incident light to form a large number of light fluxes, An optical system for entering the first integrator, a first imaging optical system for imaging the plurality of light sources formed by the first integrator in the vicinity of a light incident surface of the second integrator, and the second integrator forming A second imaging optical system having a variable imaging magnification for imaging a surface light source on the light incident surface of the third integrator or in the vicinity thereof, and the plurality of light beams formed by the third integrator on the illuminated surface; A converging optical system to be superimposed, a light beam adjusting means provided between the second integrator and the second imaging light optical system for adjusting a light amount distribution on a light incident surface of the third integrator, It is characterized by having. The invention according to claim 8 is the invention according to claim 7, wherein the second integrator is a kaleidoscope (kaleidoscope) in which a prism-shaped or pyramid-shaped glass rod or three or more plane mirrors are combined so that their reflection surfaces face each other. It is characterized by having. The invention of claim 9 is 7 or 8
In the invention, the third integrator includes a fly-eye lens or an optical fiber bundle. According to a tenth aspect of the present invention, the imaging optical system according to any one of the seventh to ninth aspects has a plurality of optical systems having different imaging magnifications from each other, and one of the plurality of optical systems is the second optical system. , And the third integrator. The invention of claim 11 is the invention of claims 7 to 9
In the invention according to any one of the above items, the imaging optical system includes a plurality of moving lenses that are displaced so as to change the focal length while maintaining a constant image plane position.

【0028】請求項12の発明は請求項1から11のい
ずれか1項の発明において前記光束調整手段は、光入射
面が凹面の円錐面で、光出射面側が凸面の円錐面である
光学部材を備えることを特徴としている。請求項13の
発明は請求項1から11のいずれか1項の発明において
前記光束調整手段は、光入射面が凹面の多角錐面で、光
出射面側が凸面の多角錐面である光学部材を備えること
を特徴としている。請求項14の発明は請求項12又は
13の発明において前記光学部材の光入射面と光出射面
とはそれぞれ前記多角錐の頂点の近傍を光軸に垂直な面
で切断した平面を有することを特徴としている。請求項
15の発明は請求項1から11のいずれか1項の発明に
おいて前記光束調整手段は、輪帯状の位相分布を有する
回折光学素子を2つ有していることを特徴としている。
請求項16の発明は請求項1から11のいずれか1項の
発明において前記光束調整手段は一面に回折光学素子を
設けた基板を有しており、該回折光学素子は該一面上の
多数の領域に面積分割されており、かつ各々の領域の回
折光学素子は直線状のパターンから形成されており、ま
た各々の領域の回折光学素子による光束の回折方向が互
いに異なっており、前記第2インテグレータの光入射面
の離散的な位置に他に比べて強い光強度分布を形成して
いることを特徴としている。請求項17の発明は請求項
1から6のいずれか1項の発明において前記第2インテ
グレータの光入射面上での光量分布が異なるようにした
光束調整手段を複数設け、該複数の光束調整手段のうち
の1つを光路中に選択可能に設定していることを特徴と
している。請求項18の発明は請求項17の発明におい
て前記第2インテグレータの光出射面近傍に前記光束調
整手段の種類に応じて開口形状が異なる絞りを交換可能
に設けることを特徴としている。請求項19の発明は請
求項7から17のいずれか1項の発明において前記第3
インテグレータの光入射面上での光量分布が異なるよう
にした光束調整手段を複数設け、該複数の光束調整手段
のうちの1つを光路中に選択可能に設定していることを
特徴としている。請求項20の発明は請求項19の発明
において前記第3インテグレータの光出射面近傍に前記
光束調整手段の種類に応じて開口形状が異なる絞りを交
換可能に設けることを特徴としている。
According to a twelfth aspect of the present invention, in the first aspect of the present invention, the light beam adjusting means is such that the light incident surface is a concave conical surface and the light exit surface side is a convex conical surface. It is characterized by having. According to a thirteenth aspect of the present invention, in the invention according to any one of the first to eleventh aspects, the light flux adjusting means includes an optical member having a concave polygonal pyramid surface on a light incident surface and a convex polygonal pyramid surface on a light exit surface side. It is characterized by having. According to a fourteenth aspect of the present invention, in the twelfth or thirteenth aspect, the light incident surface and the light exit surface of the optical member each have a plane obtained by cutting the vicinity of the apex of the polygonal pyramid by a plane perpendicular to the optical axis. Features. A fifteenth aspect of the present invention is characterized in that, in the invention of any one of the first to eleventh aspects, the light beam adjusting means has two diffractive optical elements having a ring-shaped phase distribution.
According to a sixteenth aspect of the present invention, in the invention according to any one of the first to eleventh aspects, the light beam adjusting means has a substrate provided with a diffractive optical element on one surface, and the diffractive optical element has a plurality of diffractive optical elements on the one surface. The second integrator is divided into areas, and the diffractive optical elements in each area are formed of linear patterns, and the directions of diffraction of light beams by the diffractive optical elements in each area are different from each other; Is characterized in that a stronger light intensity distribution is formed at discrete positions on the light incident surface. According to a seventeenth aspect of the present invention, there is provided the light emitting device according to any one of the first to sixth aspects, wherein a plurality of light flux adjusting means having different light quantity distributions on the light incident surface of the second integrator are provided. Is set to be selectable in the optical path. An eighteenth aspect of the present invention is characterized in that, in the invention of the seventeenth aspect, a stop having a different aperture shape is exchangeably provided near the light exit surface of the second integrator according to the type of the light flux adjusting means. The invention of claim 19 is the invention according to any one of claims 7 to 17, wherein
A plurality of light flux adjusting means having different light quantity distributions on the light incident surface of the integrator are provided, and one of the plurality of light flux adjusting means is set to be selectable in an optical path. According to a twentieth aspect of the present invention, in the nineteenth aspect, a stop having a different aperture shape is provided in the vicinity of the light exit surface of the third integrator according to the type of the light flux adjusting means so as to be exchangeable.

【0029】請求項21の発明の投影露光装置は請求項
1から20のいずれか1項記載の照明装置を用いて被照
射面に設けたマスクのパターンを投影光学系によりウエ
ハ上に投影することを特徴としている。請求項22の発
明の投影露光装置は請求項1から20のいずれか1項記
載の照明装置を用いて被照射面に設けたマスクのパター
ンをウエハ上に投影する投影光学系を有し、該マスクと
ウエハを前記投影光学系の光軸と垂直方向に前記投影光
学系の投影倍率に対応させた速度比で同期させて走査し
て露光することを特徴としている。請求項23の発明の
デバイスの製造方法は請求項21又は請求項22の投影
露光装置を用いてデバイスパターンでウエハを露光する
段階と、該露光したウエハを現像する段階とを含むこと
を特徴としている。
According to a twenty-first aspect of the present invention, there is provided a projection exposure apparatus for projecting a mask pattern provided on a surface to be illuminated onto a wafer by a projection optical system using the illumination device according to any one of the first to twentieth aspects. It is characterized by. A projection exposure apparatus according to a twenty-second aspect of the present invention has a projection optical system for projecting a mask pattern provided on a surface to be irradiated onto a wafer using the illumination device according to any one of the first to twentieth aspects. The mask and the wafer are scanned and exposed in a direction perpendicular to the optical axis of the projection optical system at a speed ratio corresponding to the projection magnification of the projection optical system. A method of manufacturing a device according to claim 23 includes a step of exposing a wafer with a device pattern using the projection exposure apparatus of claim 21 or 22, and a step of developing the exposed wafer. I have.

【0030】[0030]

【発明の実施の形態】図1は本発明の照明装置の実施形
態1の一部分の要部概略図、図2は本発明の照明装置を
用いた投影露光装置の実施形態1の要部概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment of an illumination device of the present invention, and FIG. 2 is a schematic view of a main portion of a first embodiment of a projection exposure apparatus using the illumination device of the present invention. It is.

【0031】本実施形態の投影露光装置はステップアン
ドリピート方式やステップアンドスキャン方式が適用可
能である。
The projection exposure apparatus of the present embodiment can employ a step-and-repeat method or a step-and-scan method.

【0032】図中、20は光源であり、紫外線や遠紫外
線などを放射するエキシマレーザや超高圧水銀灯等から
成っている。光源20を出射した光束は光束整形手段2
1を経て所望の光束形状にした後、インコヒーレント化
手段22を経て干渉性の低い光束へ変換して、さらに出
射角保存光学素子23により、光源20と投影露光装置
の間の振動等による影響を排除した後、集光光学系10
に入射している。
In the figure, reference numeral 20 denotes a light source, which is composed of an excimer laser, an ultra-high pressure mercury lamp, or the like which emits ultraviolet light, far ultraviolet light, or the like. The light emitted from the light source 20 is applied to the light shaping means 2.
1, the light beam is converted into a light beam having low coherence through the incoherentizing means 22, and further emitted by the emission angle preserving optical element 23. Is eliminated, the condensing optical system 10
Incident on

【0033】出射角保存光学素子23からの光束は集光
光学系10で集光点を作った後、オプティカルパイプ
(光束混合手段)3の入射面3aに入射する。オプティ
カルパイプ3の出射端(出射面)3b近傍には、不図示
の駆動機構により着脱交換可能な光束調整手段11(1
1a、 11b)が設けられており、オプティカルパイプ
3を出射する光束分布に対して所望の規制を加えてい
る。
The light beam from the emission angle preserving optical element 23 is focused on the light condensing optical system 10 and then enters the light entrance surface 3a of the optical pipe (light beam mixing means) 3. In the vicinity of the emission end (emission surface) 3b of the optical pipe 3, a light flux adjusting means 11 (1
1a and 11b) are provided, and a desired regulation is added to a light flux distribution emitted from the optical pipe 3.

【0034】光束調整手段11(11a、11b)は例
えば図3(A)、(B)に示すように入射面側に凹の、
出射面側に凸の円錐面を有するプリズム部材(光学部
材)より成っており光束調整手段11a、11bにおい
てはその頂角が異なっており、光束調整手段11aの方
が光束調整手段11bに比べて角度が小さい、すなわち
より鋭い凸の形状となっている。光束調整手段11aの
方が外径の大きな輪帯、光束調整手段11bの方が外径
の小さな輪帯の有効光源を後述する多光束発生手段5の
入射面5aに形成している。4は集光レンズであり、光
束調整手段11からの光束をハエの目レンズより成る多
光束発生手段5の入射面5aに集光している。
The light beam adjusting means 11 (11a, 11b) is, for example, as shown in FIGS.
It is composed of a prism member (optical member) having a convex conical surface on the exit surface side, and the apex angles of the light flux adjusting means 11a and 11b are different, and the light flux adjusting means 11a is higher than the light flux adjusting means 11b. The angle is small, that is, it has a sharper convex shape. The light flux adjusting means 11a and the light flux adjusting means 11b form an effective light source having an annular zone having a large outer diameter on the incident surface 5a of the multi-beam generating means 5 described later. Reference numeral 4 denotes a condensing lens, which condenses the light beam from the light beam adjusting means 11 on the incident surface 5a of the multi-beam generating means 5 comprising a fly-eye lens.

【0035】集光レンズ4は光束混合手段3の出射面3
bを多光束発生手段5の入射面5aに所定の倍率で結像
させ、双方が互いに略共役関係となるようにしている。
The converging lens 4 is a light exit surface 3 of the light beam mixing means 3.
b is formed on the incident surface 5a of the multi-beam generating means 5 at a predetermined magnification so that the two have a substantially conjugate relationship with each other.

【0036】ハエの目5の出射面5b近傍は2次光源と
なっており、そこには不要光を遮光して所望形状の有効
光源が形状に整形されている。12は絞りであり、多光
束発生手段5の出射面5b近傍に、駆動機構により着脱
交換可能に設けられている。絞り12は複数の絞り(1
2a、12b)を有している。
The vicinity of the emission surface 5b of the fly's eye 5 is a secondary light source, in which an effective light source having a desired shape is formed into a shape by blocking unnecessary light. Reference numeral 12 denotes a stop, which is detachably provided near the emission surface 5b of the multi-beam generating means 5 by a driving mechanism. The diaphragm 12 has a plurality of diaphragms (1
2a, 12b).

【0037】絞り12a、12bは例えば、図4
(A)、(B)に示す開口部を有している。図4におい
て斜線部分が遮光部である。
The apertures 12a and 12b are, for example, as shown in FIG.
It has openings shown in (A) and (B). In FIG. 4, a shaded portion is a light shielding portion.

【0038】6は照射手段であり、ハエの目5の出射面
5bからの光束のうち、絞り12の開口部を通過した光
束を集光して被照射面(レチクル)7をケーラー照明し
ている。
Numeral 6 denotes an irradiating means, which condenses a light beam which has passed through the opening of the aperture 12 out of the light beam from the exit surface 5b of the fly's eye 5 to Koehler illuminate the irradiated surface (reticle) 7. I have.

【0039】24は投影光学系であり、レチクル(マス
ク)7に描かれたパターンを露光基板(ウエハ)25に
投影している。
A projection optical system 24 projects the pattern drawn on the reticle (mask) 7 onto an exposure substrate (wafer) 25.

【0040】本実施形態の投影露光装置においては、光
束調整手段11a、11b等を挿入あるいは他の光束調
整手段と交換することで輪帯照明、4重極照明等の変形
照明に変更となっている。
In the projection exposure apparatus of the present embodiment, the illumination is changed to annular illumination, quadrupole illumination or the like by inserting the light flux adjusting means 11a, 11b or the like or replacing it with another light flux adjusting means. I have.

【0041】その際必要に応じ絞り12を多光束発生手
段5の出射面5b近傍に挿入することにより、不要光を
遮光し所望の有効光源形状をより正確に形成するように
している。
At this time, the stop 12 is inserted in the vicinity of the emission surface 5b of the multi-beam generating means 5 as necessary, so that unnecessary light is blocked and a desired effective light source shape is formed more accurately.

【0042】次に本実施形態の構成のうち前述した構成
以外の特徴について説明する。
Next, features of the present embodiment other than the above-described configuration will be described.

【0043】光束調整手段11によりハエの目5の入射
面5aで形成される照度分布は、光束調整手段11の形
状、光束調整手段11と集光レンズ4及びハエの目5の
入射面5aの光学的配置、また集光レンズ5の収差等に
よって異なる。
The illuminance distribution formed on the entrance face 5a of the fly's eye 5 by the light flux adjusting means 11 is based on the shape of the light flux adjusting means 11, the light flux adjusting means 11, the condenser lens 4, and the incident face 5a of the fly's eye 5. It depends on the optical arrangement, the aberration of the condenser lens 5, and the like.

【0044】光束調整手段11として図3(A)に示す
光束調整手段11aを使用した場合には、例えば図5に
示すようにハエの目5の入射面5a上に輪帯状の照度分
布を形成し、かつそれらの強度が暗部と明部が非常に急
激な変化を有する場合がある。
When the light beam adjusting means 11a shown in FIG. 3A is used as the light beam adjusting means 11, an annular illuminance distribution is formed on the incident surface 5a of the fly's eye 5 as shown in FIG. And their intensity may have very sharp changes in the dark and light areas.

【0045】図5中の斜線部分が光が照射されている部
分であり、そのXX’断面での光強度を下に示してい
る。図5に示すように、この場合は所望の有効光源分布
に対する不要光がほとんど生じないので、前述の絞り1
2aは不要となる。
The hatched portion in FIG. 5 is a portion irradiated with light, and the light intensity in the XX ′ section is shown below. As shown in FIG. 5, in this case, there is almost no unnecessary light with respect to the desired effective light source distribution.
2a becomes unnecessary.

【0046】これに対して照明系によっては図6に示す
ように輪帯の光強度の断面がガウス分布の様に上部及び
下部がダレる場合がある。その場合は図4(A)に示す
絞り12aを用いることで不要光を遮光している。
On the other hand, depending on the illumination system, as shown in FIG. 6, the cross section of the light intensity of the annular zone may be sagged at the top and bottom like a Gaussian distribution. In that case, unnecessary light is blocked by using the aperture 12a shown in FIG.

【0047】図7の斜線部は絞り12aを用いたときの
遮光されずに有効光源分布の形成に寄与する部分を示し
ている。
The hatched portion in FIG. 7 indicates a portion that is not shaded when the stop 12a is used and contributes to the formation of the effective light source distribution.

【0048】図8は図1において光束調整手段11aを
光束調整手段11bに交換した場合の説明図である。
FIG. 8 is an explanatory diagram when the light beam adjusting means 11a in FIG. 1 is replaced with the light beam adjusting means 11b.

【0049】この場合も前述したのと同様に図9に示す
ように、ハエの目5の入射面5aの輪帯状の照度分布の
明部と暗部が非常に急激な変化をする場合がある。この
場合は絞り12bは不要である。これに対して、ハエの
目5の入射面5aでの強度分布が図10に示すような場
合にはやはり絞り12bを用いて不要光を遮光してい
る。図11の斜線部は絞り12bを用いたときの遮光さ
れず有効光源分布の形成に寄与する部分を示している。
In this case as well, as shown in FIG. 9, the bright and dark portions of the annular illumination distribution on the entrance surface 5a of the fly's eye 5 may change very sharply as described above. In this case, the aperture 12b is unnecessary. On the other hand, in the case where the intensity distribution of the fly's eye 5 on the incident surface 5a is as shown in FIG. 10, the unnecessary light is also blocked by using the aperture 12b. The hatched portion in FIG. 11 indicates a portion that is not shielded when the stop 12b is used and contributes to the formation of the effective light source distribution.

【0050】以上は輪帯照明を形成する場合を述べた
が、同様にして光束調整手段11を切り替えることによ
り4重極等の変形照明にも対応可能である。
In the above, the case where annular illumination is formed has been described. However, by changing the light flux adjusting means 11 in the same manner, it is possible to cope with deformed illumination such as a quadrupole.

【0051】図3(C)に示す光束調整手段11cは4
重極照明を形成するための光束調整手段の外径であり、
入射面側に凹の、出射面側に凸の4角錐面形状を有する
プリズム部材より成っている。
The light beam adjusting means 11c shown in FIG.
The outer diameter of the light flux adjusting means for forming the dipole illumination,
The prism member has a quadrangular pyramid shape that is concave on the incident surface side and convex on the output surface side.

【0052】これによりハエの目5の入射面5aには例
えば図12に示す斜線部分にのみ光束が入射する。この
際絞りも図4(C)に示す絞り12cに変更して、図1
3に斜線を示した部分のみで有効光源を形成し、所望の
有効光源を形成している。尚図12の下の図及び図13
は、図12の上の図のAA′断面での強度分布を示して
いる。
As a result, a light beam is incident on the incident surface 5a of the fly's eye 5, for example, only at the hatched portion shown in FIG. At this time, the aperture is also changed to the aperture 12c shown in FIG.
An effective light source is formed only by the hatched portions in FIG. 3, and a desired effective light source is formed. FIG. 13 and FIG.
Shows the intensity distribution in the AA 'section of the upper drawing of FIG.

【0053】この場合は輪帯照明の説明の中で既に述べ
たように、ハエの目5の入射面5a側での照度分布は明
部と暗部で急激な変化を有する場合であるが、それがガ
ウス分布の様な場合については前述したのと同じなので
説明を省く。
In this case, as already described in the description of the annular illumination, the illuminance distribution on the incident surface 5a side of the fly's eye 5 has a sharp change between a bright part and a dark part. Is the same as described above in the case of a Gaussian distribution, so the description is omitted.

【0054】また4重極の離散的な強度分布の光軸から
の位置については、輪帯照明のプリズム部材と同様、4
角錐の頂角を調整することで、任意の位置に調整可能で
ある。
The position of the quadrupole from the optical axis of the discrete intensity distribution is the same as that of the prism member for annular illumination.
By adjusting the apex angle of the pyramid, it can be adjusted to an arbitrary position.

【0055】図3(D)に示す光束調整手段11dは4
重極ほど離散的に強度分布が強い有効光源ではなく、4
重極の他の部分にも弱いながらも強度分布を有する有効
光源を形成するための光束調整手段の外径の説明図であ
る。
The light beam adjusting means 11d shown in FIG.
It is not an effective light source whose intensity distribution is discretely stronger than the
It is explanatory drawing of the outer diameter of the light beam adjusting means for forming the effective light source which has a weak but intensity distribution also in the other part of a heavy pole.

【0056】図3(D)の光束調整手段は図3(C)の
光束調整手段11cのプリズム部材の凹と凸の頂点を平
にしたものである。これによりハエの目5に入射する光
束の強度分布は図14に示した様になる。
The light beam adjusting means in FIG. 3D is obtained by flattening the concave and convex vertices of the prism member of the light beam adjusting means 11c in FIG. 3C. Thus, the intensity distribution of the light beam incident on the fly's eye 5 becomes as shown in FIG.

【0057】本実施形態では以上説明したように、光束
混合手段3と多光束発生手段5を用いた照明装置におい
て、所望の有効光源分布に対応した光束調整手段11を
光束混合手段3の直後に挿入するだけで、他の光学部材
を特に調整する必要なく、効率の高い変形照明を可能と
している。
In the present embodiment, as described above, in the illumination device using the light beam mixing means 3 and the multi-beam light generation means 5, the light beam adjusting means 11 corresponding to the desired effective light source distribution is provided immediately after the light beam mixing means 3. By simply inserting, it is possible to perform highly efficient deformed illumination without particularly adjusting other optical members.

【0058】また、光束調節手段の挿入により、光束混
合手段と集光レンズ間の光路長が変わるが、そのために
照明系に不都合が生じる場合は、光束調節手段を用いな
い通常照明時にも、光束調節手段と略等しい光路長の平
行平板を挿入しておき、変形照明時には、それと光束調
節手段を交換するように構成してもよい。
Also, the insertion of the light beam adjusting means changes the optical path length between the light beam mixing means and the condenser lens. If this causes a problem in the illumination system, the light beam length can be reduced even in normal illumination without using the light beam adjusting means. A parallel flat plate having an optical path length substantially equal to that of the adjusting means may be inserted, and at the time of deformed illumination, the light flux adjusting means may be replaced with the parallel flat plate.

【0059】図15は本発明の照明装置の実施形態2の
一部分の要部概略図である。
FIG. 15 is a schematic view of a main part of a part of Embodiment 2 of the lighting device of the present invention.

【0060】本実施形態は図1の実施形態1に比べて光
束調整手段11(11e、11f)として、所定形状の
プリズム部材の代わりに平行平面板111aの表裏面に
回折光学素子111、112を設けて構成した点が異な
っており、その他の構成は同じである。
In this embodiment, diffractive optical elements 111 and 112 are provided on the front and back surfaces of a parallel flat plate 111a instead of a prism member having a predetermined shape, as light flux adjusting means 11 (11e and 11f), as compared with the first embodiment shown in FIG. The difference is that they are provided and configured, and the other configurations are the same.

【0061】図中、図1で示した要素と同一要素には同
符番を付している。
In the figure, the same elements as those shown in FIG. 1 are denoted by the same reference numerals.

【0062】本実施形態は実施形態1と同様、光束混合
手段オプティカルパイプ3の出射端3b近傍に着脱交換
可能に光束調整手段11e、11fが設けられており、
また同様にハエの目5の出射面5b近傍には着脱交換可
能な絞り12e、12fが設けられている。
In this embodiment, similarly to the first embodiment, light flux adjusting means 11e and 11f are provided near the emission end 3b of the light mixing optical pipe 3 so as to be detachable and replaceable.
Similarly, apertures 12e and 12f are provided near the emission surface 5b of the fly's eye 5 so as to be removable.

【0063】光束調整手段11e、11fは図16に示
すように平行平面板111aの表裏面に各々回折光学素
子111、112を設けて構成している。
The light flux adjusting means 11e and 11f are constructed by providing diffractive optical elements 111 and 112 on the front and back surfaces of a plane parallel plate 111a as shown in FIG.

【0064】図16は光束調整手段11eの光軸Laを
含んだ断面での概略図と、その一部の拡大図を示してい
る。光束調整手段11eのブレーズド形状は図中の拡大
図に示したとおりである。すなわち回折光学素子111
は垂直に光が入射した場合光軸と反対方向に光を回折さ
せる作用を有している。一方回折光学素子112は垂直
に光が入射した場合光軸La側に光を回折させる作用を
有している。
FIG. 16 shows a schematic diagram of a cross section including the optical axis La of the light beam adjusting means 11e and an enlarged view of a part thereof. The blazed shape of the light beam adjusting means 11e is as shown in the enlarged view in the figure. That is, the diffractive optical element 111
Has the function of diffracting light in the direction opposite to the optical axis when light is incident vertically. On the other hand, the diffractive optical element 112 has a function of diffracting light toward the optical axis La when the light is incident vertically.

【0065】光束調整手段11eが例えば輪帯照明を形
成する光束調整手段であるとすると、回折光学素子11
1、112の位相分布は図17に示すように光軸を中心
とした同心円状のパターンから構成される回折光学素子
となる。
If the light beam adjusting means 11e is a light beam adjusting means for forming, for example, annular illumination, the diffractive optical element 11
As shown in FIG. 17, the phase distributions 1 and 112 become a diffractive optical element composed of concentric patterns centered on the optical axis.

【0066】また光束調整手段11eが4重極照明を形
成する光束調整手段であるとすると、回折光学素子11
1、112の位相分布は図18に示すように、直線状の
パターンを隣接するパターンと直交する様に配置した回
折光学素子となる。
If the light beam adjusting means 11e is a light beam adjusting means for forming quadrupole illumination, the diffractive optical element 11e
As shown in FIG. 18, the phase distributions 1 and 112 become a diffractive optical element in which a linear pattern is arranged so as to be orthogonal to an adjacent pattern.

【0067】また光束調整手段11eが図14に示した
有効光源分布を形成する光束調整手段であるとすると、
回折光学素子111、112は図19に示すように、図
18の直線状の回折光学格子で構成されたものから、光
軸Laを含む中心部分を回折作用を持たないようにした
形状の回折光学素子となる。
If the light beam adjusting means 11e is a light beam adjusting means for forming the effective light source distribution shown in FIG.
As shown in FIG. 19, the diffractive optical elements 111 and 112 are different from the linear diffractive optical grating shown in FIG. 18 in that the central portion including the optical axis La has no diffractive action. Element.

【0068】本実施形態ではこれらの回折光学素子でハ
エの目5へ入射する光束の分布を調整することで各種変
形照明を効率よく形成している。又実施形態1で述べた
ようにハエの目5の入射面5a上での強度分布がガウス
分布のようなスロープを持っている場合は、ハエの目5
出射面5b近傍に絞り12を設け、それを光束調整手段
11の変更に合わせて変更させて、所望の形状の有効光
源分布を形成している。
In the present embodiment, various modified illuminations are efficiently formed by adjusting the distribution of the light beam entering the fly's eye 5 with these diffractive optical elements. Further, as described in the first embodiment, when the intensity distribution of the fly's eye 5 on the incident surface 5a has a slope like a Gaussian distribution, the fly's eye 5
An aperture 12 is provided in the vicinity of the light exit surface 5b, and the aperture 12 is changed in accordance with the change of the light flux adjusting means 11 to form an effective light source distribution having a desired shape.

【0069】以上説明したように、実施形態2において
も光束混合手段3と多光束発生手段5を用いた照明装置
において、所望の有効光源分布に対応した光束調整手段
11を光束混合手段3の直後に挿入するだけで、他の光
学部材を特に調整する必要なく、効率の高い変形照明を
可能としている。
As described above, also in the second embodiment, in the lighting apparatus using the light beam mixing means 3 and the multi-beam light generation means 5, the light beam adjusting means 11 corresponding to the desired effective light source distribution is provided immediately after the light beam mixing means 3. By simply inserting the optical member into the lens, it is possible to perform highly efficient deformed illumination without particularly adjusting other optical members.

【0070】さらに実施形態1の光束調整手段11はプ
リズム部材で構成されているため、所望された有効光源
分布の場合においてはそれに基づいてプリズム部材を加
工していた。これに対して本実施形態においては回折光
学素子を用いて光束調整手段を構成しているので、回折
光学素子としての機能を有するための微細加工が許す範
囲であればいかなる光束調整手段も容易に作成可能であ
る。
Further, since the light beam adjusting means 11 of the first embodiment is composed of a prism member, the prism member is processed based on the desired effective light source distribution in the case of a desired effective light source distribution. On the other hand, in the present embodiment, the light flux adjusting means is constituted by using the diffractive optical element, so that any light flux adjusting means can be easily used as long as fine processing for functioning as the diffractive optical element is permitted. Can be created.

【0071】その際図16に示した様に、光リソグラフ
ィー技術を使用したバイナリ光学素子として形成するこ
とが効率や製造誤差等の点から望ましく、また効率を考
えると8レベル以上のバイナリ光学素子とすることが望
ましい。
At this time, as shown in FIG. 16, it is desirable to form a binary optical element using optical lithography from the viewpoint of efficiency, manufacturing error, and the like. It is desirable to do.

【0072】図20は本発明の照明装置の実施形態3の
一部分の要部概略図である。
FIG. 20 is a schematic view showing a main part of a part of Embodiment 3 of the lighting device of the present invention.

【0073】本実施形態は図15の実施形態2に比べ
て、光束調整手段11として平行平面板111a(11
1b)の一面に回折光学素子111(112)を設けた
2つの部材111b、112を対向配置して構成してい
る点が異なっており、その他の構成は同じである。
This embodiment is different from the second embodiment shown in FIG. 15 in that a parallel plane plate 111a (11
1b) is different in that two members 111b and 112 provided with a diffractive optical element 111 (112) on one surface are arranged to face each other, and the other configurations are the same.

【0074】図中、図15で示した要素と同一要素には
同符番を付している。
In the figure, the same elements as those shown in FIG. 15 are denoted by the same reference numerals.

【0075】本実施形態は実施形態2と同様、光束混合
手段(オプティカルパイプ)3の出射端3b近傍に着脱
交換可能に光束調整手段11g、11hが設けられてお
り、また同様にハエの目5の出射面5b近傍には着脱交
換可能な絞り12g、12hが設けられている。
In the present embodiment, similarly to the second embodiment, light flux adjusting means 11g and 11h are provided near the emission end 3b of the light beam mixing means (optical pipe) 3 so as to be detachable and exchangeable. In the vicinity of the emission surface 5b, there are provided apertures 12g and 12h which can be attached and detached and exchanged.

【0076】光束調整手段11g、11hは各々、図2
1に示すように平行平面板111a、112aの一面に
回折光学素子111、112を設けた部材111b、1
12bを対向配置して構成している。図21は光束調整
手段11gの光軸Laを含んだ断面での概略図と、その
一部の拡大図を示している。
The light beam adjusting means 11g and 11h are respectively provided in FIG.
As shown in FIG. 1, members 111b, 1b provided with diffractive optical elements 111, 112 on one surface of parallel plane plates 111a, 112a.
12b are arranged facing each other. FIG. 21 shows a schematic view of a cross section including the optical axis La of the light flux adjusting means 11g and an enlarged view of a part thereof.

【0077】光束調整手段11gは2つの回折光学素子
111、112を有している。その構成は平行平面板
11aの入射面と平行平面板112aの出射面にブレー
ズドされた回折格子素子より成っている。
The light beam adjusting means 11g has two diffractive optical elements 111 and 112. Its configuration is a parallel plane plate 1
It consists of a diffraction grating element blazed on the incident surface 11a and the exit surface of the plane-parallel plate 112a.

【0078】その他の作用や構成は実施形態2と同様で
あるので説明を省く。
The other operations and configurations are the same as those of the second embodiment, and will not be described.

【0079】以上説明したように、実施形態3において
も光束混合手段3と多光束発生手段5を用いた照明装置
において、所望の有効光源分布に対応した光束調整手段
11を光束混合手段3の直後に挿入するだけで、他の光
学部材を特に調整する必要なく、効率の高い変形照明を
可能としている。
As described above, also in the third embodiment, in the lighting apparatus using the light beam mixing means 3 and the multi-beam light generation means 5, the light beam adjusting means 11 corresponding to the desired effective light source distribution is provided immediately after the light beam mixing means 3. By simply inserting the optical member into the lens, it is possible to perform highly efficient deformed illumination without particularly adjusting other optical members.

【0080】また実施形態2と同様に回折光学素子を用
いて光束調整手段を構成しているので、回折光学素子と
しての機能を有するための微細加工が許す範囲であれ
ば、いかなる光束調整手段も容易に作成可能であり、そ
の際、回折光学素子を光リソグラフィー技術を使用した
バイナリ光学素子として形成することが効率や製造誤差
等の点から望ましく、また効率を考えると8レベル以上
のバイナリ光学素子とすることが望ましい。
Further, since the light beam adjusting means is constituted by using a diffractive optical element as in the second embodiment, any light beam adjusting means can be used as long as fine processing for functioning as a diffractive optical element is permitted. In this case, it is desirable to form the diffractive optical element as a binary optical element using optical lithography technology from the viewpoint of efficiency and manufacturing error. In addition, considering the efficiency, a binary optical element having eight or more levels It is desirable that

【0081】さらに本実施形態では回折光学素子11
1、112の2つの平行平面板111a、112a部材
に分離して構成し、その分、硝材厚を削減している。
Further, in this embodiment, the diffractive optical element 11
The structure is separated into two parallel flat plates 111a and 112a, and the glass material thickness is reduced accordingly.

【0082】図22は本発明の照明装置の実施形態4の
要部概略図で、LSIやVLSI等の半導体チップや、
CCD,磁気センサ、液晶素子等のデバイスを製造す
る、ステップ&リピート型やステップ&スキャン型の投
影露光装置に用いる照明装置の概略図である。以下実施
形態4においては前述した各実施形態と異なっている構
成を中心に説明する。
FIG. 22 is a schematic view of a main part of a lighting device according to a fourth embodiment of the present invention, in which a semiconductor chip such as an LSI or a VLSI,
FIG. 3 is a schematic view of an illumination device used in a step-and-repeat type or step-and-scan type projection exposure apparatus for manufacturing devices such as a CCD, a magnetic sensor, and a liquid crystal element. Hereinafter, the fourth embodiment will be described focusing on the configuration different from the above-described embodiments.

【0083】図22において、201はArFエキシマ
レーザ(波長約193nm )やKrFエキシマレーザ(波長
約248nm )等のレーザ光源、202は入射光が変位して
もそれから出射する光束の出射角が変化しない(保存す
る)出射角度保存光学素子、203は集光光学系、20
4は光束混合手段、205はズーム光学系、207は多
光束発生手段、208は集光光学系、209はデバイス
パターンが形成されたマスク(レチクル)等の被照明物
体を示す。又、AXは照明装置の光軸を示す。
Referring to FIG. 22, reference numeral 201 denotes a laser light source such as an ArF excimer laser (wavelength: about 193 nm) or KrF excimer laser (wavelength: about 248 nm); and 202, the outgoing angle of a light beam emitted therefrom does not change even if the incident light is displaced. (Preserving) an emission angle preserving optical element, 203 is a condensing optical system, 20
Reference numeral 4 denotes a light beam mixing unit, 205 denotes a zoom optical system, 207 denotes a multi-beam generation unit, 208 denotes a condensing optical system, and 209 denotes an illuminated object such as a mask (reticle) on which a device pattern is formed. AX indicates the optical axis of the lighting device.

【0084】11は光束調整手段であり、前述した各実
施形態と同様の構成が適用可能となっている。12は絞
りであり、前述した各実施形態と同様の構成が適用可能
となっている。
Numeral 11 denotes a light beam adjusting means, which is applicable to the same configuration as in each of the above-described embodiments. Reference numeral 12 denotes an aperture, and the same configuration as in each of the above-described embodiments is applicable.

【0085】集光光学系208及びズーム光学系205
は、基本的に複数のレンズ素子より成り、場合によって
は光路を折り曲げるためのミラーを少なくとも一枚有す
る。又、レンズ素子が一枚の場合もある。特にズーム光
学系の複数のレンズ素子の内の複数のレンズ素子は不図
示の駆動機構により光軸AXに沿って移動するよう構成
してあり、複数のレンズ素子を光軸方向に所定の関係で
動かすことにより、結像面の位置を固定しつつ結像倍率
を変えるようにしてある。
Condensing optical system 208 and zoom optical system 205
Consists of a plurality of lens elements, and in some cases has at least one mirror for bending the optical path. Further, there is a case where the number of lens elements is one. In particular, a plurality of lens elements of the plurality of lens elements of the zoom optical system are configured to move along the optical axis AX by a driving mechanism (not shown), and the plurality of lens elements are arranged in a predetermined relationship in the optical axis direction. By moving, the imaging magnification is changed while fixing the position of the imaging plane.

【0086】光束混合手段204は、例えば、単一の光
パイプ又は複数個の光パイプを束ねた光パイプ束であ
る。光パイプは、レーザー光源201からのレーザー光
に対して透過率の良い硝材(石英や蛍石)を用いた多角
柱又は頂点側を切断した多角錐より成るガラス棒や、3
枚以上の平面鏡を各々の反射面を対面させて筒状に構成
したカレイドスコ−プ(万華鏡)のような中空の光学素
子から成る。この中空の光学素子も外形は多角柱又は頂
点側を切断した多角錐となる。光パイプの側面にある反
射面(ガラス棒の場合は空気との界面、中空光学素子の
場合は内側の反射面)は平坦で高い反射率を有する。光
束混合手段204は、その側面の反射面により入射光の
少なくとも一部を反射しつつ伝播させて入射光の複数の
光線を混ぜ合わせることにより、その光出射面204′
に又はその近傍に強度分布が均一な面光源(光)を形成
する。以下、光束混合手段204及びこれと同じ機能を
有するものを「内面反射型インテグレータ」ともいう。
The light mixing means 204 is, for example, a single light pipe or a light pipe bundle obtained by bundling a plurality of light pipes. The light pipe may be a glass rod made of a polygonal prism or a polygonal pyramid whose apex side is cut using a glass material (quartz or fluorite) having a high transmittance to the laser light from the laser light source 201.
It is composed of a hollow optical element such as a kaleidoscope (kaleidoscope) in which at least one plane mirror is formed in a cylindrical shape with its reflection surfaces facing each other. The external shape of this hollow optical element is also a polygonal prism or a polygonal pyramid whose apex side is cut off. The reflecting surface (the interface with air in the case of a glass rod, the inner reflecting surface in the case of a hollow optical element) on the side surface of the light pipe is flat and has a high reflectance. The light beam mixing means 204 reflects at least part of the incident light while reflecting the light by the reflection surface on the side surface thereof, and mixes the plurality of light beams of the incident light to form the light emission surface 204 ′.
A surface light source (light) having a uniform intensity distribution is formed at or near the surface. Hereinafter, the light beam mixing means 204 and those having the same function are also referred to as “internal reflection type integrator”.

【0087】多光束発生手段207は、複数の微小レン
ズより成るハエの目レンズや光ファイバー束等からな
り、その光入射面207′に入射した入射光の波面を複
数の部分に分割してその光射出面207″又はその近傍
に複数の点光源から成る面光源(光)を形成している。
複数の点光源からの光は後段の光学系を介して互いに重
なり合い所定の平面に強度分布が均一な面光源(光)を
形成する。以下、多光束発生手段207及びこれと同じ
機能を有するものを「波面分割型インテグレータ」とも
いう。
The multi-beam generating means 207 is composed of a fly-eye lens or an optical fiber bundle formed of a plurality of minute lenses, and divides the wavefront of the incident light incident on the light incident surface 207 'into a plurality of portions. A surface light source (light) including a plurality of point light sources is formed on or near the emission surface 207 ″.
Light from a plurality of point light sources overlaps each other via an optical system at a later stage to form a surface light source (light) having a uniform intensity distribution on a predetermined plane. Hereinafter, the multi-beam generating means 207 and those having the same function are also referred to as “wavefront splitting integrator”.

【0088】レーザ光源201から射出したレーザ光は
不図示のミラーやリレーレンズから成る光束引き回し光
学系を経て出射出角度保存光学素子202に入射する。
出射角度保存光学素子202は図23(A)に示すよう
にアパーチャ221とレンズ系222から構成されてお
り、入射光束が光軸AXに直交する方向にある範囲内で
変位して光束227から光束228の状態に変化して
も、出射角度保存光学素子202から射出される光束の
出射角度(開き角)φが一定である性質を有する。
The laser light emitted from the laser light source 201 enters the outgoing / emission angle preserving optical element 202 through a light guiding optical system including a mirror and a relay lens (not shown).
The emission angle preserving optical element 202 is composed of an aperture 221 and a lens system 222 as shown in FIG. 23A, and the incident light beam is displaced within a certain range in a direction orthogonal to the optical axis AX to be shifted from the light beam 227. Even when the state changes to the state of 228, the light beam emitted from the emission angle storage optical element 202 has a property that the emission angle (opening angle) φ is constant.

【0089】又、出射角度保存光学素子202は、図2
3(B)に示すような複数の、微小レンズ223より成
るハエの目レンズにより構成しても良い。この場合は出
射角度φは微小レンズの形状に依存する。図23(B)
の光学素子202も、入射光束が光軸AXに直交する方
向にある範囲内で変位して光束227から光束228の
状態に変化しても、出射角度保存光学素子202から出
射する光束の出射角度(開き角)φが一定である。尚、
ハエの眼レンズ以外の波面分割型インテグレータが、出
射角度保存光学素子202として適用可能である。
Further, the emission angle preserving optical element 202 is the same as that shown in FIG.
A fly-eye lens composed of a plurality of minute lenses 223 as shown in FIG. In this case, the emission angle φ depends on the shape of the micro lens. FIG. 23 (B)
Even if the incident light beam is displaced within a certain range in the direction orthogonal to the optical axis AX and changes from the light beam 227 to the light beam 228, the emission angle of the light beam emitted from the emission angle storage optical element 202 (Opening angle) φ is constant. still,
Wavefront splitting integrators other than the fly's eye lens can be applied as the emission angle preserving optical element 202.

【0090】出射角度保存光学素子202から出射角度
φで射出された光束(ハエの眼レンズの場合は多光束)
は、集光光学系203により内面反射型インテグレータ
の手前に一旦集光され、その後内面反射型インテグレー
タ204内に発散状態で入射する。内面反射型インテグ
レータ204に入射した発散光束は、その内面反射面で
多重反射しながら内部を通過して光軸AXに垂直な平面
にレーザ光源201の複数の虚像(見掛けの光源像)を
形成する。従って内面反射型インテグレータ204の光
射出面204′では、これら複数の虚像からあたかも射
出したかのように見える複数の光束が互いに重ね合わさ
れるので、光射出面204′における照度分布は均一に
なる。この現象については後で図25を用いて説明す
る。
Light beam emitted from the emission angle storage optical element 202 at an emission angle φ (multiple light beams in the case of a fly's eye lens)
Is once focused before the internal reflection type integrator by the light collection optical system 203, and thereafter enters the internal reflection type integrator 204 in a divergent state. The divergent luminous flux incident on the internal reflection type integrator 204 passes through the inside while undergoing multiple reflections on the internal reflection surface, and forms a plurality of virtual images (apparent light source images) of the laser light source 201 on a plane perpendicular to the optical axis AX. . Therefore, on the light exit surface 204 'of the internal reflection type integrator 204, a plurality of light beams which appear as if they have exited from the plurality of virtual images are superimposed on each other, so that the illuminance distribution on the light exit surface 204' becomes uniform. This phenomenon will be described later with reference to FIG.

【0091】内面反射型インテグレータ204に入射す
る時のレーザー光の発散角(出射角度保存光学素子20
2と集光光学系203に依存する)と、内面反射型イン
テグレータ204の長さと幅(径)とを考慮しつつ内面
反射型インテグレータ204の形状を決定すると、各虚
像から出て被照明物体209に入射する個々のレーザ光
の光路長差がレーザ光固有のコヒーレンス長以上に設定
でき、レーザー光の時間的コヒーレンスを低下させさせ
ることにより被照明物体209上でのスペックルの発生
を抑えることができる.さて図22に戻り、内面反射型
インテグレータ204の光出射面204′に形成された
均一な照度分布(光強度分布)を持つ面光源(光)は、
光束調整手段11を介しズーム光学系205により所望
の倍率で、波面分割型インテグレータ207の光入射面
207′上へ拡大結像され、光入射面207′上に均一
光源像206が形成されることになる。
The divergence angle of the laser beam when entering the internal reflection type integrator 204 (the emission angle preserving optical element 20
2 and the condensing optical system 203), and the shape of the internal reflection type integrator 204 is determined in consideration of the length and width (diameter) of the internal reflection type integrator 204. The optical path length difference of each laser beam incident on the object can be set to be equal to or longer than the coherence length inherent to the laser beam, and the temporal coherence of the laser beam is reduced to suppress the occurrence of speckle on the illuminated object 209. it can. Returning to FIG. 22, the surface light source (light) having a uniform illuminance distribution (light intensity distribution) formed on the light exit surface 204 'of the internal reflection type integrator 204 is as follows.
Enlarged image is formed on the light incident surface 207 'of the wavefront splitting integrator 207 at a desired magnification by the zoom optical system 205 via the light beam adjusting means 11, and a uniform light source image 206 is formed on the light incident surface 207'. become.

【0092】光入射面207′上に均一光源像206が
形成されると、光入射面207′の光強度分布がそのま
ま波面分割型インテグレータ207の光射出面207″
に転写され、光射出面207″又はその近傍には、個々
の強度が互いにほぼ等しい多数個の点光源より成る、光
強度分布が均一な面光源が形成される。
When the uniform light source image 206 is formed on the light incident surface 207 ', the light intensity distribution on the light incident surface 207' remains unchanged from the light exit surface 207 "of the wavefront splitting integrator 207.
The surface light source having a uniform light intensity distribution is formed on or near the light exit surface 207 ″, and is composed of a number of point light sources having substantially the same individual intensity.

【0093】光射出面207″又はその近傍の多数個の
点光源から射出する各光束は、絞り12を介し集光光学
系208により、被照明物体209上で互いに重なり合
うように物体を照明するので、被照明物体209全体の
照度分布は均一となる。
Each light beam emitted from the light emitting surface 207 ″ or a plurality of point light sources in the vicinity thereof illuminates the object so as to overlap each other on the illuminated object 209 by the condensing optical system 208 via the stop 12. In addition, the illuminance distribution of the entire illuminated object 209 becomes uniform.

【0094】上記の「所望の倍率」とは被照射物体20
9へ入射する照射光束の開き角(出射角度)αが露光に
最適な値になるように均一光源像206の大きさが設定
される倍率であり、被照明物体が微細パターンを有する
マスク(レチクル)等の場合には、マスクパターンの種
類(最小パターン線幅の大小)に応じてこの「所望の倍
率」が変えられる。
The above “desired magnification” refers to the irradiation object 20.
9 is a magnification at which the size of the uniform light source image 206 is set so that the opening angle (emission angle) α of the irradiation light beam incident on the mask 9 becomes an optimum value for exposure, and a mask (reticle) in which the object to be illuminated has a fine pattern. ), The “desired magnification” can be changed according to the type of the mask pattern (the size of the minimum pattern line width).

【0095】「所望の倍率」をmとする時、内面反射型
インテグレータ204から出射する光束の開き角(出射
角度)βに依存するズーム光学系205の光入射側開口
数をNA′、波面分割型インテグレータ207に入射す
る光束の開き角(入射角度)θに依存するズーム光学系
205の光出射側開口数をNA″とすると、NA′=m
・NA″ が成立する。ここで、角度θの大きさは波面
分割型インテグレータ207の光入射側開口数NAを越
えない範囲で、且つこの開口数NAにできるだけ近い値
であることが、照明光の利用効率の観点から望ましい。
When the “desired magnification” is m, the numerical aperture on the light incident side of the zoom optical system 205 which depends on the opening angle (emission angle) β of the light beam emitted from the internal reflection type integrator 204 is NA ′, and the wavefront is divided. When the numerical aperture on the light exit side of the zoom optical system 205 that depends on the opening angle (incident angle) θ of the light beam incident on the mold integrator 207 is NA ″, NA ′ = m
Here, the magnitude of the angle θ is within a range not exceeding the numerical aperture NA of the light incident side of the wavefront splitting integrator 207 and as close as possible to the numerical aperture NA. It is desirable from the viewpoint of the efficiency of use.

【0096】従って本実施例の照明装置では、角度θの
値は、倍率mの値の変化によらず、常時、波面分割型イ
ンテグレータ207の入射側開口数に適合した最適角度
に設定されるようにしている。
Therefore, in the illumination device of this embodiment, the value of the angle θ is always set to the optimum angle suitable for the numerical aperture on the incident side of the wavefront splitting integrator 207 irrespective of the change in the value of the magnification m. I have to.

【0097】即ち、マスクの種類などの露光の条件が変
わり、ズーム光学系205の最適な倍率mの値を無視で
きない程度に変える時には、内面反射型インテグレータ
204からの出射する光束の開き角βの値も変えること
により、照明光の利用効率が低下しないようにする。
尚、ある条件の露光に最適な倍率mが決まると、(1)
式に基いて、内面反射型インテグレータ204から出射
する光束の開き角β(射出角度β)の最適角度が適宜決
める。
That is, when the exposure condition such as the type of the mask is changed and the optimum value of the magnification m of the zoom optical system 205 is changed to a non-negligible value, the opening angle β of the light beam emitted from the internal reflection type integrator 204 is changed. By changing the value, the utilization efficiency of the illumination light is not reduced.
When the optimum magnification m for exposure under certain conditions is determined, (1)
Based on the formula, the optimum angle of the opening angle β (emission angle β) of the light beam emitted from the internal reflection type integrator 204 is appropriately determined.

【0098】本実施例の照明装置は、角度βの値が内面
反射型インテグレータ204へ入射する光束の入射角度
φに等しく且つ入射角度φが出射角度保存光学素子20
2からの光束の開き角(出射角度)εに依存しているこ
とを利用し、出射角度保存光学素子202を露光条件に
応じて他の出射角度εが異なる出射角度保存光学素子に
切り換えることにより、角度θの値を一定又はほぼ一定
に維持している。
In the illuminating device of this embodiment, the value of the angle β is equal to the incident angle φ of the light beam incident on the internal reflection type integrator 204, and the incident angle φ is the exit angle preserving optical element 20.
Utilizing the fact that it depends on the opening angle (emission angle) ε of the light beam from the light source 2, the emission angle storage optical element 202 is switched to another emission angle storage optical element having another emission angle ε different according to the exposure condition. , The angle θ is kept constant or almost constant.

【0099】この出射角度保存光学素子202の切り換
えについて図24(A)及び(B)を用いて説明する。
The switching of the emission angle preserving optical element 202 will be described with reference to FIGS.

【0100】図24において、202aは出射角度ε
(=εa)が小さい出射角度保存光学素子であり、20
2bは出射角度ε(=εb)が大きい出射角度保存光学
素子であり、その他の符番については図22で説明した
符番と同じ部材を指す。
In FIG. 24, reference numeral 202a denotes an emission angle ε.
(= Εa) is a small exit angle preserving optical element,
Reference numeral 2b denotes an exit angle preserving optical element having a large exit angle ε (= εb), and other reference numerals indicate the same members as the reference numerals described in FIG.

【0101】一般に半導体チップ製造用投影露光装置の
照明装置においては、被照明物体209であるマスク
(レチクル)のパターン形成面に入射する光束の開き角
(入射角度)αを最適角度に設定し且つ入射光束の利用
効率(光量)も高く維持することが要求されるので、本
実施例の照明装置では、ズーム光学系と複数個の出射度
保存光学素子202を用意し、マスクの種類の変更等必
要に応じて、ズーミングと光学素子の切り替えを行なう
ことにより達成している。
In general, in an illumination device of a projection exposure apparatus for manufacturing a semiconductor chip, an opening angle (incident angle) α of a light beam incident on a pattern forming surface of a mask (reticle) as an object to be illuminated 209 is set to an optimum angle. Since it is required that the utilization efficiency (light quantity) of the incident light beam is also maintained at a high level, the illumination device of this embodiment is provided with a zoom optical system and a plurality of emission degree preserving optical elements 202 to change the type of the mask and the like. This is achieved by switching between zooming and optical elements as needed.

【0102】図24(A)はマスク209に入射する光
束の入射角度αが比較的小さい場合(この状態を「小σ
(シグマ)」の状態と言う。)を示し、マスク209の
回路パターンの最小線幅が比較的大き場合(サブミクロ
ンの範囲ではあるが)に対応する。尚、σ(シグマ)は
照明光学系の光出射側開口数Niと投影光学系の光入射
側開口数Npの比(Ni/Np)を意味する。
FIG. 24A shows a case where the incident angle α of the light beam incident on the mask 209 is relatively small (this state is referred to as “small σ”).
(Sigma) ". ) Corresponds to the case where the minimum line width of the circuit pattern of the mask 209 is relatively large (although it is in the submicron range). Here, σ (sigma) means the ratio (Ni / Np) of the numerical aperture Ni of the light emitting side of the illumination optical system and the numerical aperture Np of the light incident side of the projection optical system.

【0103】この小σの状態を設定するためには、波面
分割型インテグレータ207の光入射面207′上に内
面反射型インテグレータ204の光出射面204′(そ
こ又はその近傍にある面光源)を小さい倍率で結像する
必要がある。これはズーム光学系205の倍率を小さく
することにより達成されるが、前述したように入射角度
θは波面分割型インテグレータ204の構成に依存した
最適角度に維持される必要がある。そこで、この小σ値
の状態に変える時には、入射角度αの値に対応する倍率
になるようにズーム光学系の倍率を変えると共に、入射
角度θの値が最適値に維持されるように、出射角度がε
b(>εa )である出射角度保存光学素子202bを
出射角度がεaである出射角度保存光学素子202aに
切換える。
In order to set this small σ state, the light exit surface 204 ′ (the surface light source located there or in the vicinity thereof) of the internal reflection type integrator 204 is placed on the light incident surface 207 ′ of the wavefront split type integrator 207. It is necessary to form an image at a small magnification. This is achieved by reducing the magnification of the zoom optical system 205, but the incident angle θ needs to be maintained at an optimum angle depending on the configuration of the wavefront splitting integrator 204 as described above. Therefore, when changing to the state of the small σ value, the magnification of the zoom optical system is changed so as to have a magnification corresponding to the value of the incident angle α, and the light is emitted so that the value of the incident angle θ is maintained at the optimum value. Angle is ε
The emission angle preserving optical element 202b of b (> εa) is switched to the emission angle preserving optical element 202a of the emission angle of εa.

【0104】図24(B)はマスク209に入射する光
束の入射角度αが比較的大きい場合(この状態を「大σ
(シグマ)」の状態と言う。)を示し、マスク209の
回路パターンの最小線幅が比較的小さい場合(サブミク
ロンの範囲ではあるが)に対応する。この大σの状態を
設定するためには、波面分割型インテグレータ207の
光入射面207′に内面反射型インテグレータ204の
光出射面204′(そこ又はその近傍にある面光源)を
大きい倍率で結像する必要がある。これはズーム光学系
205の倍率を大きく大きすることにより達成される
が、前述したように入射角度θは波面分割型インテグレ
ータ4の構成に依存した最適角度に維持される必要があ
る。そこで、この大σ値の状態に変える時には、入射角
度αの値に対応する倍率になるようにズーム光学系の倍
率を変えると共に、入射角度θの値が最適値に維持され
るように、出射角度がεa(<εb )である出射角度
保存光学素子202aを出射角度がεbである出射角度
保存光学素子202bに切換える。
FIG. 24B shows a case where the incident angle α of the light beam incident on the mask 209 is relatively large (this state is referred to as “large σ”).
(Sigma) ". ) Corresponds to the case where the minimum line width of the circuit pattern of the mask 209 is relatively small (although it is in the submicron range). In order to set this large σ state, the light incident surface 207 ′ of the wavefront splitting integrator 207 is connected to the light emitting surface 204 ′ of the internal reflection type integrator 204 (a surface light source there or in the vicinity thereof) at a large magnification. Need to image. This can be achieved by increasing the magnification of the zoom optical system 205, but the incident angle θ needs to be maintained at an optimum angle depending on the configuration of the wavefront splitting integrator 4 as described above. Therefore, when changing to the state of the large σ value, the magnification of the zoom optical system is changed so as to have a magnification corresponding to the value of the incident angle α, and the light is emitted so that the value of the incident angle θ is maintained at the optimum value. The emission angle storage optical element 202a whose angle is εa (<εb) is switched to the emission angle storage optical element 202b whose output angle is εb.

【0105】ここでは、ズーム光学系の結像倍率と出射
角度保存光学素子とを2段階で切換える説明を行なった
が、ズーム光学系の結像倍率と出射角度保存光学素子と
を3段階以上で切換えるように構成することもできる。
上記実施例のズーム光学系は所定の範囲で連続的に倍率
を変えられるから3段階以上の倍率変更は容易で、従っ
てそのまま使用でき、又、出射角度保存光学素子は、互
いに焦点距離が異なる3種類以上の出射角度保存光学素
子を準備しておけばいい。尚、出射角度保存光学素子を
切換えてもそれらによるレーザー光の集光位置(本実施
例の場合無限遠にある発光部の実像又は虚像の絶対位
置)は略一定に維持される構成とする。
Here, the description has been given of switching the imaging magnification of the zoom optical system and the exit angle preserving optical element in two steps. However, the imaging magnification of the zoom optical system and the exit angle preserving optical element are switched in three or more steps. It can also be configured to switch.
Since the zoom optical system of the above embodiment can change the magnification continuously within a predetermined range, it is easy to change the magnification in three or more steps, so that it can be used as it is, and the exit angle preserving optical elements have different focal lengths from each other. What is necessary is just to prepare more than three kinds of exit angle preserving optical elements. Note that, even if the emission angle preserving optical elements are switched, the condensing position of the laser light (the absolute position of the real image or the virtual image of the light emitting portion at infinity in the present embodiment) is maintained substantially constant.

【0106】又、ズーム光学系として互いに結像倍率が
異なる複数種の結像光学系を用意しておき、2つのイン
テグレータ204、207の間に選択的に一つの結像光
学系を設けるようにしてもいい。一方、出射角度保存光
学素子に、光軸方向に動く複数のレンズを有するズーム
光学系を用いてもいい。
Also, a plurality of types of image forming optical systems having different image forming magnifications are prepared as zoom optical systems, and one image forming optical system is selectively provided between the two integrators 204 and 207. You can. On the other hand, a zoom optical system having a plurality of lenses that move in the optical axis direction may be used for the emission angle preserving optical element.

【0107】次に内面反射型インテグレータ204の光
射出面204′の照度分布が均一になる理由について図
25を用いて説明する。
Next, the reason why the illuminance distribution of the light exit surface 204 'of the internal reflection type integrator 204 becomes uniform will be described with reference to FIG.

【0108】図25では、内面反射型インテグレータ2
04は六角柱状のガラス棒であるとする。尚、図25は
光軸AXを含む側断面図である。
In FIG. 25, the internal reflection type integrator 2
04 is a hexagonal prism-shaped glass rod. FIG. 25 is a side sectional view including the optical axis AX.

【0109】不図示の集光光学系203からのレーザー
光は焦点P0に一旦集光(結像)し、その後、発散角φ
を有する発散光束となる。この時、レーザー光がエキシ
マレーザ光である場合は、一般に大強度であるため、焦
点P0近傍では莫大なエネルギー密度となり、内面反射
型インテグレータ204の光入射面のコーティング(反
射防止膜)や硝材そのものを破壊してしまう恐れがあ
る。従って、このような場合は図示の通り焦点P0から
少し距離をおいて内面反射型インテグレータ204を配
置する。
The laser beam from the focusing optical system 203 (not shown) is once focused (imaged) at the focal point P0, and then the divergence angle φ
Divergent light beam having At this time, when the laser beam is an excimer laser beam, since the laser beam is generally high in intensity, it has a huge energy density near the focal point P0, and the coating (antireflection film) of the light incident surface of the internal reflection type integrator 204 or the glass material itself May be destroyed. Therefore, in such a case, the internal reflection type integrator 204 is arranged at a little distance from the focal point P0 as shown.

【0110】内面反射型インテグレータ204に入射し
た発散光束は内面反射面で繰り返し反射(所謂全反射)
しながら内部を通過した後、入射した際の発散角度20
4Iを保ったまま内面反射型インテグレータ204から
出射する。この時、内面反射型インテグレータ204の
内面反射面の各部分において反射された光束は反射後も
発散しているので、各部分において反射された光束は、
破線により示されているように、後方に虚像P1、P
2、P3、P4、P5、P6、P7、P8、P9、P1
0を形成する。図示してはいないが、実際には六角柱の
ガラス棒の場合には、残りの二組の内面反射面対の作用
により上記と同様な虚像群が更に形成されている。
The divergent light beam incident on the internal reflection type integrator 204 is repeatedly reflected on the internal reflection surface (so-called total reflection).
Divergence angle at the time of incidence after passing through the interior
The light is emitted from the internal reflection type integrator 204 while keeping 4I. At this time, the luminous flux reflected at each portion of the internal reflection surface of the internal reflection type integrator 204 is still diverging after the reflection, so that the luminous flux reflected at each portion is
As shown by the broken lines, the virtual images P1, P
2, P3, P4, P5, P6, P7, P8, P9, P1
0 is formed. Although not shown, in the case of a hexagonal prism glass rod, a virtual image group similar to the above is further formed by the action of the remaining two pairs of internal reflection surfaces.

【0111】従って内面反射型インテグレータ204の
光射出面204′では、これら多数の虚像からあたかも
射出したかのように見える多数の光束が互いに重なり合
い、照度分布が均一になる。
Therefore, on the light exit surface 204 'of the internal reflection type integrator 204, a large number of light beams appearing to be emitted from these many virtual images overlap each other, and the illuminance distribution becomes uniform.

【0112】図26は図25の内面反射型インテグレー
タ204により生じた虚像(見掛けの光源像)群の配列
を、例えば図24(A)の配置において波面分割型イン
テグレータ207を構成する一つの微小レンズの光射出
面から見た図を示している。図26において、251は
波面分割型インテグレータ207の微小レンズを、P1
からP10は図25の虚像を示している。図26から分
かる通り、内面反射型インテグレータ204が六角柱の
光パイプの場合には虚像群は蜂の巣状に配列するが、内
面反射型インテグレータ204が四角柱の光パイプであ
る場合は虚像群は矩形の格子状に配列する。尚、この虚
像は、集光光学系203と内面反射型インテグレータ2
04の間に形成されたレーザー光の集光点(点光源)の
像である。
FIG. 26 shows an arrangement of a group of virtual images (apparent light source images) generated by the internal reflection type integrator 204 of FIG. 25, for example, one micro lens constituting the wavefront splitting type integrator 207 in the arrangement of FIG. 3 shows a view from the light exit surface. In FIG. 26, reference numeral 251 denotes a micro lens of the wavefront division type integrator 207;
To P10 show the virtual image of FIG. As can be seen from FIG. 26, when the internal reflection type integrator 204 is a hexagonal prism light pipe, the virtual image group is arranged in a honeycomb shape, but when the internal reflection type integrator 204 is a quadrangular prism light pipe, the virtual image group is rectangular. Are arranged in a lattice pattern. Note that this virtual image is obtained by combining the converging optical system 203 and the internal reflection type integrator 2.
12 is an image of a laser light condensing point (point light source) formed during the period 04;

【0113】本実施例の照明装置は、図24(A)に示
した通り出射角度保存光学素子202a、202bがm
×n個の微小レンズより成るハエの目レンズ(m≧2、
n≧2)であるから、虚像群の一つ一つの虚像はm×n
程度に分割された複数像で構成される。従ってこの分割
複数像が蜂の巣状に並んだ虚像が見え、これらが波面分
割型インテグレータ207の微小レンズ一つに対応する
ことになる。
In the illuminating device of this embodiment, as shown in FIG.
A fly-eye lens consisting of × n minute lenses (m ≧ 2,
n ≧ 2), each virtual image in the virtual image group is m × n
It is composed of a plurality of images divided into degrees. Therefore, a virtual image in which the plurality of divided images are arranged in a honeycomb shape can be seen, and these correspond to one minute lens of the wavefront division type integrator 207.

【0114】従って、本実施例の照明装置は、波面分割
型インテグレータ207の光出射面207″又はその近
傍に形成された複数の点光源(有効光源)からの各光束
を集光光学系208により被照明物体209上に重畳し
て照明する際の点光源(有効光源)の数を非常に多くし
ており、被照明物体209全体がより均一な照度分布と
なるように物体209を照明することを可能にしてい
る。
Therefore, in the illumination device of this embodiment, each light beam from a plurality of point light sources (effective light sources) formed on or near the light emitting surface 207 ″ of the wavefront splitting integrator 207 is condensed by the condensing optical system 208. The number of point light sources (effective light sources) when illuminating the object to be superimposed on the illuminated object 209 is extremely large, and the object 209 is illuminated so that the entire illuminated object 209 has a more uniform illuminance distribution. Is possible.

【0115】また、図23(B)で説明したように、レ
ーザ光源201からの光束が外乱により微小変位したと
しても、出射角度保存光学素子202a、202bから
の光束の出射度εは一定に維持されるので、図26にお
ける分割複数像の各々が微小変動するだけであって、蜂
の巣状を成す虚像群には変動がなく、出射角度保存光学
素子202a、202b波面分割型インテグレータ20
7の各微小レンズ251の中の虚像全体をマクロに見た
ときの変動は殆どなく、従って被照明物体209上の照
度分布への影響も無視できる程度に小さくなる。
Further, as described with reference to FIG. 23B, even if the light beam from the laser light source 201 is slightly displaced due to disturbance, the degree of emission ε of the light beam from the emission angle storage optical elements 202a and 202b is kept constant. Therefore, each of the plurality of divided images in FIG. 26 only slightly fluctuates, and the virtual image group forming a honeycomb shape does not fluctuate, and the emission angle preserving optical elements 202a and 202b
7 has almost no fluctuation when the entire virtual image in each of the microlenses 251 is macroscopically viewed, and therefore, the influence on the illuminance distribution on the illuminated object 209 is negligibly small.

【0116】従って本実施例の照明装置は、レーザ光源
201からのレーザー光が変位しても非常に性能が安定
している系である。尚、光束調整手段11及び絞り12
の光学的作用は前述の各実施形態と同様である。
Therefore, the illumination device of this embodiment is a system in which the performance is very stable even when the laser light from the laser light source 201 is displaced. The light beam adjusting means 11 and the aperture 12
Are the same as those in the above-described embodiments.

【0117】図27に上記実施例の照明装置をLSIや
VLSI等の半導体チップや、CCD、磁気センサ、液
晶素子等のデバイスを製造するステップ&リピート型又
はステップ&スキャン型投影露光装置に適用した実施形
態2を示す。
FIG. 27 shows the illumination apparatus of the above embodiment applied to a step-and-repeat or step-and-scan projection exposure apparatus for manufacturing devices such as semiconductor chips such as LSI and VLSI, CCDs, magnetic sensors, and liquid crystal elements. Embodiment 2 will be described.

【0118】図27において、291はArFエキシマ
レーザやKrFエキシマレーザレーザ等のレーザー光源
201からの平行光束を所望のビーム形状に整形するた
めの光束整形光学系、292はコヒーレントなレーザ光
束をインコヒーレント化するためのインコヒーレント化
光学系、、293はマスク209の回路パターンの等倍
像又は縮小像を投影する投影光学系、294は基板(シ
リコンやガラス)に感光材を塗布したウエハを示す。
又、ここでは図22に示した部材と同じ部材には図22
と同じ符番を付し、説明は省略する。
In FIG. 27, reference numeral 291 denotes a light beam shaping optical system for shaping a parallel light beam from a laser light source 201 such as an ArF excimer laser or a KrF excimer laser laser into a desired beam shape, and 292 denotes a coherent laser beam which is incoherent. 293 denotes a projection optical system for projecting a 1: 1 or reduced image of the circuit pattern of the mask 209, and 294 denotes a wafer obtained by applying a photosensitive material to a substrate (silicon or glass).
Here, the same members as those shown in FIG.
The same reference numerals are used as in the above, and the description is omitted.

【0119】レーザー光源201からのレーザー光は、
投影光学系293が色収差補正されていない場合にはス
ペクトル線の半値幅が1pm−3pm程度に狭帯域化さ
れており、投影光学系293が色収差補正されている場
合には、スペクトル線の半値幅が10pm以上のある値
に狭帯域化されている。又、投影光学系293が色収差
補正されている場合に狭帯域化されていないレーザー光
を用いる場合もある。
The laser light from the laser light source 201 is
When the projection optical system 293 has not been corrected for chromatic aberration, the half-width of the spectral line has been narrowed to about 1 pm-3 pm, and when the projection optical system 293 has been corrected for chromatic aberration, the half-width of the spectral line has been reduced. Is narrowed to a certain value of 10 pm or more. In addition, when the projection optical system 293 has been corrected for chromatic aberration, a laser beam that is not narrowed may be used.

【0120】投影光学系293としては複数のレンズ素
子のみで構成した光学系や複数のレンズ素子と少なくと
も一枚の凹面鏡とで構成した光学系や複数のレンズ素子
と少なくとも一枚のキノフォーム等の回折光学素子とで
構成した光学系が使用できる。色収差の補正は、互いに
分散値(アッベ数)の異なる硝材より成る複数のレンズ
素子を用いたり、上記回折光学素子をレンズ素子と逆方
向の分散が生じるように構成したりする。
The projection optical system 293 may be an optical system composed of only a plurality of lens elements, an optical system composed of a plurality of lens elements and at least one concave mirror, or a plurality of lens elements and at least one kinoform. An optical system including a diffractive optical element can be used. To correct the chromatic aberration, a plurality of lens elements made of glass materials having mutually different dispersion values (Abbe numbers) are used, or the diffractive optical element is configured to cause dispersion in a direction opposite to that of the lens element.

【0121】レーザ光源201から射出したレーザ光は
不図示のミラーやリレーレンズから成る光束引き回し光
学系を経て光束整形光学系291に入射する。この光束
整形光学系291は、複数のシリンドリカルレンズやビ
ームエクスパンダ等より構成されており、レーザー光の
(光軸AXと垂直な)断面形状の寸法の縦横比率を所望
の値に変換する。
The laser light emitted from the laser light source 201 enters the light beam shaping optical system 291 via a light beam drawing optical system including a mirror and a relay lens (not shown). The light beam shaping optical system 291 is composed of a plurality of cylindrical lenses, beam expanders, and the like, and converts the aspect ratio of the cross-sectional shape (perpendicular to the optical axis AX) of the laser light into a desired value.

【0122】光束整形光学系291により断面形状が整
形された光束は、ウエハ294上で光が干渉してスペッ
クルを生じることを防ぐ目的でインコヒーレント化光学
系292に入射し、光学系292によりスペックルが生
じにくいインコヒーレントな光束に変換される。
The light beam whose cross-sectional shape has been shaped by the light beam shaping optical system 291 is incident on the incoherent optical system 292 for the purpose of preventing light from interfering on the wafer 294 and causing speckles. The light is converted into an incoherent light flux in which speckle is less likely to occur.

【0123】インコヒーレント化光学系292として
は、例えば特開平3-215930号公報の図1に開示されてい
るような、入射光束を光分割面で少なくとも2つの光束
(例えばp偏光とs偏光)に分岐した後で一方の光束を
光学部材を介して他方の光束に対してレーザー光のコヒ
ーレンス長以上の光路長差を与えてから該分割面に再導
光して他方の光束と重ね合わせて射出されるようにした
折り返し系を少なくとも一つ備える光学系を用いること
ができる。
As the incoherent optical system 292, for example, as shown in FIG. 1 of JP-A-3-215930, an incident light beam is divided into at least two light beams (for example, p-polarized light and s-polarized light) by a light dividing surface. After branching into one, one light beam is given an optical path difference greater than the coherence length of the laser light to the other light beam through the optical member, and then re-directed to the division surface to overlap with the other light beam. It is possible to use an optical system having at least one folding system adapted to be emitted.

【0124】インコヒーレント化光学系292からのイ
ンコヒーレント化された光束は、出射角度保存光学素子
202に入射する。以下図22乃至図26を用いて述べ
た手順により、波面分割型インテグレータ207の各微
小領域(微小レンズ)から出射した光束が集光光学系2
08によりマスク209を重畳して照明し、マスク20
9の投影すべき回路パターン全面で均一な照度分布が得
られるようにマスク209を均一照明する。そしてマス
ク209上に形成された回路パターンが投影光学系29
3によりウエハ294上に投影結像され、ウエハ294
の感光材料への回路パターン(像)の露光が行なわれ
る。尚、ウエハ294は不図示のXYZ可動ステージに
真空吸着法等により固定されており、XYZ可動ステー
ジは紙面の上下左右前後に平行移動する機能を持ち、そ
の移動は不図示のレーザ干渉計等の測長器で制御され
る。このような技術は周知技術であるので、詳しい説明
は省略する。
The incoherent light beam from the incoherent optical system 292 is incident on the emission angle preserving optical element 202. According to the procedure described below with reference to FIGS. 22 to 26, the light beam emitted from each minute area (minute lens) of the wavefront splitting integrator 207 is
08, the mask 209 is superimposed and illuminated.
The mask 209 is uniformly illuminated so that a uniform illuminance distribution can be obtained over the entire circuit pattern to be projected. Then, the circuit pattern formed on the mask 209 corresponds to the projection optical system 29.
3 forms an image on the wafer 294 by projection.
The exposure of the circuit pattern (image) to the photosensitive material is performed. Incidentally, the wafer 294 is fixed to an XYZ movable stage (not shown) by a vacuum suction method or the like, and the XYZ movable stage has a function of moving in parallel up, down, left, right, front and back on the paper surface, and the movement is performed by a laser interferometer (not shown) or the like. It is controlled by a length measuring device. Since such a technique is a well-known technique, a detailed description is omitted.

【0125】図27においては、波面分割型インテグレ
ータ207の光出射側光路中に照明用の開口絞り12が
配置されており、絞り12は互いに異なるσ値に対応す
る複数の開口絞りを円盤(ターレット)等に設けてお
り、ズーム光学系のズーミングと出射角度保存光学素子
の切換えに連動させて円盤を回転させることにより、σ
値に合わせて所望の開口絞りを波面分割型インテグレー
タ207の光出射側光路中に挿入するように構成してい
る。
In FIG. 27, an aperture stop 12 for illumination is arranged in the optical path on the light emission side of the wavefront splitting type integrator 207. The aperture 12 has a plurality of aperture stops corresponding to different σ values. ), Etc., by rotating the disk in conjunction with the zooming of the zoom optical system and the switching of the emission angle preserving optical element, σ
A desired aperture stop is inserted into the light exit side optical path of the wavefront splitting integrator 207 in accordance with the value.

【0126】複数の開口絞りの開口形状としては、通常
の円形開口や円環(リング)状開口や特開平4-329623号
公報(鈴木)に記載された光軸外の4つの開口等が使え
る。
As the aperture shape of the plurality of aperture stops, a normal circular aperture, an annular (ring) -shaped aperture, four apertures off the optical axis described in JP-A-4-329623 (Suzuki), and the like can be used. .

【0127】図28及び図29を用いて本発明の照明装
置の実施形態5を説明する。
A lighting device according to a fifth embodiment of the present invention will be described with reference to FIGS.

【0128】図28及び図29は、LSIやVLSI等
の半導体チップや、CCD、磁気センサ、液晶素子等の
デバイスを製造するステップ&スキャン(走査)型の投
影露光装置に好適な照明装置の概略図である。図28、
図29において前述した各実施形態と異なる部分のみを
説明する。
FIGS. 28 and 29 are schematic diagrams of an illumination apparatus suitable for a step-and-scan type projection exposure apparatus for manufacturing devices such as semiconductor chips such as LSI and VLSI, CCDs, magnetic sensors, and liquid crystal elements. FIG. FIG. 28,
In FIG. 29, only portions different from the above-described embodiments will be described.

【0129】図28(A)と(B)は本実施例の照明装
置が前述の小σの状態にある場合を示しており、(A)
は照明装置をスキャン方向(以下、「z方向」と記
す。)から見た図で、(B)は照明装置をスキャン方向
と直交する方向(以下、「y方向」と記す。)から見た
図である。又、図29(A)と(B)は本実施例の照明
装置が前述の大σの状態にある場合を示しており、
(A)は照明装置をz方向から見た図で、(B)は照明
装置をy方向から見た図である。
FIGS. 28A and 28B show a case where the illumination device of this embodiment is in the state of small σ described above.
Is a view of the illuminating device viewed from a scanning direction (hereinafter, referred to as “z direction”), and FIG. 2B is a diagram of the illuminating device viewed from a direction orthogonal to the scanning direction (hereinafter, referred to as “y direction”). FIG. FIGS. 29A and 29B show the case where the illumination device of this embodiment is in the state of large σ described above.
(A) is a diagram of the lighting device viewed from the z direction, and (B) is a diagram of the lighting device viewed from the y direction.

【0130】尚、以下、図29(A)、(B)において
光軸AXと光軸ACからy方向に延びる軸とを含む断面
をxy断面、光軸AXからz方向に延びる軸とを含む断
面をxz断面と記す。図28及び図29において、22
0a、220bはXY断面とXZ断面とで出射光束の開
き角(出射角度)が異なる出射角度保存光学素子、24
0は内面反射型インテグレータ、240′は内面反射型
インテグレータの光出射面、270は波面分割型インテ
グレータ、270′、270″は波面分割型インテグレ
ータの光入射面、光出射面、300yはマスク上の照明
域(光)のy方向の長さ、300zはマスク上の照明域
(光)のz方向の長さを示す。又、図中の図22乃至図
27で示した部材と同じ部材には図24と同一の符番を
付している。
In FIGS. 29A and 29B, a section including the optical axis AX and an axis extending in the y direction from the optical axis AC includes an xy section, and an axis extending in the z direction from the optical axis AX. The cross section is referred to as an xz cross section. In FIG. 28 and FIG.
Reference numerals 0a and 220b denote emission angle preserving optical elements having different opening angles (emission angles) of the output light beams in the XY section and the XZ section.
0 is an internal reflection type integrator, 240 'is a light exit surface of the internal reflection type integrator, 270 is a wavefront division type integrator, 270' and 270 "are a light entrance surface and a light exit surface of the wavefront division type integrator, and 300y is a mask. The length of the illuminated area (light) in the y direction, 300z indicates the length of the illuminated area (light) on the mask in the z direction, and the same members as those shown in FIGS. The same reference numerals as in FIG. 24 are used.

【0131】図28及び図29で示す本実施例の照明装
置の基本的な構成と機能は、その変形例も含めて図22
乃至図27で示した前記実施例の照明装置と同じであ
り、本実施例の照明装置の前記実施例の照明装置との相
違点は出射角度保存光学素子と内面反射型インテグレー
タと波面分割型インテグレータの構成と機能にある。従
って、ここでは前記実施例との相違点のみ説明すること
にする。
The basic structure and functions of the illumination device of this embodiment shown in FIGS. 28 and 29 are shown in FIG.
27 is the same as the illuminating device of the embodiment shown in FIG. 27, and the difference of the illuminating device of the present embodiment from the illuminating device of the embodiment is that the emission angle preserving optical element, the internal reflection type integrator, and the wavefront split type integrator Configuration and function. Therefore, only the differences from the above embodiment will be described here.

【0132】ステップ&スキャン型の投影露光装置で
は、y方向に延びた(z方向よりもy方向の方が長い)
矩形スリット状の照明域をマスク209上に効果的に形
成する必要がある。
In the step & scan type projection exposure apparatus, the projection and exposure apparatus extends in the y direction (the y direction is longer than the z direction).
It is necessary to effectively form a rectangular slit-shaped illumination area on the mask 209.

【0133】そこで本実施例では、出射角度保存光学素
子として、光軸AXと光軸AXからy方向に延びる軸と
を含む断面(以下、「xy断面」と記す。)に関する焦
点距離と光軸AXと光軸AXからz方向に延びる軸とを
含む断面(以下、「xz断面」と記す。)に関する焦点
距離とが互いに異なるアナモフィック光学系より成る素
子220aと220bを用い、内面反射型インテグレー
タとして、光軸と直交する断面(以下、「yz断面」と
記す。)の形状がy方向に延びる一対の直線とz方向に
延びる一対の直線とで表わされる四角柱の光パイプより
成るインテグレータ240を用い、波面分割型インテグ
レータとして、個々の微小レンズのyz断面の形状がy
方向に延びる矩形であるフライアイレンズより成るイン
テグレータ270を用いている。
Therefore, in this embodiment, the focal length and the optical axis relating to a section including the optical axis AX and an axis extending in the y direction from the optical axis AX (hereinafter, referred to as “xy section”) are used as the exit angle preserving optical element. Elements 220a and 220b made of anamorphic optical systems having different focal lengths with respect to a cross section (hereinafter, referred to as “xz cross section”) including AX and an axis extending in the z direction from the optical axis AX are used as an internal reflection type integrator. An integrator 240 formed of a quadrangular prism light pipe whose cross section orthogonal to the optical axis (hereinafter referred to as “yz cross section”) is represented by a pair of straight lines extending in the y direction and a pair of straight lines extending in the z direction. As a wavefront splitting integrator, the shape of the yz section of each minute lens is y
An integrator 270 made of a fly-eye lens which is a rectangular shape extending in the direction is used.

【0134】出射角度保存光学素子220aと220b
は、各々xy断面における焦点距離がxz断面における
焦点距離よりも小さく、従って、各断面で見た光束の開
き角(出射角度)の関係は、yz断面における出射角度
εay、εbyの方がxz断面における出射角度εa
z、εbzよりも大きい。従って、図示された光束の開
き角(出射角度又は入射角度)φy、φz、βy、β
z、θy、θz、γy、γz、αy、αzの関係も、φ
y>φz、βy>βz、θy>θz、γy>γz、αy
>αzである。ここで、γy>γzであるので、マスク
9上ではy方向に延びた矩形スリット状の照明域が形成
される。
Output angle preserving optical elements 220a and 220b
Is that the focal length in the xy cross-section is smaller than the focal length in the xz cross-section, and therefore, the relationship between the opening angles (emission angles) of the light beams viewed in each cross-section is such that the emission angles εay and εby in the yz cross-section Emission angle εa at
z and εbz. Therefore, the opening angles (emission angles or incident angles) φy, φz, βy, β
The relationship among z, θy, θz, γy, γz, αy, αz is also φ
y> φz, βy> βz, θy> θz, γy> γz, αy
> Αz. Here, since γy> γz, a rectangular slit-shaped illumination area extending in the y direction is formed on the mask 9.

【0135】又、前記実施例と同様に、σの大小に依存
してεay<εby、εaz<εbzの関係があり、角
柱状の光パイプの性質に依存してφy=βy、φz=β
zの関係がある。
As in the previous embodiment, there is a relation of εay <εby and εaz <εbz depending on the magnitude of σ, and φy = βy and φz = β depending on the properties of the prismatic light pipe.
There is a relationship of z.

【0136】出射角度保存光学素子220aと220b
は、xy断面とxz断面とで焦点距離が異なる微小レン
ズを複数個2次元的にyz断面にそって並べたフライア
イレンズや図23(A)の絞り221としてy方向に延
びたスリット開口を有するものを用いた素子も適用可能
である。尚、各フライアイレンズを構成する微小レンズ
は、通常のレンズや回折光学素子(フレネルレンズ)に
よって構成される。
Output angle preserving optical elements 220a and 220b
Is a fly-eye lens in which a plurality of microlenses having different focal lengths in the xy cross section and the xz cross section are two-dimensionally arranged along the yz cross section, or a slit opening extending in the y direction as the stop 221 in FIG. An element using an element having the element is also applicable. Note that the microlenses constituting each fly-eye lens are formed of a normal lens or a diffractive optical element (Fresnel lens).

【0137】図30は図28及び図29の内面反射型イ
ンテグレータ240により生じた虚像(見掛けの光源
像)群の配列を、波面分割型インテグレータ270を構
成する一つの微小レンズの光射出面から見た図を示して
いる。図30において、320は波面分割型インテグレ
ータ270の微小レンズを、Y1からY12及びZ1か
らZ8は虚像を示している。
FIG. 30 shows an array of virtual images (apparent light source images) generated by the internal reflection type integrator 240 shown in FIGS. 28 and 29, viewed from the light exit surface of one microlens constituting the wavefront division type integrator 270. FIG. In FIG. 30, reference numeral 320 denotes a micro lens of the wavefront splitting integrator 270, and Y1 to Y12 and Z1 to Z8 denote virtual images.

【0138】図30から分かると通り、内面反射型イン
テグレータ240が四角柱の光パイプであるので、虚像
群はy方向とz方向と沿って格子状に配列する。又、内
面反射型インテグレータ240に入射する発散光束の入
射角度がxy断面とxz断面とで互いに異なるので、内
面反射面での反射回数がxy断面とxz断面とで互いに
異なり、そのためy方向とz方向とで虚像の数が異なっ
ている。尚、この虚像は、集光光学系203と内面反射
型インテグレータ240の間に形成されたレーザー光の
集光点(点光源)の像である。
As can be seen from FIG. 30, since the internal reflection type integrator 240 is a light pipe having a quadrangular prism, the virtual images are arranged in a grid along the y and z directions. Further, since the incident angle of the divergent light beam incident on the internal reflection type integrator 240 is different between the xy cross section and the xz cross section, the number of reflections on the internal reflection surface is different between the xy cross section and the xz cross section. The number of virtual images differs depending on the direction. Note that this virtual image is an image of a laser light focusing point (point light source) formed between the focusing optical system 203 and the internal reflection type integrator 240.

【0139】本実施例の照明装置は、図28及び図29
に示した通り出射角度保存光学素子220a、220b
がm×n個の微小レンズより成るハエの目レンズ(m≧
2、n≧2)であるから、虚像群の一つ一つの虚像はm
×n程度に分割された複数像で構成される。従ってこの
分割複数像が格子状に並んだ虚像が見え、これらが波面
分割型インテグレータ270の微小レンズ一つに対応す
ることになる。
FIGS. 28 and 29 show the lighting device of this embodiment.
As shown in the figure, the emission angle preserving optical elements 220a and 220b
Is a fly-eye lens composed of m × n minute lenses (m ≧
2, n ≧ 2), each virtual image in the virtual image group is m
It is composed of a plurality of images divided into about × n. Therefore, a virtual image in which the divided plural images are arranged in a grid pattern is seen, and these correspond to one microlens of the wavefront division type integrator 270.

【0140】従って、本実施例の照明装置も、波面分割
型インテグレータ270の光出射面207″又はその近
傍に形成された複数の点光源(有効光源)からの各光束
を集光光学系208によりマスク209上に重畳して照
明する際の点光源(有効光源)の数を非常に多くしてお
り、マスク209全体がより均一な照度分布となるよう
にマスク209を照明することを可能にしている。
Therefore, in the illumination device of this embodiment, the light beams from a plurality of point light sources (effective light sources) formed on or near the light exit surface 207 ″ of the wavefront splitting integrator 270 are also condensed by the condensing optical system 208. The number of point light sources (effective light sources) when illuminating the mask 209 in a superimposed manner is extremely large, and the mask 209 can be illuminated so that the entire mask 209 has a more uniform illuminance distribution. I have.

【0141】以上のような構成を有する本実施例の照明
装置も、前記実施例同様に、マスク209の種類等に応
じて小σの状態と大σの状態を作る際に、ズーム光学系
205の結像倍率を小さな値と大きな値の間で切換え且
つ出射角度保存光学素子220aと出射角度保存光学素
子220bを切換えることにより、角度θy、θzの各
々の値を一定又はほぼ一定に維持しつつ角度αy、αz
の各々の値を変えることができ、光の利用効率を低下さ
せることなくσを変更することが可能である。又、レー
ザー光源からのレーザー光が変位してもマスク209上
で照度むらが生じることもない。
The illumination apparatus of the present embodiment having the above-described configuration also provides the zoom optical system 205 when forming the small σ state and the large σ state according to the type of the mask 209 as in the above embodiment. By switching the imaging magnification between a small value and a large value and switching the emission angle storage optical element 220a and the emission angle storage optical element 220b, the values of the angles θy and θz are kept constant or almost constant. Angle αy, αz
Can be changed, and σ can be changed without lowering the light use efficiency. In addition, even if the laser light from the laser light source is displaced, uneven illuminance on the mask 209 does not occur.

【0142】図31に図28乃至図30で示した照明装
置をLSIやVLSI等の半導体チップや、CCD,磁
気センサ、液晶素子等のデバイスを製造するステップ&
スキャン型等の走査型露光装置に適用した実施形態3を
示す。
In FIG. 31, the lighting device shown in FIGS. 28 to 30 is used to manufacture devices such as semiconductor chips such as LSI and VLSI, CCDs, magnetic sensors, and liquid crystal elements.
A third embodiment applied to a scanning type exposure apparatus such as a scanning type is shown.

【0143】図31において、291はArFエキシマ
レーザやKrFエキシマレーザ等のレーザ光源201か
らの光束を所望のビーム形状に整形するための光束整形
光学系、292はコヒーレントなレーザ光束をインコヒ
ーレント化するためのインコヒーレント化光学系、29
3はマスク209の回路パターンの等倍像又は縮小像を
投影する投影光学系、294は基板(シリコンやガラ
ス)に感光材を塗布したウエハを示す。又、ここでは図
28乃至図30に示した部材と同じ部材には図28乃至
図30と同じ符番を付し、説明は省略する。
In FIG. 31, reference numeral 291 denotes a light beam shaping optical system for shaping a light beam from a laser light source 201 such as an ArF excimer laser or a KrF excimer laser into a desired beam shape. Optics for incoherent, 29
Reference numeral 3 denotes a projection optical system for projecting a 1: 1 image or a reduced image of the circuit pattern of the mask 209, and 294 denotes a wafer obtained by applying a photosensitive material to a substrate (silicon or glass). Also, here, the same members as those shown in FIGS. 28 to 30 are denoted by the same reference numerals as in FIGS. 28 to 30, and description thereof is omitted.

【0144】レーザ光源201から射出したレーザ光は
不図示のミラーやリレーレンズから成る光束引き回し光
学系を経て光束整形光学系291に入射する。この光束
整形光学系291は、複数のシリンドリカルレンズやビ
ームエクスパンダ等より構成されており、レーザー光の
(光軸AXと垂直な)断面形状の寸法の縦横比率を所望
の値に変換する。
The laser light emitted from the laser light source 201 enters the light beam shaping optical system 291 via a light beam drawing optical system including a mirror and a relay lens (not shown). The light beam shaping optical system 291 is composed of a plurality of cylindrical lenses, beam expanders, and the like, and converts the aspect ratio of the cross-sectional shape (perpendicular to the optical axis AX) of the laser light into a desired value.

【0145】光束整形光学系291により断面形状が整
形された光束は、ウエハ294上で光が干渉してスペッ
クルを生じることを防ぐ目的でインコヒーレント化光学
系292に入射し、光学系292によりスペックルが生
じにくいインコヒーレントな光束に変換される。
The light beam whose cross-sectional shape has been shaped by the light beam shaping optical system 291 is incident on the incoherent optical system 292 for the purpose of preventing light from interfering on the wafer 294 and causing speckles. The light is converted into an incoherent light flux in which speckle is less likely to occur.

【0146】インコヒーレント化光学系292として
は、特開平3-215930号公報の図1に開示されているよう
な、前述の光学系を用いることができる。
As the incoherent optical system 292, the above-mentioned optical system as disclosed in FIG. 1 of JP-A-3-215930 can be used.

【0147】インコヒーレント化光学系292からのイ
ンコヒーレント化された光束は、出射角度保存光学素子
220a又は220bに入射する。以下最初の実施例で
図23乃至図26を用いて述べた手順と同様の手順によ
り、波面分割型インテグレータ270の各微小領域(微
小レンズ)から出射した光束が集光光学系208により
マスク209を重畳して照明し、マスク209の投影す
べき回路パターン全面で均一な照度分布が得られるよう
にマスク209を均一照明する。この時、マスク209
上には、y方向に伸びる矩形スリット状の照明域(光)
が形成される。そしてマスク209上に形成された回路
パターンの内の前記照明域が形成された部分が投影光学
系293によりウエハ294上に投影結像され、ウエハ
294の感光材料への回路パターン(像)の露光が行な
われる。
The incoherent light beam from the incoherent optical system 292 is incident on the emission angle preserving optical element 220a or 220b. The light beam emitted from each minute area (minute lens) of the wavefront splitting integrator 270 is transmitted to the mask 209 by the condensing optical system 208 by the same procedure as that described in the first embodiment with reference to FIGS. The mask 209 is illuminated in a superimposed manner, and the mask 209 is uniformly illuminated so that a uniform illuminance distribution is obtained over the entire circuit pattern to be projected on the mask 209. At this time, the mask 209
Above, a rectangular slit-shaped illumination area (light) extending in the y direction
Is formed. The portion of the circuit pattern formed on the mask 209 where the illumination area is formed is projected and imaged on the wafer 294 by the projection optical system 293, and the exposure of the circuit pattern (image) on the photosensitive material of the wafer 294 is performed. Is performed.

【0148】ウエハ294は不図示のxyxの各方向に
移動可能なXYZ可動ステージに真空吸着法等により固
定されており、マスク209も不図示のxyxの各方向
に移動可能なXYZ可動ステージに真空吸着法等により
固定されており、各XYZ可動ステージの移動は不図示
のレーザ干渉計等の測長器で制御される。そして、マス
ク209の回路パターン部の端部に矩形スリット状の照
明域を形成した状態で各XYZ可動ステージを移動させ
て、マスク209をz方向にウエハ294を−z方向に
走査することにより、マスク209の回路パターン全体
をウエハ294上に投影して回路パターン全体をウエハ
294上に転写する。尚、投影光学系293の投影倍率
がM、マスク209の走査速度がVの時、ウエハ294
の走査速度は−M×Vである。
The wafer 294 is fixed to an XYZ movable stage (not shown) movable in each of x and y directions by a vacuum suction method or the like, and the mask 209 is also attached to an XYZ movable stage (not shown) movable in each of the x and y directions. It is fixed by an adsorption method or the like, and the movement of each XYZ movable stage is controlled by a length measuring device such as a laser interferometer (not shown). Then, by moving each XYZ movable stage in a state where a rectangular slit-shaped illumination area is formed at the end of the circuit pattern portion of the mask 209, the mask 209 is scanned in the z direction and the wafer 294 is scanned in the −z direction. The entire circuit pattern of the mask 209 is projected onto the wafer 294, and the entire circuit pattern is transferred onto the wafer 294. When the projection magnification of the projection optical system 293 is M and the scanning speed of the mask 209 is V, the wafer 294
Is −M × V.

【0149】図32は本発明のデバイス(ICやLSI
等の半導体チップ、或は液晶パネルやCCD等)の製造
方法のフローチャートである。これについて説明する。
FIG. 32 shows a device (IC or LSI) of the present invention.
3 is a flowchart of a method for manufacturing a semiconductor chip such as a liquid crystal panel or a CCD. This will be described.

【0150】ステップ1(回路設計)では半導体デバイ
スの回路設計を行なう。
In step 1 (circuit design), a circuit of a semiconductor device is designed.

【0151】ステップ2(マスク製作)では設計した回
路パターンを形成したマスクを製作する。一方、ステッ
プ3(ウエハ製造)ではシリコン等の材料を用いてウエ
ハを製造する。
In step 2 (mask fabrication), a mask on which the designed circuit pattern is formed is fabricated. On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon.

【0152】ステップ4(ウエハプロセス)は前工程と
呼ばれ、本発明の露光装置を用い、前記の用意した回路
パターン(第1物体)を形成したマスク(レチクル)と
ウエハ(第2物体)を用いてリソグラフィ技術によって
ウエハ上に実際の回路を形成する。
Step 4 (wafer process) is called a pre-process, and the mask (reticle) on which the prepared circuit pattern (first object) is formed and the wafer (second object) are formed using the exposure apparatus of the present invention. To form actual circuits on the wafer by lithography.

【0153】ステップ5(組立)は後工程と呼ばれ、ス
テップ4によって作製されたウエハを用いて半導体チッ
プ化する工程であり、アッセンブリ工程(ダイシング、
ボンディング)、パッケージング工程(チップ封入)等
の工程を含む。
Step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and is an assembly process (dicing, dicing,
Bonding), a packaging step (chip encapsulation), and the like.

【0154】ステップ6(検査)ではステップ5で作製
された半導体デバイスの動作確認テスト、耐久性テスト
等の検査を行なう。こうした工程を経て半導体デバイス
が完成し、これが出荷(ステップ7)される。
In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).

【0155】図33は上記のウエハプロセスのフローチ
ャートである。
FIG. 33 is a flowchart of the above-mentioned wafer process.

【0156】ステップ11(酸化)ではウエハの表面を
酸化させる。
At step 11 (oxidation), the surface of the wafer is oxidized.

【0157】ステップ12(CVD)ではウエハ表面に
絶縁膜を形成する。
In step 12 (CVD), an insulating film is formed on the wafer surface.

【0158】ステップ13(電極形成)ではウエハ上に
電極を蒸着によって形成する。
In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition.

【0159】ステップ14(イオン打込み)ではウエハ
にイオンを打ち込む。
In step 14 (ion implantation), ions are implanted into the wafer.

【0160】ステップ15(レジスト処理)ではウエハ
に感光剤を塗布する。
In step 15 (resist processing), a photosensitive agent is applied to the wafer.

【0161】ステップ16(露光)では本発明の露光装
置によってレチクルの回路パターンをウエハに焼付露光
する。
In step 16 (exposure), the circuit pattern of the reticle is printed and exposed on the wafer by the exposure apparatus of the present invention.

【0162】ステップ17(現像)では露光したウエハ
を現像する。
In step 17 (development), the exposed wafer is developed.

【0163】ステップ18(エッチング)では現像した
レジスト以外の部分を削り取る。
In step 18 (etching), portions other than the developed resist are removed.

【0164】ステップ19(レジスト剥離)ではエッチ
ングがすんで不要となったレジストを取り除く。
In step 19 (resist stripping), the resist which has become unnecessary after etching is removed.

【0165】これらのステップを繰り返し行なうことに
よってウエハ上に多重に回路パターンが形成される。
By repeatedly performing these steps, multiple circuit patterns are formed on the wafer.

【0166】本実施形態の製造方法を用いれば、従来よ
りも短時間で半導体デバイスを製造することができる。
By using the manufacturing method of this embodiment, a semiconductor device can be manufactured in a shorter time than in the conventional case.

【0167】[0167]

【発明の効果】本発明によれば、以上のように各要素を
設定することにより、通常照明法と変形照明法の切り替
えが容易で、かつ高い照明効率で被照射面を均一に照明
することができ、高集積度のデバイスを容易に製造する
ことができる照明装置及びそれを用いた投影露光装置、
デバイスの製造方法を達成することができる。
According to the present invention, by setting each element as described above, it is easy to switch between the normal illumination method and the modified illumination method, and to uniformly illuminate the irradiated surface with high illumination efficiency. And a projection exposure apparatus using the same, which can easily manufacture a highly integrated device,
A method for manufacturing a device can be achieved.

【0168】特に本発明によれば、通常照明と変形照明
の切り替えを、光束混合手段の直後に様々な構成の光束
調整手段を出し入れすることで容易に実現することがで
き、また照明光束を高い効率で利用することができる等
の効果が得られる。
In particular, according to the present invention, switching between the normal illumination and the deformed illumination can be easily realized by inserting and removing the luminous flux adjusting means having various structures immediately after the luminous flux mixing means, and the illumination luminous flux can be increased. Effects such as efficient use can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の照明装置の実施形態1の要部概略図FIG. 1 is a schematic diagram of a main part of a lighting device according to a first embodiment of the present invention.

【図2】 本発明の照明装置を用いた投影露光装置の実
施形態1の要部概略図
FIG. 2 is a schematic view of a main part of a first embodiment of a projection exposure apparatus using the illumination device of the present invention.

【図3】 本発明に係る光束調整手段の概略図FIG. 3 is a schematic diagram of a light flux adjusting unit according to the present invention.

【図4】 本発明に係る絞り調整手段の概略図FIG. 4 is a schematic view of an aperture adjusting unit according to the present invention.

【図5】 本発明に係るハエの目の入射面での照度分布
の概略図
FIG. 5 is a schematic diagram of an illuminance distribution on an entrance surface of a fly eye according to the present invention.

【図6】 本発明に係るハエの目の入射面での照度分布
の概略図
FIG. 6 is a schematic diagram of an illuminance distribution on an entrance surface of a fly eye according to the present invention.

【図7】 本発明に係る絞りで不要光を遮光した場合の
有効光源を表す説明図
FIG. 7 is an explanatory diagram showing an effective light source when unnecessary light is blocked by the diaphragm according to the present invention.

【図8】 本発明に係る光束調整手段を交換した場合の
概略図
FIG. 8 is a schematic diagram when the light flux adjusting means according to the present invention is replaced.

【図9】 本発明に係るハエの目入射面での照度分布の
概略図
FIG. 9 is a schematic diagram of an illuminance distribution on a fly eye entrance surface according to the present invention.

【図10】 本発明に係るハエの目入射面での照度分布
の概略図
FIG. 10 is a schematic diagram of the illuminance distribution on the fly-eye incidence surface according to the present invention.

【図11】 本発明に係る絞りで不要光を遮光した場合
の有効光源を表す説明図
FIG. 11 is an explanatory diagram showing an effective light source when unnecessary light is blocked by the stop according to the present invention.

【図12】 本発明に係る4重極照明の場合のハエの目
入射面での照度分布の概略図
FIG. 12 is a schematic diagram of an illuminance distribution on a fly-eye incident surface in the case of quadrupole illumination according to the present invention.

【図13】 本発明に係る絞りで不要光を遮光した場合
の有効光源を表す説明図
FIG. 13 is an explanatory diagram showing an effective light source when unnecessary light is blocked by the diaphragm according to the present invention.

【図14】 本発明に係る有効光源分布の説明図FIG. 14 is an explanatory diagram of an effective light source distribution according to the present invention.

【図15】 本発明の照明装置の実施形態2の一部分の
要部概略図
FIG. 15 is a schematic diagram of a main part of a part of Embodiment 2 of the lighting device of the present invention.

【図16】 本発明に係る光束調整手段の概略図FIG. 16 is a schematic diagram of a light flux adjusting unit according to the present invention.

【図17】 本発明に係る光束調整手段としての回折光
学素子の位相分布の説明図
FIG. 17 is an explanatory diagram of a phase distribution of a diffractive optical element as a light beam adjusting unit according to the present invention.

【図18】 本発明に係る光束調整手段としての回折光
学素子の位相分布の説明図
FIG. 18 is an explanatory diagram of a phase distribution of a diffractive optical element as a light beam adjusting unit according to the present invention.

【図19】 本発明に係る光束調整手段としての回折光
学素子の位相分布の説明図
FIG. 19 is an explanatory diagram of a phase distribution of a diffractive optical element as a light beam adjusting unit according to the present invention.

【図20】 本発明の照明装置の実施形態3の一部分の
要部概略図
FIG. 20 is a schematic view of a main part of a part of Embodiment 3 of the lighting device of the present invention.

【図21】 本発明に係る光束調整手段の概略図FIG. 21 is a schematic diagram of a light flux adjusting unit according to the present invention.

【図22】 本発明の照明装置の実施形態4を示す概略
FIG. 22 is a schematic view showing Embodiment 4 of the lighting device of the present invention.

【図23】 出射角度保存光学素子の2つの例を示す概
略図
FIG. 23 is a schematic view showing two examples of an emission angle preserving optical element.

【図24】 出射角度保存光学素子の切り換えについて
の説明図
FIG. 24 is an explanatory diagram of switching of an emission angle preserving optical element.

【図25】 内面反射型インテグレータの機能について
の説明図
FIG. 25 is an explanatory diagram of functions of an internal reflection type integrator.

【図26】 図22乃至図25の内面反射型インテグレ
ータ204により形成される虚像群を示す説明図
FIG. 26 is an explanatory diagram showing a virtual image group formed by the internal reflection type integrator 204 shown in FIGS. 22 to 25;

【図27】 本発明の露光装置の実施形態2を示す概略
図で、図22の照明装置を搭載した露光装置
27 is a schematic view showing an exposure apparatus according to a second embodiment of the present invention, and is an exposure apparatus equipped with the illumination device of FIG. 22;

【図28】 本発明の照明装置の実施形態5を示す概略
図で、小σの状態における装置構成図
FIG. 28 is a schematic view showing Embodiment 5 of the lighting device of the present invention, and is a device configuration diagram in a small σ state;

【図29】 本発明の照明装置の実施形態5を示す概略
図で、大σの状態における装置構成図
FIG. 29 is a schematic diagram showing Embodiment 5 of the illumination device of the present invention, and is a device configuration diagram in a state of large σ.

【図30】 図28及び図29の内面反射型インテグレ
ータ240により形成される虚像群を示す説明図
30 is an explanatory diagram showing a virtual image group formed by the internal reflection type integrator 240 shown in FIGS. 28 and 29. FIG.

【図31】本発明の露光装置の実施形態3を示す概略図
で、図28及び図29が示す照明装置を搭載した露光装
置図
FIG. 31 is a schematic view showing an exposure apparatus according to a third embodiment of the present invention, and is a view showing the exposure apparatus equipped with the illumination device shown in FIGS. 28 and 29;

【図32】 本発明のデバイスの製造方法のフローチャ
ート
FIG. 32 is a flowchart of a device manufacturing method of the present invention.

【図33】 本発明のデバイスの製造方法のフローチャ
ート
FIG. 33 is a flowchart of a device manufacturing method of the present invention.

【図34】 従来の照明装置の要部概略図FIG. 34 is a schematic view of a main part of a conventional lighting device.

【図35】 図24の一部分の説明図FIG. 35 is an explanatory view of a part of FIG. 24;

【図36】 図24の一部分の説明図FIG. 36 is an explanatory view of a part of FIG. 24;

【図37】 図24の一部分の説明図FIG. 37 is an explanatory view of a part of FIG. 24;

【符号の説明】[Explanation of symbols]

1 水銀灯(光源) 2 楕円ミラー 3 光束混合手段 4 集光レンズ 5 多光束発生手段 6 照射手段 7 被照射面(レチクル) 10 集光光学系 11 光束調整手段 12 絞り 24 投影レンズ 25 感光基板 201 レーザ光源 202 射出角度保存光学素子 203 集光光学系 204 内面反射型インテグレータ 205 ズーム光学系 207 波面分割型インテグレータ 208 集光光学系 209 マスク 293 投影光学系 294 ウエハ DESCRIPTION OF SYMBOLS 1 Mercury lamp (light source) 2 Elliptical mirror 3 Light beam mixing means 4 Condensing lens 5 Multi-beam generating means 6 Irradiating means 7 Irradiation surface (reticle) 10 Condensing optical system 11 Light beam adjusting means 12 Aperture 24 Projection lens 25 Photosensitive substrate 201 Laser Light source 202 Emission angle preserving optical element 203 Condensing optical system 204 Internal reflection type integrator 205 Zoom optical system 207 Wavefront splitting integrator 208 Condensing optical system 209 Mask 293 Projection optical system 294 Wafer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/20 521 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/027 G03F 7/20 521

Claims (23)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源からの光を集光する第1の集光光学
系と、該光学系からの光の少なくとも一部を内面で反射
して光出射面に強度分布が均一な面光源を形成する内面
反射型の第1インテグレータと、入射光の波面を分割し
て多数の光束光を形成する波面分割型の第2インテグレ
ータと、前記面光源を前記第2インテグレータの光入射
面又はその近傍に結像する、結像倍率が可変な結像光学
系と、前記多数の光束を被照明面上で互いに重ね合わせ
る第2の集光光学系と、前記第2インテグレータの光入
射面での光量分布を調整するために前記第1インテグレ
ータと前記結像光光学系の間に設ける光束調整手段と、
前記結像光学系の結像倍率が変化しても前記光入射面へ
入射する光の開き角を一定又はほぼ一定に維持する手段
と、を有することを特徴とする照明装置。
1. A first condensing optics for condensing light from a light source.
System and at least a portion of the light from the optical system is reflected by the inner surface
To form a surface light source with a uniform intensity distribution on the light exit surface
The first integrator of the reflection type and the splitting of the wavefront of the incident light
Wavefront splitting type second integrator that forms multiple light beams
Data and the surface light source are incident on the second integrator.
Imaging optics with variable imaging magnification for imaging on or near a surface
System and the multiple light beams are superimposed on each other on the surface to be illuminated.
A second condensing optical system, and a light input of the second integrator.
The first integrator is used to adjust the light quantity distribution on the launch surface.
Light flux adjusting means provided between the data and the imaging light optical system,
Even if the imaging magnification of the imaging optical system changes, the light enters the light incident surface.
Means for maintaining the opening angle of incident light constant or almost constant
Lighting apparatus characterized by having, when.
【請求項2】 前記第1インテグレータは角柱状又は角
錐状のガラス棒、若しくは3枚以上の平面鏡を各々の反
射面が対面するように組み合わせたカレイドスコープ
(万華鏡)を備えることを特徴とする請求項1の照明装
置。
2. The method according to claim 1, wherein the first integrator has a prism shape or a square shape.
A conical glass rod or three or more plane mirrors
Kaleidoscope combined so that the launch surfaces face each other
The lighting device according to claim 1 , further comprising a (kaleidoscope) .
【請求項3】 前記第2インテグレータはフライアイレ
ンズ又は光ファイバー束を備えることを特徴とする請求
項1又は2の照明装置。
3. The fly air-conditioner according to claim 2, wherein
Or a bundle of fibers or optical fibers.
Item 3. The lighting device according to item 1 or 2 .
【請求項4】 前記結像光学系は互いに結像倍率が異な
る複数の光学系を有し、該複数の光学系の一つが前記第
1、第2インテグレータの間に選択的に供給されること
を特徴とする請求項1から3のいずれかに記載の照明装
置。
4. The imaging optical system has different imaging magnifications.
A plurality of optical systems, and one of the plurality of optical systems is
1. Selective supply between the second integrator
The lighting device according to claim 1, wherein:
【請求項5】 前記結像光学系は像面位置を一定に維持
しつつ焦点距離が変化するように変位する複数の移動レ
ンズを備えることを特徴とする請求項1から3のいずれ
かに記載の照明装置。
5. The image forming optical system maintains a constant image plane position.
While moving the camera so that the focal length changes.
4. The method according to claim 1, further comprising:
Lighting device crab according.
【請求項6】 前記第1の集光光学系が、前記光源から
の光が光軸と直交する方向又はほぼ直交する方向に偏心
しても前記第1インテグレータへ入射する際の発散角ま
たは収斂角を一定に維持するための光学部材を備えるこ
とを特徴とする請求項1から5のいずれかに記載の照明
装置。
6. The optical system according to claim 1, wherein the first light-collecting optical system is provided from the light source.
Light is eccentric in the direction orthogonal to or almost orthogonal to the optical axis
The divergence angle when entering the first integrator.
Or have an optical member to maintain the convergent angle constant.
The lighting device according to claim 1, wherein:
【請求項7】 入射光の波面を分割して複数の光源を形
成する波面分割型の第1インテグレータと、入射光の少
なくとも一部を内面で反射して光出射面に強度分布が均
一な面光源を形成する内面反射型の第2インテグレータ
と、入射光の 波面を分割して多数の光束を形成する波面
分割型の第3インテグレータと、光源からの光を前記第
1インテグレータに入射させる光学系と、前記第1イン
テグレータが形成した前記複数の光源を前記第2インテ
グレータの光入射面の近傍に結像する第1結像光学系
と、第2インテグレータが形成する前記面光源を前記第
3インテグレータの光入射面又はその近傍に結像する、
結像倍率が可変な第2結像光学系と、前記第3インテグ
レータが形成した前記多数の光束を被照明面上で互いに
重ね合わせる集光光学系と、前記第3のインテグレータ
の光入射面での光量分布を調整するために前記第2イン
テグレータと前記第2結像光光学系の間に設ける光束調
整手段と、を有することを特徴とする照明装置。
7. A plurality of light sources are formed by dividing a wavefront of incident light.
The first wavefront splitting integrator that forms
At least part of the light is reflected by the inner surface and the intensity distribution is uniform on the light exit surface.
Internal reflection type second integrator that forms a uniform surface light source
And a wavefront that divides the wavefront of the incident light to form multiple light beams
A split third integrator and the light from the light source
(1) an optical system to be incident on the integrator;
The plurality of light sources formed by the
First imaging optical system that forms an image near the light incident surface of the grater
And the surface light source formed by the second integrator is
3 Form an image on or near the light incident surface of the integrator,
A second imaging optical system having a variable imaging magnification;
The plurality of light fluxes formed by the
The condensing optical system to be superimposed and the third integrator
In order to adjust the light quantity distribution on the light incident surface of
Light flux adjustment provided between a teigrator and the second imaging optical system
A lighting device, comprising:
【請求項8】 前記第2インテグレータは角柱状又は角
錐状のガラス棒、若しくは3枚以上の平面鏡を各々の反
射面が対面するように組み合わせたカレイドスコープ
(万華鏡)を備えることを特徴とする請求項7の照明装
置。
8. The method according to claim 1, wherein the second integrator is prismatic or square.
A conical glass rod or three or more plane mirrors
Kaleidoscope combined so that the launch surfaces face each other
The lighting device according to claim 7, further comprising a (kaleidoscope) .
【請求項9】 前記第3インテグレータはフライアイレ
ンズ又は光ファイバー束を備えることを特徴とする請求
項7又は8の照明装置。
9. The fly air source according to claim 3, wherein the third integrator is a fly air
Or a bundle of fibers or optical fibers.
Item 9. The lighting device according to item 7 or 8 .
【請求項10】 前記結像光学系は互いに結像倍率が異
なる複数の光学系を有し、該複数の光学系の一つが前記
第2、第3インテグレータの間に選択的に供給されるこ
とを特徴とする請求項7から9のいずれか1項に記載
照明装置。
10. The imaging optical systems have different imaging magnifications from each other.
Having a plurality of optical systems, wherein one of the plurality of optical systems is
Selectively supplied between the second and third integrators
The lighting device according to any one of claims 7 to 9, wherein:
【請求項11】 前記結像光学系は像面位置を一定に維
持しつつ焦点距離が変化するように変位する複数の移動
レンズを備えることを特徴とする請求項7から9のいず
れか1項に記載の照明装置。
11. The image forming optical system maintains an image plane position constant.
Multiple movements that are displaced so that the focal length changes while holding
10. A lens according to claim 7, further comprising a lens.
The lighting device according to claim 1 .
【請求項12】 前記光束調整手段は、光入射面が凹面
の円錐面で、光出射面側が凸面の円錐面である光学部材
を備えることを特徴とする請求項1から11のいずれか
1項に記載の照明装置。
12. The light beam adjusting means, wherein the light incident surface is concave.
Optical member having a conical surface of
12. The method according to claim 1, further comprising:
The lighting device according to claim 1.
【請求項13】 前記光束調整手段は、光入射面が凹面
の多角錐面で、光出射面側が凸面の多角錐面である光学
部材を備えることを特徴とする請求項1から11のいず
れか1項に記載の照明装置。
13. The light beam adjusting means, wherein the light incident surface is concave.
Optics whose light exit surface side is a convex pyramid surface
12. The method according to claim 1, further comprising a member.
The lighting device according to claim 1.
【請求項14】 前記光学部材の光入射面と光出射面と
はそれぞれ前記多角錐の頂点の近傍を光軸に垂直な面で
切断した平面を有することを特徴とする請求項12又は
13の1項に記載の照明装置。
14. A light incident surface and a light exit surface of the optical member.
Represents the vicinity of the vertex of the pyramid in a plane perpendicular to the optical axis.
13. A cutting surface having a cut plane.
Item 13. The lighting device according to Item 1.
【請求項15】15. 前記光束調整手段は、輪帯状の位相分The luminous flux adjusting means includes a ring-shaped phase component.
布を有する回折光学素子を2つ有していることを特徴とCharacterized by having two diffractive optical elements having cloth
する請求項1から11のいずれか1項に記載の照明装The lighting device according to any one of claims 1 to 11,
置。Place.
【請求項16】16. 前記光束調整手段は一面に回折光学素The light beam adjusting means has a diffractive optical element on one surface.
子を設けた基板を有しており、該回折光学素子は該一面A substrate provided with an element, wherein the diffractive optical element is
上の多数の領域に面積分割されており、かつ各々の領域The area is divided into a number of upper areas, and each area
の回折光学素子は直線状のパターンから形成されておDiffractive optical elements are formed from a linear pattern.
り、また各々の領域の回折光学素子による光束の回折方And how the light beam is diffracted by the diffractive optical elements in each area.
向が互いに異なっており、前記第2インテグレータの光Directions are different from each other, and the light of the second integrator is
入射面の離散的な位置に他に比べて強い光強度分布を形A strong light intensity distribution is formed at discrete positions on the entrance surface.
成していることを特徴とする請求項1〜11のいずれかThe method according to any one of claims 1 to 11, wherein
1項に記載の照明装置。The lighting device according to claim 1.
【請求項17】17. 前記第2インテグレータの光入射面上On the light incident surface of the second integrator
での光量分布が異なるようにした光束調整手段を複数設Luminous flux adjusting means with different light intensity distributions
け、該複数の光束調整手段のうちの1つを光路中に選択And selecting one of the plurality of light flux adjusting means in the optical path.
可能に設定していることを特徴とする請求項1から6の7. The method according to claim 1, wherein the setting is made possible.
いずれか1項記載の照明装置。The lighting device according to claim 1.
【請求項18】18. 前記第2インテグレータの光出射面近Near the light exit surface of the second integrator
傍に前記光束調整手段の種類に応じて開口形状が異なるAperture shape differs depending on the type of the light flux adjusting means beside
絞りを交換可能に設けることを特徴とする請求項17にThe diaphragm according to claim 17, wherein the diaphragm is replaceably provided.
記載の照明装置。The lighting device according to the above.
【請求項19】(19) 前記第3インテグレータの光入射面上On the light incident surface of the third integrator
での光量分布が異なるようにした光束調整手段を複数設Luminous flux adjusting means with different light intensity distributions
け、該複数の光束調整手段のうちの1つを光路中に選択And selecting one of the plurality of light flux adjusting means in the optical path.
可能に設定していることを特徴とする請求項7から1112. The method according to claim 7, wherein the setting is made possible.
のいずれか1項記載の照明装置。The lighting device according to claim 1.
【請求項20】20. 前記第3インテグレータの光出射面近Near the light emitting surface of the third integrator
傍に前記光束調整手段の種類に応じて開口形状が異なるAperture shape differs depending on the type of the light flux adjusting means beside
絞りを交換可能に設けることを特徴とする請求項19に20. The diaphragm according to claim 19, wherein the diaphragm is replaceably provided.
記載の照明装置。The lighting device according to the above.
【請求項21】21. 請求項1から20のいずれか1項記載21. Any one of claims 1 to 20
の照明装置を用いて被照射面に設けたマスクのパターンPattern of the mask provided on the surface to be illuminated using the illumination device
を投影光学系によりウエハ上に投影することを特徴とすIs projected onto a wafer by a projection optical system.
る投影露光装置。Projection exposure apparatus.
【請求項22】22. 請求項1から20のいずれか1項記載21. Any one of claims 1 to 20
の照明装置を用いて被照射面に設けたマスクのパターンPattern of the mask provided on the surface to be illuminated using the illumination device
をウエハ上に投影する投影光学系を有し、該マスクとウA projection optical system for projecting
エハを前記投影光学系の光軸と垂直方向に前記投影光学Eha is projected onto the projection optical system in a direction perpendicular to the optical axis of the projection optical system.
系の投影倍率Projection magnification of the system に対応させた速度比で同期させて走査してScan synchronously at the speed ratio corresponding to
露光することを特徴とする投影露光装置。A projection exposure apparatus that performs exposure.
【請求項23】23. 請求項21又は請求項22の投影露光A projection exposure according to claim 21 or claim 22.
装置を用いてデバイスパターンでウエハを露光する段階Exposure of a wafer with a device pattern using an apparatus
と、該露光したウエハを現像する段階とを含むことを特And developing the exposed wafer.
徴とするデバイスの製造方法。The manufacturing method of the device.
JP22194897A 1997-08-04 1997-08-04 Illumination apparatus and projection exposure apparatus using the same Expired - Fee Related JP3264224B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22194897A JP3264224B2 (en) 1997-08-04 1997-08-04 Illumination apparatus and projection exposure apparatus using the same
US09/127,953 US6259512B1 (en) 1997-08-04 1998-08-03 Illumination system and exposure apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22194897A JP3264224B2 (en) 1997-08-04 1997-08-04 Illumination apparatus and projection exposure apparatus using the same

Publications (2)

Publication Number Publication Date
JPH1154426A JPH1154426A (en) 1999-02-26
JP3264224B2 true JP3264224B2 (en) 2002-03-11

Family

ID=16774674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22194897A Expired - Fee Related JP3264224B2 (en) 1997-08-04 1997-08-04 Illumination apparatus and projection exposure apparatus using the same

Country Status (2)

Country Link
US (1) US6259512B1 (en)
JP (1) JP3264224B2 (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271619A (en) * 1998-03-19 1999-10-08 Nikon Corp Illumination optical device and exposure device provided with illumination optical device
DE69931690T2 (en) * 1998-04-08 2007-06-14 Asml Netherlands B.V. Lithographic apparatus
US7329886B2 (en) * 1998-05-05 2008-02-12 Carl Zeiss Smt Ag EUV illumination system having a plurality of light sources for illuminating an optical element
US20050002090A1 (en) * 1998-05-05 2005-01-06 Carl Zeiss Smt Ag EUV illumination system having a folding geometry
US7006595B2 (en) * 1998-05-05 2006-02-28 Carl Zeiss Semiconductor Manufacturing Technologies Ag Illumination system particularly for microlithography
US20070030948A1 (en) * 1998-05-05 2007-02-08 Carl Zeiss Smt Ag Illumination system with field mirrors for producing uniform scanning energy
US6246524B1 (en) * 1998-07-13 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
JP4663047B2 (en) * 1998-07-13 2011-03-30 株式会社半導体エネルギー研究所 Laser irradiation apparatus and method for manufacturing semiconductor device
US6480263B1 (en) * 1998-10-22 2002-11-12 Asml Netherlands B.V. Apparatus and method for phase shift photomasking
US6563567B1 (en) * 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
JP2001174615A (en) * 1999-04-15 2001-06-29 Nikon Corp Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer
US6392742B1 (en) 1999-06-01 2002-05-21 Canon Kabushiki Kaisha Illumination system and projection exposure apparatus
JP2001042253A (en) * 1999-08-04 2001-02-16 Minolta Co Ltd Laser irradiation optical system
US6671035B2 (en) 1999-09-29 2003-12-30 Asml Netherlands B.V. Illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
TW587199B (en) 1999-09-29 2004-05-11 Asml Netherlands Bv Lithographic method and apparatus
JP2001110713A (en) 1999-10-12 2001-04-20 Nikon Corp Reflection optical element, lighting optical device having the same, projection aligner, and device manufacturing method
TW546550B (en) 1999-12-13 2003-08-11 Asml Netherlands Bv An illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
EP1109067B1 (en) * 1999-12-13 2006-05-24 ASML Netherlands B.V. Illuminator
KR20010085493A (en) * 2000-02-25 2001-09-07 시마무라 기로 Exposure apparatus, method for adjusting the same, and method for manufacturing device using the exposure apparatus
JP3919419B2 (en) 2000-03-30 2007-05-23 キヤノン株式会社 Illumination apparatus and exposure apparatus having the same
JP4545874B2 (en) 2000-04-03 2010-09-15 キヤノン株式会社 Illumination optical system, exposure apparatus provided with the illumination optical system, and device manufacturing method using the exposure apparatus
JP4659223B2 (en) * 2001-01-15 2011-03-30 キヤノン株式会社 Illumination apparatus, projection exposure apparatus used therefor, and device manufacturing method
JP3605047B2 (en) 2001-05-22 2004-12-22 キヤノン株式会社 Illumination apparatus, exposure apparatus, device manufacturing method and device
TW544758B (en) * 2001-05-23 2003-08-01 Nikon Corp Lighting optical device, exposure system, and production method of micro device
TW554411B (en) * 2001-08-23 2003-09-21 Nikon Corp Exposure apparatus
US7037659B2 (en) * 2002-01-31 2006-05-02 Nimblegen Systems Inc. Apparatus for constructing DNA probes having a prismatic and kaleidoscopic light homogenizer
JP3950732B2 (en) * 2002-04-23 2007-08-01 キヤノン株式会社 Illumination optical system, illumination method and exposure apparatus
JP3950731B2 (en) * 2002-04-23 2007-08-01 キヤノン株式会社 Illumination optical system, exposure apparatus having the illumination optical system, and device manufacturing method
JP4332331B2 (en) * 2002-08-05 2009-09-16 キヤノン株式会社 Exposure method
JP3958163B2 (en) * 2002-09-19 2007-08-15 キヤノン株式会社 Exposure method
US7209414B2 (en) * 2002-11-15 2007-04-24 Plasmon Lms, Inc Spherical aberration compensation by wavelength
EP1434092A1 (en) * 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1857880B1 (en) * 2003-04-09 2015-09-16 Nikon Corporation Exposure method and apparatus and device manufacturing method
US6842223B2 (en) 2003-04-11 2005-01-11 Nikon Precision Inc. Enhanced illuminator for use in photolithographic systems
DE10322393A1 (en) * 2003-05-12 2004-12-02 Carl Zeiss Smt Ag Illumination system for a microlithography projection exposure system
US7511886B2 (en) * 2003-05-13 2009-03-31 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
JP4391136B2 (en) * 2003-06-05 2009-12-24 株式会社目白ゲノッセン Exposure illumination device
JP4366163B2 (en) * 2003-09-25 2009-11-18 キヤノン株式会社 Illumination apparatus and exposure apparatus
TWI511179B (en) 2003-10-28 2015-12-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TWI385414B (en) * 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
US7542217B2 (en) * 2003-12-19 2009-06-02 Carl Zeiss Smt Ag Beam reshaping unit for an illumination system of a microlithographic projection exposure apparatus
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
CN1910522B (en) 2004-01-16 2010-05-26 卡尔蔡司Smt股份公司 Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
TWI395068B (en) 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure
TWI505329B (en) * 2004-02-06 2015-10-21 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
EP1716458B1 (en) * 2004-02-17 2011-06-01 Carl Zeiss SMT GmbH Illumination system for a microlithographic projection exposure apparatus
US7812283B2 (en) 2004-03-26 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method for fabricating semiconductor device
FR2868551B1 (en) * 2004-04-02 2006-08-04 Essilor Int OPTICAL CONDUIT FOR REALIZING AN ELECTRONIC DISPLAY ARRANGEMENT
US8525075B2 (en) 2004-05-06 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7324280B2 (en) * 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
CN101667538B (en) * 2004-08-23 2012-10-10 株式会社半导体能源研究所 Semiconductor device and its manufacturing method
US20070285644A1 (en) * 2004-09-13 2007-12-13 Carl Zeiss Smt Ag Microlithographic Projection Exposure Apparatus
WO2006121009A1 (en) 2005-05-12 2006-11-16 Nikon Corporation Projection optical system, exposure apparatus and exposure method
TWM324785U (en) * 2007-04-16 2008-01-01 Young Optics Inc Illumination system
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010134328A (en) * 2008-12-08 2010-06-17 Disco Abrasive Syst Ltd Polarization element and laser unit
US20110037962A1 (en) * 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5417143B2 (en) * 2009-12-10 2014-02-12 Drc株式会社 UV irradiation equipment
US20110205519A1 (en) * 2010-02-25 2011-08-25 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
KR101813307B1 (en) * 2011-01-29 2017-12-28 칼 짜이스 에스엠티 게엠베하 Illumination system of a microlithographic projection exposure apparatus
JP2014086244A (en) * 2012-10-23 2014-05-12 Drc Kk Light intensity adjustment device and irradiation device using the same
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
EP2781296B1 (en) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
WO2016010949A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Method and system for forming perforations
JP2017530867A (en) * 2014-07-14 2017-10-19 コーニング インコーポレイテッド System and method for processing transparent materials using adjustable length and diameter laser beam focal lines
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN107406293A (en) 2015-01-12 2017-11-28 康宁股份有限公司 The substrate through heat tempering is cut by laser using Multiphoton Absorbtion method
WO2016154284A1 (en) 2015-03-24 2016-09-29 Corning Incorporated Laser cutting and processing of display glass compositions
WO2016160391A1 (en) 2015-03-27 2016-10-06 Corning Incorporated Gas permeable window and method of fabricating the same
EP3319911B1 (en) 2015-07-10 2023-04-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
WO2018022476A1 (en) 2016-07-29 2018-02-01 Corning Incorporated Apparatuses and methods for laser processing
JP2019532908A (en) 2016-08-30 2019-11-14 コーニング インコーポレイテッド Laser cutting of materials with an intensity mapping optical system
JP6923284B2 (en) 2016-09-30 2021-08-18 コーニング インコーポレイテッド Equipment and methods for laser machining transparent workpieces using non-axisymmetric beam spots
EP3529214B1 (en) 2016-10-24 2020-12-23 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US11385331B2 (en) * 2018-01-29 2022-07-12 The Regents Of The University Of California Enclosure for light detection and ranging unit and related methods
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JP2022091478A (en) * 2020-12-09 2022-06-21 キヤノン株式会社 Illumination optical system, exposure device, and method for producing article

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64913A (en) 1987-06-24 1989-01-05 Canon Inc Luminator
US5153773A (en) 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
JP2969718B2 (en) 1990-01-20 1999-11-02 キヤノン株式会社 Illumination device and circuit manufacturing method using the same
US5719704A (en) * 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
JP2890892B2 (en) 1991-04-30 1999-05-17 キヤノン株式会社 Exposure apparatus and element manufacturing method using the same
US6128068A (en) 1991-02-22 2000-10-03 Canon Kabushiki Kaisha Projection exposure apparatus including an illumination optical system that forms a secondary light source with a particular intensity distribution
US5305059A (en) 1991-10-17 1994-04-19 Kabushiki Kaisha Toshiba Image forming apparatus
JP3295956B2 (en) 1992-03-05 2002-06-24 株式会社ニコン Exposure apparatus and method for manufacturing semiconductor element
JP3278896B2 (en) 1992-03-31 2002-04-30 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
JP2946950B2 (en) * 1992-06-25 1999-09-13 キヤノン株式会社 Illumination apparatus and exposure apparatus using the same
JP3000502B2 (en) 1992-12-29 2000-01-17 キヤノン株式会社 Illumination device and projection exposure apparatus using the same
WO1994020883A1 (en) * 1993-03-01 1994-09-15 General Signal Corporation Variable annular illuminator for photolithographic projection imager
EP0687956B2 (en) * 1994-06-17 2005-11-23 Carl Zeiss SMT AG Illumination device

Also Published As

Publication number Publication date
US6259512B1 (en) 2001-07-10
JPH1154426A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3005203B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
US5673102A (en) Image farming and microdevice manufacturing method and exposure apparatus in which a light source includes four quadrants of predetermined intensity
US5305054A (en) Imaging method for manufacture of microdevices
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
US6392742B1 (en) Illumination system and projection exposure apparatus
JP3634782B2 (en) Illumination apparatus, exposure apparatus using the same, and device manufacturing method
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP2001284212A (en) Illuminator and exposure system equipped therewith
KR100823405B1 (en) Exposure apparatus and device manufacturing method
JP3428055B2 (en) Illumination optical device, exposure apparatus, semiconductor manufacturing method and exposure method
US5359388A (en) Microlithographic projection system
JP2002198309A (en) Illumination system with less heat load
JP3559694B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3517573B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3997199B2 (en) Exposure method and apparatus
JP2004335575A (en) Aligner
US7079321B2 (en) Illumination system and method allowing for varying of both field height and pupil
JP3392034B2 (en) Illumination device and projection exposure apparatus using the same
JP2000182933A (en) Illumination optical device and aligner equipped therewith
JP4838430B2 (en) Exposure apparatus and device manufacturing method
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP4415223B2 (en) Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
KR20160034806A (en) Illumination optical device, exposure apparatus, and method of manufacturing article
JP2023164083A (en) Illumination optical system, exposure apparatus, and method for manufacturing article

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees